Software Releases

Cloud-Scale BWAMEM

Cloud-scale BWAMEM (CS-BWAMEM) is an ultrafast and highly scalable aligner built on top of cloud infrastructures, including Spark and Hadoop distributed file system (HDFS). It leverages the abundant computing resources in a public or private cloud to fully exploit the parallelism obtained from the enormous number of reads. With CSBWAMEM, the pair-end whole-genome reads (30x) can be aligned within 80 minutes in a 25-node cluster with 300 cores. The features include: 1) support both pair-end and single-end alignment; 2) achieve similar quality to BWA-MEM; 3) Input: FASTQ files and 4) output...

Microbenchmarks to Characterize Modern CPU-FPGA Platforms

With the rapid evolution of CPU-FPGA heterogeneous acceleration platforms, it is critical for both platform developers and users to quantify the fundamental microarchitectural features of the platforms. We developed a set of microbenchmarks to evaluate mainstream CPU-FPGA platforms.

The first benchmark (https://github.com/peterpengwei/Microbench_AlphaData) is dedicated to the Alpha Data card which connects a CPU with an FPGA via the PCIe interface. The benchmark follows the Xilinx SDAccel programming model, and...

PARADE: Full-System Accelerator-Rich Architecture Simulator
PARADE is a cycle-accurate full-system simulation platform that enables the design and exploration of the emerging accelerator-rich architectures (ARA). It extends the widely used gem5 simulator with high-level synthesis (HLS) support. 


PARADE simulates ARA at system-level and...

CMOST - System-Level FPGA Synthesis

CMOST is a system-level design automation framework for FPGA. The main features are:

  • Analyze and extract system-level information and generate task level data model
  • System-level optimizations for parallelism, task mapping and scheduling, pipelined streaming and data organization
    • Module evaluation using high-level synthesis
    • System-level module selection and duplication
    • ...
PolyOpt/HLS: Polyhedral-Based Data Reuse Optimization for FPGA

PolyOpt/HLS is a polyhedral loop optimization framework dedicated to data reuse optimization for High-Level Synthesis, integrated in the ROSE compiler. The main features are:

  • Automatic extraction of regions that can be optimized in the polyhedral model
  • Full support of PoCC (the Polyhedral Compiler Collection) analysis and optimizations
    • Dependence analysis with Candl
    • Program transformations for tiling and parallelism with Pluto
    • Code generation with CLooG
    • Parametric tiling with PTile
    • Data reuse optmization with LMP
    • ...
xPilot: Platform-based Behavior Synthesis System

The xPilot Team:

  • Professor Jason Cong
  • Researchers: Deming Chen, Yiping Fan, Guoling Han, Wei Jiang, Bin Liu, Junjuan Xu, Zhiru Zhang

xPilot is a behavior synthesis system from C or SystemC to RTL code with necessary design constraints. The advantages of xPilot includes: platform-based behavior and system synthesis, communication/interconnect-centric approach, advanced algorithms for platform-based,...

fpgaEva : A Heterogeneous FPGA Evaluation Tool

fpgaEva is a heterogeneous FPGA evaluation tool that incorporates a set of architecture evaluation related features into a user friendly JAVA interface. Modern field programmable gate arrays (FPGAs) provide in a single device both logic array for general logic functions and embedded memory blocks (EMBs) for efficient implementation of on-chip memory and specialized logic functions. Besides, recent generation of FPGAs take advantage of speed and density benefits resulted from heterogeneous FPGAs, which provide either an array of homogeneous programmable logic blocks (PLBs), each configured...

MCAS: Multi-Cycle Architectural Synthesis System

The MCAS system accepts behavioral C and VHDL, performs aggressive high-level synthesis and optimization coupled with physical planning to optimize design performance, and generates RTL implementations together with physical constraints and timing constraints (e.g., multi-cycle path constraints) which serve as guidelines for the downstream tools. The underlying theme of this research is to raise the design abstraction from RTL to higher-level description without losing the physical reality.

The Team

RASP: FPGA/CPLD Technology Mapping and Synthesis Package

RASP, an FPGA/CPLD technology mapping and synthesis package, is the synthesis core of the UCLA RASP System developed at UCLA VLSI CAD LAB. This site is actively updated.

 

Rasp team:

  • Jason Cong

  • Deming Chen

  • Eugene Ding

  • Zhijun Huang

  • Yean-Yow Hwang

  • John Peck

  • Chang Wu

  • Songjie Xu

Copyright (C) 1991-2004 the Regents of University of California

...

Performance Estimation Models for Optimized Interconnects (IPEM)

IPEM provides a set of procedures that estimate performance under interconnect optimization for deep submicron technology. Adopting models derived from several interconnection optimization algorithms of Trio, IPEM is fast, accurate, and easy to be linked to user's application programs. The results of IPEM match well with the UCLA Trio package.

IPEM team...

3-D IC Physical Design and 3-D Architecture Exploration

3-D ICs have recently attracted great interest from researchers and IC designers. Studies demonstrate a potential performance improvement of up to 65% by transferring a placement from 2-D to 3-D and eliminating long interconnects. Furthermore, the multiple device layer structure of 3-D ICs provides a platform to integrate different components, such as digital ICs, analog ICs, memory, RF modules, and different technologies such as SOI, SiGe HBTs, GaAs, etc., into one single circuit stack. Thus, it is a more flexible vehicle for system-on-chip (SoC) and system-in-package (SiP) designs...

CPMO --- Constrained Placement by Multilevel Optimization

Placement is one of the most important steps in the post-RTL synthesis process, as it directly defines the interconnects, which are now the bottleneck in circuit and system performance in deep submicron technologies. The placement problem has been studied extensively in the past 30 years. However, a study from UCLA shows that existing placement solutions are surprisingly far from optimal. Using a set of cleverly constructed circuit placement examples with known optima (PEKO) that match many industrial circuit characteristics, the study shows that the results of leading placement tools...

V4R - Multilayer MCM Router

V4R - Multilayer MCM Router

TRIO - Tree, Repeater and Interconnect Optimization Package

TRIO - Tree, Repeater and Interconnect Optimization Package

mGP - A Multilevel Global Placement Tool

mGP - A Multilevel Global Placement Tool