
HLScope+: Fast and Accurate
Performance Estimation for FPGA HLS

Young-kyu Choi∗†, Peng Zhang†, Peng Li‡, and Jason Cong∗
∗University of California, Los Angeles †Falcon Computing Solutions ‡Tsinghua University
{ykchoi,cong}@cs.ucla.edu, pengzhang@falcon-computing.com, lipeng@tsari.tsinghua.edu.cn

Abstract—High-level synthesis (HLS) tools have vastly increased the
productivity of field-programmable gate array (FPGA) programmers
with design automation and abstraction. However, the side effect is that
many architectural details are hidden from the programmers. As a result,
programmers who wish to improve the performance of their design often
have difficulty identifying the performance bottleneck. It is true that
current HLS tools provide some estimate of the performance with a fixed
loop count, but they often fail to do so for programs with input-dependent
execution behavior. Also, their external memory latency model does not
accurately fit the actual bus-based shared memory architecture. This
work describes a high-level cycle estimation methodology to solve these
problems. To reduce the time overhead, we propose a cycle estimation
process that is combined with the HLS software simulation. We also
present an automatic code instrumentation technique that finds the reason
for stall accurately in on-board execution. The experimental results show
that our framework provides a cycle estimate with an average error rate
of 1.1% and 5.0% for compute- and DRAM-bound modules, respectively,
for ADM-PCIE-7V3 board. The proposed method is about two orders of
magnitude faster than the FPGA bitstream generation.

I. INTRODUCTION

High-level synthesis (HLS) tools such as Xilinx’s Vivado HLS
[27] and Intel’s HLS [12] are being widely used to improve the
productivity of field-programmable gate array (FPGA) programmers.
HLS tools automatically transform a design written in high-level
languages into a low-level implementation. By abstracting away the
hardware execution model, HLS has shortened the learning curve of
accelerator design. HLS also allows quick modification of various
design choices such as pipeline initiation intervals and unrolling
factors, therefore enabling programmers to perform efficient design
space exploration.

However, one of the side effects of such automation and abstraction
is that HLS hides many architectural details from the programmer. A
programmer can only observe a brief synthesis report and a machine-
generated output code, which is almost impossible to comprehend.
As a result, if programmers wanted to analyze the output code for
further performance improvement, they often have to spend many
hours to identify the performance bottleneck.

Our previous work, HLScope [8], addresses this problem by pro-
viding an HLS-based framework that helps programmers to identify
the performance bottleneck and its cause. The flow provides the
execution time of each module and analyzes various stall causes, such
as external DRAM access, synchronization, and dependency stalls. As
will be reviewed in Section II, HLScope provides a source-to-source
(S2S) transformation that automates the measurement and analysis
process. HLScope provides two flows; a software simulation-based
flow for rapid analysis and an in-FPGA flow for accurate analysis.

However, there are several issues that has not been adequately
studied in HLScope. The first issue is the accuracy of the simulation-
based flow when the program has dynamic execution paths and un-
determined loop bounds that depend on the input data. A motivating
example for a well-known quicksort is shown in Fig. 1 [10] (also used
in [8]). Depending on the value of pivot, the number of iterations for
Loop 1.1.1 and 1.1.2 can vary from 1 to N. Also, it may or may not
execute some of the conditional statement (e.g. code A, B, and C).
The synthesis report by Vivado HLS for this program is shown in
Table I; it does not provide any information about the total execution
time. HLScope partially solves this problem with simple variable trip
count (TC) estimation method [8], but it is accurate only within 50%
of the true cycle (Section III-C). This is due to the partly unavailable
cycle information, which will be explained in Section II-B2.

void qsort_comp(int n_per_batch~ float arr[MAX_N]){
int beg[M]~ end[M]~ i=0~ L~ R; float piv~ swap;
beg[0]=0; end[0]=n_per_batch;
while (i>=0) { // Loop 1

L=beg[i]; R=end[i]-1;
if (L<R) {

piv=arr[L];

//one round of reordering
II init L & R ptr

while (L<R) { // Loop 1.1 II swap untiL L & R meets
while (arr[R]>=piv && L<R){ // Loop 1.1.1
#pragma HLS pipeline // decrement R untiL an eLement

R--; //Less than pivot is found
}

codeA-if (L<R) { arr[L++]=arr[R]; } //copy it to L
while (arr[L]<=piv && L<R){ // Loop 1.1.2

#pragma HLS pipeline // increment L untiL an eLement
L++; // Less than pivot is found

}
codeA-if (L<R) { arr[R--]=arr[L]; } //copy it toR

}
- arr[L]=piv;beg[i+1]=L+1;end[i+1]=end[i];end[i++]=L;

if (end[i]-beg[i]>end[i-1]-beg[i-1]) { //swap qsort order
coceB swap=beg[i]; beg[i]=beg[i-1]; beg[i-1]=swap;

swap=end[i]; end[i]=end[i-1]; end[i-1]=swap;
- }}
else {

i--; J codeC
} } }

Fig. 1: Code for non-recursive quicksort [10]

TABLE I: Vivado HLS report for non-recursive quicksort. IL, II, and TC
are explained in Section II-B.

Name IL II TC
qsort comp ? - -
Loop 1 ? - ?
Loop 1.1 ? - ?
Loop 1.1.1 4 4 ?
Loop 1.1.2 4 4 ?

Another issue is the high-level external memory modeling for fast
cycle estimation. Vivado HLS does allow setting a latency term for
each port, but this is a too-optimistic prediction that does not consider
the effective DRAM bandwidth and the memory access contention.
For an example design that has one read and one write port of
512b external memory with very long burst access, Vivado HLS will
provide a cycle estimate with the assumption that the kernel may have
a DRAM bandwidth of 25.6 GB/s (=2*200MHz*512b). However,
[7] reports that the effective bandwidth would be from 4.9 GB/s to
9.5 GB/s depending on the platform and the configuration.

The final issue lies in the limited applicability of the HLScope’s in-
FPGA monitoring when finding source of stalls. Both Intel OpenCL
HLS (default) and Xilinx Vivado HLS (optional) support streaming
dataflow communication where modules execute without any explicit
synchronization among them. However, HLScope cannot provide a
stall reason in this situation because the stall reason was statically
analyzed (detailed reason will be explained in Section II-C).

Our work, named HLScope+, addresses these shortcomings by
providing a fast and accurate HLS-based cycle estimate of the FPGA
execution. In order to compensate for the inaccuracy introduced by
the code segments with unknown cycle information, we develop
a HLS-specific code instrumentation technique to extract the best
estimate of these inaccuracy sources from the HLS synthesis report.
This will be explained in Section III.

I nput: 525 for .. FPGA synth Accurate analysis
in-FPGA & execute .. ~ needed?

Viva do ~

525 for HLS Cycle# Output:
HL5 .. (DFLT) _... ~

5Wsim 5Wsim stall ~ critical
C code #DRAM path rate & module dep

analvsis Module structure analysis reason
~

User's optimization based on sta ll reason (iterate unti l perf met)

Fig. 2: Performance debugging overall framework [8]

We also provide a high-level external memory model for a typical
FPGA architecture, where multiple processing elements (PEs) are
connected through a bus to the shared external memory. We assume
the PEs issue memory requests of various data bitwidth and burst
length. For reduced estimation time, the external memory model is
incorporated into the HLS software simulation. One of the challenge
is how to abstract the individual memory access into a high-level
model for fast estimation. Another challenge is that outstanding
memory access from multiple PEs occurs in parallel, whereas the
software simulation is performed in serial. The solution will be
explained in Section IV.

Finally, we will describe how to build an in-FPGA monitor
that infers the reasons for stall among dataflow modules connected
through FIFO. A stall analysis network (SAN) is proposed that
enables each module to trace the root cause of stall. The method is
scalable since the monitor logic increases linearly with the number
of modules under analysis. Also, the monitor is described purely in C
code without the need for RTL, as will be demonstrated in Section V.

II. REVIEW OF HLSCOPE

A. Overall Framework
In this section we review the basics of the HLS-based performance

debugging framework named HLScope [8]. The flow is shown in
Fig. 2. HLScope accepts a Vivado HLS C code for input. Next, it
instruments a hardware execution model at HLS C code level for
software simulation. The instrumentation is performed using APIs
in the ROSE compiler infrastructure [22]. The software simulation
is performed in Vivado HLS, and the instrumented code outputs
the number of cycles and the DRAM transaction bytes for each
module. With the module structure, cycle, and DRAM transaction
information, the tool finds the list of the most time-consuming
modules (performance critical path). Then the stall rate of each
module is computed by dividing the individual module execution
time by the performance critical path time. Also, the reason for stall
is obtained by analyzing the module structure. Since the simulation-
based estimation may have some inaccuracy, the performance critical
path analysis may not be exact when modules running in parallel have
similar cycle numbers. Then HLScope will recommend the actual
on-board (in-FPGA) execution. Also, programmers may manually
choose this flow if accurate analysis is the main concern. HLScope
provides an automated instrumentation to insert in-FPGA monitors
for this purpose.

B. Cycle Estimation with Software Simulation
1) Dependency Analysis: Rather than providing a cycle estimate

for individual lines of operations, HLScope provides the analysis in
blocks of code such as functions and loops. Suppose that a code block
p is composed of multiple nested blocks c = c1, c2, HLScope will
add the cycle estimate for blocks c to block p depending on the static
dependency analysis of the code. There are three possibilities: serial,
parallel, and parallel by dataflow. If true dependency exists between
blocks, they can be executed in a serial manner. The execution time
of c (tc) will be added to p (tp) as:

tp =
∑
c

tc (1)

If there is no dependency, the blocks can execute in parallel. The
execution time is the maximum of the parallel blocks:

Iteration Latency (I L) = 6

I I I I Trip Count

tnit i at io~ I I I I I
I (TC) = 3

I nte rva I (I I) = 2 I I I I I I
Fig. 3: Loop pipelining parameters

int loop_ll_cycle = 0j
while (L<R) { // Loop 1.1 II Swap untiL L ptr & R ptr meets

}

• • • • • •

int loop_lll_cycle = 0j
int loop_111_TC=0j
while (arr[R]>=piv && L<R){ // Loop 1.1.1 //Decrement R ptr

#pragma HLS pipeline //untiL an eLement Less than
R--; //pivot is found or L & R meets
loop_lll_TC++j

}
loop_lll_cycle =
loop_ll_cycle +=
• • • • • •

{loop_111_TC-1)*loop_111_11 + loop_lll_llj
loop_lll_cyclej

II Swap arr[L] and arr[R]

Fig. 4: Code instrumentation to find dynamic loop bound for loop 1.1.1
in Fig. 1. Instrumented code is in bold. [8]

tp = max
c

(tc) (2)

The final case is when there is a dependency between blocks,
but the user would like them to execute in parallel without explicit
synchronization. This requires that data be passed in a streaming
fashion and the modules to be connected through FIFO. Also,
keyword “#pragma HLS dataflow” should be used [27]. Since blocks
are executed in parallel, the execution time is also bounded by the
slowest block (Eq. 2). The difference is that they do have dependency
between them, so it takes

∑
c ILc for data to traverse from beginning

to end:
tp = max

c
(tc) +

∑
c

ILc (3)

We will refer to this case as parallel by dataflow.
2) Loop Analysis: The parameters used to estimate the execution

cycle of a pipelined loop can be explained with Fig. 3. The number
of cycles to complete one iteration of a loop is called the iteration
latency (IL). The execution of each iteration is pipelined, and the
input rate of the pipeline is called the initiation interval (II). The
number of iterations is referred to as trip count (TC). As can be
deduced from Fig. 3, the execution cycle for a pipelined loop is [18]:

t = II ∗ (TC − 1) + IL (4)

However, for loops with undetermined loop bound (see quicksort
example in Fig. 1), Vivado HLS cannot provide the cycle estimate due
to the existence of undetermined TC. The tool will only provide the
II and IL. We can obtain the actual TC by inserting a simple counter
statement, as shown in bold statements in Fig. 4 [8]. Regardless of the
existence of undetermined loop bound or conditional break statement,
TC can be correctly estimated. Then the loop cycle estimation code is
inserted after the loop based on the run-time acquired TC. Finally, the
cycle estimate for Loop 1.1.1 is hierarchically added into its parent
loop (Loop 1.1) cycle estimate.

However, the cycle estimate obtained from such technique is only
accurate within 50% of the true cycle (Section III-C) for the quicksort
example. The reason is that quicksort contains imperfect loops (loop 1
and 1.1) that cannot be obtained with variable TC estimation methods
or initiation interval information from the HLS report. Also, quicksort
contains dynamic execution paths (conditional statements in code A,
B, and C) that are unavailable in the report. The solution will be
discussed in Section III.

C. Cycle Extraction from In-FPGA Monitoring
For accurate analysis, HLScope provides a flow that inserts hard-

ware monitor into the FPGA design and collects cycle information

Read ACD
512b->float 1'3) ® ® (J) ~

•
rate conv float->512b

DRAM C=A+B Write C DRAM
)ct 512b->float ~ rate conv

•
• Read B ~I oat 512b rate conv

512b float

Fig. 5: Dataflow vector add connected through FIFO. Circled number is
the module ID.

in runtime. Each module under analysis sends the start and the
end of execution signal to the monitor. Then the monitor records
this cycle information and writes to the DRAM for offline analysis.
Similarly, work in [24] explains how to extract cycle and memory
access information for designs written in OpenCL by recording event
timestamps in trace buffers.

Although HLScope collects cycle information in runtime, the
stall reason analysis is based on the statically analyzed module
dependence. This is due to the difficulty in dynamically correlating
the stall reason among multiple modules, especially when the origin
is several hops away. As a result, HLScope cannot trace the exact
source of stalls when modules execute in parallel by dataflow because
the source of stall changes in runtime. For a simple example of vector
add in Figure 5, all modules execute as soon as they receive a chunk
of data through the streaming FIFO but will stall when the input
data or the output buffer is not available. Module 5 (C=A+B), for
example, will stall even if only one of the modules in the A/B read
pipeline (FIFO being empty) or C write pipeline (FIFO being full)
stalls. The solution will be discussed in Section V.

III. IMPROVING CYCLE ESTIMATION ACCURACY FOR LOOPS
AND CONDITIONAL STATEMENTS

A. Estimation for Loops
The instrumentation technique in Section II-B [8] allows the cycle

estimate of an unbounded loop to be found, but an accurate estimate
cannot be obtained if loops are not perfectly nested. An example can
be found in Loop 1.1. Even if the cycles for Loop 1.1.1 and 1.1.2 are
found by the TC instrumentation, there is no information about code
A. The reason is that Vivado HLS did not give the IL of Loop 1.1 (’?’
for Loop 1.1’s IL in Table I) because of the existence of unbounded
Loops 1.1.1 and 1.1.2. The same problem exists for Loop 1.

This problem can be formalized as follows. Suppose that a loop
p is composed of multiple nested blocks c = c1, c2, ..., and one of
the blocks, c1, is a loop. p is not a perfectly nested loop due to
the existence of c2, c3, Assuming true dependency exists among
c1, c2, ..., the iteration latency of the p (ILp) is the sum of c blocks’
execution time (tc):

ILp =
∑
c

tc =
∑
c6=c1

tc + IIc1 ∗ (TCc1 − 1) + ILc1. (5)

If the trip count of c1 (TCc1) is not known at compile time, the
HLS compiler will be unable to provide ILp even if the rest of nested
loops’ execution time (

∑
c 6=c1 tc) is known. The variable trip count

instrumentation (Fig. 4 [8]) on TCc1 allows estimation of IIc1 ∗
(TCc1 − 1) + ILc1 in Eq. 5, but the estimate is not accurate since
p’s non-perfectly nested region (

∑
c6=c1 tc) has not been considered.

To solve this problem, we can force the HLS compiler to provide
the missing information

∑
c 6=c1 tc by assigning an arbitrary TCc1.

In Vivado HLS, this can be achieved with the pragma “#pragma
HLS loop tripcount min=100 avg=100 max=100” where 100 is the
arbitrary trip count. With this instrumentation, HLS will provide ILp,
IIc1, TCc1, and ILc1. Then the imperfect loop part is estimated
by subtracting (IIc1 ∗ (TCc1 − 1) + ILc1) from ILp. Whether the
arbitrary TCc1 matches the actual trip count in execution is irrelevant,
since ILp also increases at the exact same rate of IIc1 (Eq. 5). If
there are multiple nested loops (c1,..,cN) in p, the cycle estimation
for the non-perfectly nested region of p can be generalized as:∑

c 6=c1,..,cN

tc = ILp −
∑

c=c1,..,cN

(IIc ∗ (TCc − 1) + ILc). (6)

while (i>=0) {

}

#pragma HLS loop_tripcount min=100 avg=100 max=100
••••••

while (L<R) {

}
••••••

#pragma HLS loop_tripcount min=100 avg=100 max=100
while (arr[R]>=piv && L<R){

#pragma HLS loop_tripcount min=100 avg=100 max=100
••••••

}
while (arr[L]<=piv && L<R){

#pragma HLS loop_tripcount min=100 avg=100 max=100
••••••

}

Fig. 6: Quicksort code after pragma insertion

TABLE II: HLS report for quicksort after code modification
Name IL II TC
qsort comp 401˜8111401 - -
Loop 1 4˜81114 - 100
Loop 1.1 811 - 100
Loop 1.1.1 4 4 100
Loop 1.1.2 4 4 100

For the quicksort example, HLScope+ first automatically inserts
the pragma on every loop to make Vivado HLS assume that the loop
bounds are fixed (Fig. 6). This allows Vivado HLS to generate a
report in Table II. An estimate for the non-perfectly nested region
of Loop 1.1 can then be obtained by subtracting the cycle estimate
of Loops 1.1.1 and 1.1.2 from Loop 1.1 (811-400-400 =11). The
estimate for Loop 1 can be obtained in a similar way (81114-811*100
=14). The estimates for Loop 1.1 and Loop 1 will be automatically
inserted into the simulation code as shown in Fig. 7. In the software
simulation process, the HLS estimate from the arbitrary loop bounds
will be ignored and will instead be estimated as Eq. 4 with the
instrumented TC.

B. Estimation for Conditional Statements
The cycle estimate for most conditional statements will be auto-

matically reflected because the cycle addition routine will only be
processed when certain paths have been executed. However, some
conditionals that exist between loops or functions will not be properly
processed. For example, Vivado HLS does not provide a separate
estimate for the if and the else part of the conditional statements in
code A, B, and C.

We compensate for the missing cycle information based on the
minimum cycle provided in HLS report. Suppose that Vivado HLS
provides a range of cycle estimate for multiple execution paths in the
kernel (e.g., Loop 1 entry of Table II). If the simulation code for one
of execution paths has a cycle estimate smaller than the minimum
cycle provided by HLS tool, the cycle difference is added to the
simulated code. Although exact cycle is still unknown, the cycle for
unknown blocks are at least partially compensated.

For the quicksort example, Loop 1 has a minimum latency of 4.
The execution path along the else part of code C has no known
latency, but a cycle estimate of (4-0) is added as shown in Fig. 7.

Since this is a minimum analysis, the cycle estimate may have
some error. In practice, however, most of time-consuming blocks are
in the form of loops, and Vivado HLS will report II of those loops.
Thus, we can still obtain an accurate estimate with the proposed
techniques, as will be evaluated in Section VI-B.

C. Estimation Result for Quicksort
After applying the two techniques explained in this section, our tool

automatically generates the code presented in Fig. 7. Running soft-
ware simulation on this instrumented code with N=131072 elements
provides a prediction of 14.6M cycles, which is a 2.0% difference
from the cycle-accurate RTL co-simulation (Table III). The estimation

int qsort_cycle = 0; // global variable
qsort_cycle += (8111401-81114*100);
•••••

int loop_1_cycle = 0;
while (i>=0) { // loop 1

••••••

if (L<R) {
loop1_cycle += (81114-811*100);
piv=arr[L];
int loop_11_cycle = 0;
while (L<R) { // loop 1.1

}

loop_11_cycle += (811-400-400);
int loop_111_tc=0;
while (arr[R]>=piv && L<R){ // loop 1.1.1

••••••

loop_111_tc++;
}
loop_11_cycle += (loop_111_tc-1)*4+4;
••••••

<loop 1.1.2 is similar to loop 1.1.1>
••••••

loop_1_cycle += loop_11_cycle;
••••••

if (end[i]-beg[i]>end[i-1]-beg[i-1]) {
••••••

} }
else {

loop1_cycle += (4-0);
••••••

} }
qsort_cycle += loop1_cycle;

Fig. 7: Quicksort code after inserting cycle estimation code

time is four orders of magnitude faster. Compared to the baseline
software simulation, the instrumented code incurred a small 2.5%
time overhead. Also, the final instrumented version provides a 48%
more accurate cycle estimate than the simple TC counting version.

TABLE III: Cycle estimation and simulation time for quicksort

Baseline Simple TC + imperfect loop RTL
counting[8] & cond stmt est co-sim

Cycle Est N/A 7.42M 14.6M 14.9M
(-50%) (-2.0%) (0%)

Sim Time 0.0394s 0.0395s 0.0404s 817
(1X) (1.002X) (1.025X) (20736X)

IV. EXTERNAL MEMORY ACCESS MODEL FOR HLS SOFTWARE
SIMULATION

For our external memory access model, we assume an environment
where there are several PEs on an FPGA, and they are connected to
a single external memory through a bus and a DRAM controller.
We do not model cache and instead assume that FPGA programmers
explicitly control the internal BRAM as a scratchpad memory for
higher performance. We also assume that the bus can accept several
outstanding requests from PEs, as is the case with the AXI4 bus
standard [25].

In Vivado HLS, the simulator will assume that data can be fetched
from the external memory every cycle. As a result, the estimated
DRAM BW will be (#ext port∗ bitw ∗ fbus), where #ext port is
the number of external memory port, bitw is the data bitwidth, and
fbus by the frequency of the bus. As mentioned in the introduction,
it will assume an ideal DRAM bandwidth of 25.6 GB/s for a
design with #ext port=2, bitw=512b, and fbus=200MHz, but only
4.9GB/s˜9.5GB/s is achieved during on-board testing [7].

A simple estimation model for a single DRAM transaction is [19]:

tMEM = DSIZE/DBW +DLAT (7)

where the DSIZE is the length of each transaction, DBW is the
DRAM bandwidth, and DLAT is the latency. DSIZE is obtained
from the size field of the memcpy function. If the access is in the

form of global array reference, it is found from the length of the
consecutive array index from the loop bound of the loop iterator.
Vivado HLS also informs programmers if it has flattened several
loops to extend the consecutive access length. Similar to the cycle
estimate routine, the length is used as a variable that is determined
in simulation in run time. Note that if DSIZE is larger than
the maximum bus burst length (1KB for AXI), Vivado HLS will
automatically divide it into several outstanding memory requests of
maximum bus burst length.

We test two boards: ADM-PCIE-7V3 [1] and ADM-PCIE-KU3
[2]. In ADM-PCIE-7V3, DBW has been reported as 9.5 GB/s for
read and 8.9 GB/s for write in [7], but this number cannot be achieved
when the access is not consecutive or if the bus bitwidth varies. The
refined model will be explained in the following subsection. The
latency term has been measured as DLATR =542ns and DLATW

=356ns. In ADM-PCIE-KU3, we have obtained DBWR =10.3 GB/s,
DBWW =9.6 GB/s, DLATR =434ns, and DLATR =325ns.

A. Bandwidth Model Refinement

We refine the DRAM bandwidth (DBW) model by assuming it is
bounded by all components in the memory access pipeline: physical
DRAM module bandwidth (DBWP), DRAM controller bandwidth
(DBWC), and the bus data bandwidth (DBWB). The effective
bandwidth is computed as:

DBW = min(DBWP , DBWC , DBWB) (8)

1) Physical DRAM Bandwidth: In ADM-PCIE-7V3, we found that
when short (4B) but many (>1MB) discrete memory data are ac-
cessed, the effective external memory bandwidth is reduced to about
7% (0.053GB/s) of the bandwidth achieved with the consecutive
memory access of the same length (0.75GB/s). The reason can be
found in the bandwidth constraint of the physical DRAM module.
For illustration, let us consider consecutive outstanding requests to
random memory location: for(int i = 0; i < N; i++)

{
bram[i] =

dram[bram rand addr[i]];
}

.
Assuming a closed row policy [16], the minimum time between ac-

cess in a different address in a DRAM module is tRC = tRAS+tRP ,
where tRC is the row cycle time, tRAS is the row address select
(RAS) time, and tRP is the RAS precharge time [11]. For the ADM-
PCIE-7V3 and ADM-PCIE-KU3, the DRAM specification [14] states
that tRAS = 36ns, tRP = 13.5ns, and tRC = 49.5ns. In practical
implementation, this theoretical latency is often exceeded, and extra
overhead is added on the controller side (tCO)—that is, the latency
becomes tRC + tCO . From the random access experiment, we found
that the tRC + tCO is 76ns, which suggests that the controller over-
head (tCO) is (76ns-49.5ns)=26.5ns in ADM-PCIE-7V3. In ADM-
PCIE-KU3, tCO is calculated as (62ns-49.5ns)=12.5ns. Note that the
average latency of 76ns for 4B of data is 0.053GB/s (=4B/76ns),
which is the bandwidth obtained in the random access experiment.

We found that discrete memory access of stride 2, 4, and 8 achieve
similar external memory bandwidth as the random access. This
suggests that the Xilinx controller does not concatenate outstanding
requests of nearby memory addresses into a same burst DRAM
access. Thus, we model strided access in the same way as the random
access.

If requested data length is larger than the number of DRAM
data pins #dq = 128b, each #dq bits of data will be sent every
fddr = 1.33GHz cycle. In addition to tRC + tCO , the initial
overhead includes RAS to column address select (CAS) time (tRCD)
added to CAS time (tCAS), which is 13.5ns. The CAS signal is given
in parallel to RAS signal. In summary, the physical DRAM module
access time (tDP) and DBWP can be approximated as:

tDP = max(tRAS , tRCD + tCAS + len/fddr) + tRP + tCO (9)

DBWP = len ∗#dq/tDP (10)

where len is the burst length of requested data in unit of #dq bits.

2) Bus Data Bandwidth: If the kernel’s external port data bitwidth
(bitw) is less than the maximum bus data bitwidth supported (512b
for SDAccel), the overall DRAM bandwidth might be limited by the
bus data bandwidth (DBWB). DBWB is computed by multiplying
bitw (e.g., float: 32b, uint512: 512b) by the frequency of the
bus(fbus):

DBWB = fbus ∗ bitw; (11)

3) DRAM Controller Bandwidth: Since we do not have knowledge
of the inner workings of Xilinx’s DRAM controller propriety, it
is difficult to construct a good model for the DRAM controller
bandwidth (DBWC). Thus, we indirectly measure it by putting
many outstanding long consecutive access requests (>512MB) with
maximum bus data size (512b).1 Since DBWP and DBWB achieve
their peak values in this test method, the measured bandwidth, if
lower than DBWP and DBWB , can be assumed to be DBWC .
As mentioned previously, the bandwidth for ADM-PCIE-7V3 is
measured as 9.5GB/s for read and 8.9GB/s for write, which is smaller
than DBWPmax = 21GB/s and DBWBmax = 12GB/s. Thus,
DBWC is set to 9.5GB/s for read and 8.9GB/s for write.

B. Modeling Multiple PE Contention
In this section we explain the cycle estimation process when

multiple PEs try to access the memory at the same time. Rather
than using a time-consuming cycle-accurate transaction model that
accounts for individual DRAM access, we propose a high-level
estimation method for our fast software simulation-based framework.
As an example, we consider the for loop (p) in Fig. 8 which contains
three PEs (c = c1, c2, c3): load(), qsort comp(), store().

Since we assume a single external memory controller, contention
among PEs may incur additional delay. Suppose that a block p
contains c = c1, c2, ... PEs, and PE c1 (e.g., load()) has mc1

external memory transfers. According to Eq. 7, the execution time
of c1 (tc1) would consist of memory transfer time (tMEMc1 =∑

mc1
(DSIZEmc1/DBWmc1 +DLAT)) and computation time

(tCOMPc1). However, tc1 may become larger than (tCOMPc1 +
tMEMc1) if the data transfer time of other PEs c (e.g., store())
executing in parallel cannot be completely overlapped with the non-
data-transfer time of PE c1, that is, (tCOMPc1 +

∑
mc1

DLAT).
This is expressed in Eq. 12:

tc1 =
∑
mc1

DSIZEmc1

DBWmc1

+max(tCOMPc1 +
∑
mc1

DLAT,

∑
c6=c1

∑
mc

DSIZEmc

DBWmc

)
(12)

However, a major challenge in implementing Eq. 12 is that the
software simulation process is usually sequential, and we cannot
model the concurrent execution of memory access. For the example
in Fig. 8, load(), qsort comp(), and store() will execute in parallel
in hardware, but the software simulation process will compute them
serially. Then, the estimation routine in load() does not have the
knowledge of DSIZEstore or DBWstore, since store() has not been
executed yet. Even if the HLS software simulation process does allow
multi-threaded execution in the future so that store() and load() can
communicate in flight, having a mutex or semaphore for hundreds
of PEs will significantly slow down the simulation and diminish the
advantage of having a high-level prediction.

We solve this problem by carrying additional estimation results
without DLAT and resolving the summation part of Eq. 12 hi-
erarchically. For each PE c1, we accumulate only the data term
(DSIZE/DBW) of tMEM , excluding the latency term (DLAT):

tBOc1 =
∑
mc1

DSIZEmc1/DBWmc1 (13)

1Note that this measurement method itself coincides with the method used
in [7], but [7] used this method to obtain DRAM bandwidth (DBW), whereas
we use it to obtain one constraint (DBWC).

f o r (i n t i = 0 ; i < N ; i ++){
l oad (dram portA , bram load [0] , . . .) ;
qsor t comp (bram load [1] , b r a m s t o r e [1] , . . .) ;
s t o r e (dram portB , b r a m s t o r e [0] , . . .) ;

}

Fig. 8: Code example for external memory access from multiple PEs,
where load(), qstore comp(), store() have no dependency with double
buffering

t zoad : ltcomp load I tBOzoad IDLATI
t qsort_comp : t comp qsort comp

t store : I t comp store I t BOstore IDLATI
t Bo : p t BOstore t BOzo ad

Fig. 9: Computing cycle estimate (Eq. 15 and Eq. 16) for the example
given in Fig. 8, in the for loop that contains load(), qsort comp(),
store() PEs

where tBOc1 is the minimum bus occupation cycle of PE c1. The
insight behind this term is that the computation part and the DRAM
latency might be overlapped in multiple outstanding requests, but at
least tBOc1 is needed for each data in PE c1 to be transferred through
the bus.

We also keep track of tc1, as if there was only one PE:

tc1 = tCOMPc1 + tMEMc1 (14)

Next, we can hierarchically compute tBOp and tp of the for loop:

tBOp =
∑
c

tBOc (15)

tp = max(max
c

(tc), tBOp) (16)

Eq. 15 represents that the bus occupation cycle of p is the sum
of c’s bus occupation cycles tBOc . This implies that the access to
external memory is serialized. Finally, Eq. 16 2 represents that the
overall execution time is the maximum of c’s individual latencies
and p’s minimum bus occupancy cycle. Unlike Eq. 2 which simply
takes the maximum of nested PEs’ cycles, the proposed equation
can account for the case where combined DRAM access cycles of
multiple PEs dominate the compute time. This can be more easily
understood graphically in Fig. 9, where tBOp is the largest term in
Eq. 16 because the system is memory bound.

Since the proposed estimation method does not account for the
exact ordering of memory access, the estimate of the individual
parallel-running module’s execution time is not guaranteed to be
exact. For example, in Fig. 9 it is uncertain when load() or store()
submodule will exactly terminate. However, what this model does
predict is the combined execution time of parallel-running modules.
This is more important since the performance critical path and
the stall reason is evaluated based on the most time-consuming
module (Section II-A). The accuracy evaluation will be presented
in Section VI-B.

V. IN-FPGA STALL ANALYZER FOR FIFO-BASED DATAFLOW
APPLICATION

This section describes an in-FPGA HLS-based stall reason mon-
itoring instrumentation method for modules executed in parallel by
dataflow (Section II-B) that communicate through FIFOs and have
no explicit synchronization. As explained in the vector add example
(Fig. 5), it is difficult to find the root cause of stall, because any
module that is stalled will cause all other modules in the read or
write pipeline to stall when the FIFO becomes empty or full. We
solve this problem by instrumenting a series of probes into modules

2It is also possible to verify that inserting Eqs. 13, 14, and 15 into Eq. 16
will give the same equation if Eq. 12 is inserted into Eq. 2. Also, note that the
max function in Eq. 16 can be replaced with an add function if the submodules
are executed in serial rather than in parallel.

void read_A(... , hls::stream<uint512> &fifo_512_r,
hls::stream<bool> &p_status, &p_active, ...)

{
uint512 bram[1024];
for (int i = 0; i < vec_size ; i++) {

memcpy(bram, global + i * 1024, 1024*64);
p_status.write(l); //start of inter-mod comm pipeLine
for (int j = 0; j < 1024; j++) {

#pragma HLS PIPELINE II=1
p_active.write(l); //pipeLine active
fifo_512_r.write(bram[j]);

}
p_status.write(e); //end of inter-mod comm pipeLine

}
p_exit_mtr.write(e); p_exit_fifo.write(e); //moduLe end

}

Fig. 10: Code instrumentation for Read A module. Instrumented code in
bold.

fifo 512 w[511:0] fifo 512[511:0] fifo 512 r[511 :0] -

Read A (f) full empty_mtr 512b->float ® mtr • --. - rate conv
fifo_512_fu II [0:0], fifo_512_em pty[O:O]

Fig. 11: Instrumentation of full mtr and empty mtr for FIFO

under analysis (MUA) and FIFOs. Also, we instantiate a network of
the probe processing logic (monitors). The details will be presented
in the following subsections.

A. Code Instrumentation for Module Under Analysis
We start by regaining the visibility of the module status (in

execution or stalled) that is hidden due to HLS abstraction. Fig. 10
describes the process for module 1 (Read A), and Table IV lists
the series of probes used. Probe p status is inserted to indicate
whether the module is in inter-module communication mode or
not. p status.write(1) is inserted before start of the pipeline that
contains the inter-module communication (fifo 512.write()), and
p status.write(0) is inserted to signal the end of pipeline. It is also
possible to assign an extra status bit to further differentiate DRAM
access mode.

TABLE IV: List of probes for module under analysis
Probe name Description

p status Is in inter-module communication mode?
p active Is the communication pipeline not stalled?

p exit mtr Terminate signal for stall analysis monitor.
p exit fifo Terminate signal for instrumented FIFO.

Even if the module is executing the inter-module communication
pipeline, it may stall if the FIFO is full or empty. To observe this,
we instrument p active that writes ‘1’ if the communication pipeline
is active. If stalled, it will not write anything.

Finally, we also instrument logic termination signal (value of 0) for
the monitor logic (p exit mtr) and instrumented FIFOs (p exit fifo)
that will be explained in the following subsections.

B. Code Instrumentation for FIFOs
The activeness of the module under analysis can be observed using

the previous techniques, but if multiple FIFOs are connected to a
module, it is difficult to find which FIFO is causing the stall. For
this analysis, we also instrument measurement logics into the inter-
module FIFOs. An example is given for the FIFO between module 1
and module 3 in Fig. 5. Two measurement logics are inserted between
the write and the read module: full mtr and empty mtr that generate
the fullness (fifo 512 full) and emptiness (fifo 512 empty) signal of
the FIFO (Fig. 11).

The detailed code of the full mtr logic is shown in Fig. 12. If fifo
write to fifo 512 is blocked, it will send ‘1’ via wire fifo A full to
the monitor logic (explained in the next subsection) to signal fullness
of the FIFO. Also, all data reads and writes are performed in non-
blocking mode, and the pipeline is set to II of 1. As a result, the

void full_mtr(hls::stream<uint512> & fifo_512_w, fifo_512,
hls::stream<bool> & fifo_512_full, p_exit_fifo)

{
bool loop_exit = 0j
float data bufferj //
bool data in buffer -

temporary data buffer
0j //data exists in data_buffer?

while(loop_exit == 0 I I data_in_buffer == 1){
#pragma HLS pipeline II=1

} }

if(data_in_buffer == 0){ // data_buffer empty
if(fifo_512_w.read_nb(data_buffer) == 1){

if(fifo_512.write_nb(data_buffer) == 0){
fifo_512_full.write(1)j // FIFO is fuLL
data_in_buffer = 1j //data stored to data_buffer

} } }
else{ II data_buffer not empty

if(fifo_512.write_nb(data_buffer) == 1){
if(fifo_512_w.read_nb(data_buffer) == 0){

data_in_buffer = 0j // data_buffer empty
} }
else{

fifo_512_full.write(1)j // FIFO is fuLL
} }
bool exit_dataj
if(p_exit_fifo.read_nb(exit_data) == 1){

if(exit_data == 0){
loop_exit = 1j // terminate monitoring

} }

Fig. 12: Code for full mtr logic

p_status I p_active I p_exit_mtr

Read A(f empty_ 512b->float m full S2) - C=A+B • • • . . • • •

mtr rate conv mtr
f ifo_512, empt y f ifo f loat f ull • • , -

Monitor 1 • Monitor 3 . Monitor 5
stal l_reasonl 1 to DRAM • st all_ reason3 I
stal l reason3 st all reasonS

Fig. 13: Distributed stall analysis network

throughput of the original FIFO is maintained, and the instrumented
logic does not cause additional stall to the original logic. In addition,
a temporary data buffer is used to store a read data that was not
written due to output being stalled. Though omitted, similar code is
used for empty mtr logic that monitors the emptiness of the FIFOs.

C. Monitor for Stall Analysis Network
In order to analyze the stall reason for module 5, for example,

we would have to observe the status of all read pipelines (modules
1, 2, 3, 4) and write pipelines (modules 6, 7). However, this is
not scalable since an interconnect of quadratic complexity would be
needed between all MUAs and all monitors.

Instead, we propose a distributed stall analysis network (SAN).
Part of the proposed logic is shown in Fig. 13. One monitor is
instantiated per module under analysis. Each monitor classifies its
host MUA as being active, or being stalled due to its neighbor. As
described in Table VI, module being “active” is the period when
the module is not in inter-communication mode (p status=0) or
when it is in communication and the pipeline is active (p status=1
and p active=1). The module being stalled is when the module is
in communication and the pipeline is not active (p status=1 and
p active=N/A). The reason for stall can be found by observing the
empty or full signal sent from the monitored FIFO logic. If multiple
stall reasons are asserted, we designed the monitor to arbitrarily select
one of the reasons for the simplicity of the implementation.

If the FIFO port that causes the stall is identified, each monitor
will record the stall reason sent from a neighbor monitor as being
the root cause of the stall. This reason is generated at each monitor.
If the MUA is active (p status=0 || (p status=1 && p active=1)),

TABLE VI: List of states in the SAN monitor 3

Monitor state Active Stalled Stalled
due to 1 due to 5

Input
p status 0 1 1 1
p active - 1 N/A N/A

f 512 empty - - 1 0
f float full - - 0 1

Output st reas3 3 st reas1 st reas5

Register
act cyc +=1 - -

st cyc[st reas1] - +=1 -
st cyc[st reas5] - - +=1

the monitor will broadcast its own ID to its neighbor monitors. If its
MUA is inactive (p status=1 and p active=N/A), it will pass on the
stall reason (st reasX) of the FIFOs that have been stalled.

We record the amount of cycles for each monitor state (active or
stalled due to particular module) in registers (act cyc or st cyc[X]).
When monitoring has finished (p exit mtr=0), each monitor will
write its register contents to the DRAM for offline analysis.

Since each module passes the stall reason from its neighbors, it
can identify the stall module even if it is several hops away. Also,
SAN is scalable because the connection of each monitor is limited
to its MUA, instrumented FIFOs, and the neighbor monitors.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
For our evaluation platform, we use Alpha Data’s ADM-PCIE-7V3

board [1] that has Xilinx’s Virtex 7 690T FPGA and two Kingston’s
DDR3L-1333 SDRAMs[14]. We also use the ADM-PCIE-KU3 board
[2] that has Xilinx’s Ultrascale KU060 FPGA and two Kingston’s
DDR3L-1333 SDRAMs. For the FPGA synthesis, we use Xilinx’s
SDAccel 2016.2 [26] and Vivado HLS 2016.3 [27] software tools.

The benchmark we used includes quicksort [10], Cholesky [20],
convolutional neural network [28], matrix multiplication [13], logistic
regression [3], decompression [17], and compression [9]. We also
use four applications from MachSuite [21], which is a collection
of common applications for accelerator environments. We exclude
some applications that were similar to other benchmarks or had some
functional correctness problem. The original code has been optimized
with pipelining, double buffering, data reuse, and duplication.

B. Performance Estimation Accuracy
To evaluate the accuracy of our software simulation-based es-

timation model, we use the in-FPGA cycle extraction flow [8]
so that the exact cycle count of individual submodules can be
obtained. For FIFO-based dataflow modules, we compare the number
of active cycles obtained from SAN monitors with the estimated
result. The applications are classified as having blocks with explicit
synchronization (modules are only in serial or parallel) or parallel by
dataflow (Section II-B). Also, we classified the submodules inside
each application as being mainly compute-bound or DRAM-bound.

The estimation error is obtained by averaging the absolute dif-
ference between on-board testing and the simulated results. The
comparison between ‘Base’ and ‘Opt’ column of Table V shows that
the average error rate has reduced from 6.6% to 1.1% for compute-
bound modules and 41% to 13.6% for DRAM-bound modules on
ADM-PCIE-7V3 after applying the proposed methods in Section III
and Section IV. For ADM-PCIE-KU3, the averaged error rate after
optimization is 2.5% for compute-bound and 22% for DRAM-bound
on the same benchmarks.

The accuracy improvement using techniques introduced in Sec-
tion III was most effective for applications that had imperfect loops
and conditional statements with known minimum latency, such as the
compute modules in quicksort (55% → 4.0%) and Cholesky (21%
→ 0.56%). The bandwidth model proposed in Section IV reduces
the estimation error rate of kernels that utilize only a part of the
bus data bitwidth (e.g., 256b port in CNN and 64b ports in SPMV).
Also, the multiple PE contention model (Section IV-B) produces more
accurate result for kernels with multiple DRAM-accessing modules
(e.g., 3 DRAM modules in vector add: 33% → 2.2%).

Even with the proposed improvements, some inaccuracy still exists.
The reason for inaccuracy in the compute part is the missing cycle
information for some of the dynamic execution paths (Section III-B).
The inaccuracy in DRAM part is due to constructing a high-level
behavioral model (Section IV), including the multiple PE contention
model, rather than simulating each memory access. In fact, the error
rate is relatively higher for designs with more DRAM-bound modules
executed in parallel. However, as mentioned in Section IV-B, our
model is more focused on making accurate predictions for modules
on the performance critical path, so that the performance debugging
framework can correctly analyze the stall reason. The error rate of the
submodule with the longest execution time among parallel-executing
submodules is shown in ‘Opt-Long’ column of Table V. As expected,
the error rate has decreased from 13.6% to 5.0% for ADM-PCIE-7V3.
For ADM-PCIE-KU3, it decreases from 22% to 9.4%. This suggests
that the proposed modeling is reliable for performance debugging.

C. Software Simulation Flow Overhead

The software estimation overhead consists of two parts: first,
the code instrumentation for hardware cycle estimation and second,
overhead in the software simulation process. The code instrumenta-
tion takes 5-98 seconds. The software simulation overhead depends
on the computational complexity of the original code compared to
the inserted code. The comparison between the original software
simulation time and the instrumented code software simulation time
is shown in Table VII. It shows that overhead is 4% on average. The
code instrumentation and simulation overhead is approximately two
orders of magnitude faster than the FPGA bitstream generation. This
shows that the proposed flow is suitable for rapid analysis.

TABLE V: Cycle estimation error of the software simulation flow on ADM-PCIE-7V3. (Base=Baseline estimation with variable TC estimation method
(Section II-B2) and simple DRAM modeling (Eq. 7); Opt=Optimized with proposed techniques in Section III and Section IV; Opt-Long=Most time-
consuming DRAM-bound submodule among parallel-executing submodules in Opt version)

Dep Appl Compute-bound DRAM-bound
Type Name #subm AVG(|Dif |) #subm AVG(|Dif |)

Base Opt Base Opt Opt-Long
Qsort[10] 33 55% 4.0% 5 88% 8.5% 8.5%

Cholesky[20] 1 21% 0.56% 2 77% 0.57% 0.17%
ConvNN[28] 1 0.05% 0.05% 3 36% 1.5% 0.31%
Mat mul[13] 1 0.04% 0.04% 3 10% 37% 12%

Explct Log reg[3] 3 1.4% 1.4% 1 23% 0.76% 0.76%
Synch AES[21] 1 3.2% 3.2% 2 42% 34% 8.0%

KMP[21] 1 0.36% 0.36% 1 25% 0.90% 0.90%
NW[21] 1 0.03% 0.02% 2 75% 43% 14%

SpMV[21] 1 3.24% 3.24% 2 76% 12% 12%
Paral Vecadd 4 0.0% 0.0% 3 33% 2.2% 2.7%

by Mat mul[13] 6 0.05% 0.05% 6 33% 30% 2.0%
data Decomp[17] 3 1.3% 0.92% 2 8.2% 0.17% 0.32%
flow Compr[9] 3 0.23% 0.23% 3 2.4% 4.9% 3.6%
AVG - 6.6% 1.1% - 41% 13.6% 5.0%

TABLE VII: Time overhead of SW simulation flow. Consists of code
instrumentation and additional SW simulation time (unit:s).

Appl Instr SW Sim Instr SW Bitstr
Name Time Unmodif Sim Est Gen

Qsort[10] 27 0.026 0.029 (1.12X) 1h27m
Cholesky[20] 5 0.083 0.089 (1.07X) 36m
ConvNN[28] 64 60 64 (1.07X) 1h47m
Mat mul[13] 43 62 65 (1.05X) 2h23m
Log reg[3] 36 563 564 (1.0X) 1h34m
AES[21] 51 62 65 (1.05X) 3h29m
KMP[21] 9 128 129 (1.01X) 1h21m
NW[21] 8 56 59 (1.05X) 1h38m

SpMV[21] 12 7.3 7.4 (1.01X) 2h5m
Vecadd 37 0.20 0.21 (1.05X) 1h30m

Mat mul[13] 76 125 125 (1.0X) 4h12m
Decomp[17] 98 0.80 0.80 (1.0X) 1h28m

Compr[9] 91 19 20 (1.05X) 5h35m
AVG (1.0X) (1.04X)

D. Logic Overhead for SAN
SAN requires extra logic for on-board implementation. Each probe

(e.g., p active and p status) in a MUA consumes about 20 LUTs.
The instrumented FIFO consumes LUT that approximately increases
linearly with the data bitwidth, as shown in Table VIII. The monitor
resource usage slightly increases with the number of neighboring
monitors, as shown in Table IX. None of them consume any DSP or
BRAM.

TABLE VIII: Logic overhead of instrumented FIFO
empty mtr full mtr

bitw float uint512 float uint512
LUT 46 526 49 529

TABLE IX: Logic overhead of SAN monitor
of neighbors 1 2 3

LUT 903 930 957

VII. RELATED WORK

Other previous work on rapid performance estimation includes
Aladdin [23], which constructs a dependence graph directly from
the C code and produces a fast cycle estimate before going to RTL
construction. Lin-analyzer [29] considers various FPGA-specific re-
sources (e.g., DSP, BRAM) during scheduling. The work in [15] uses
a machine-learning based statistical model to predict the performance.
These works focus on providing analysis for efficient exploration of
possible design points. Our work is more targeted toward evaluating
an actual design that is synthesized by an HLS tool.

Aladdin [23] and Lin-analyzer [29] can also be used to provide
cycle estimate for programs with dynamic behavior since they utilize
the instruction trace generated in C simulation. However, collecting
instruction trace takes a relatively long time compared to our high-
level cycle estimator (based on native C software simulation). For
example, instruction trace generation for sorting 131,072 elements in
Aladdin took 188 seconds, whereas the software simulation in our
framework took 0.0404 seconds (Table III).

LegUp HLS [6] provides a flow to obtain hardware cycle estimation
by profiling the software for the number of times each basic block
is executed. Then it multiplies the obtained execution number by
the basic block cycle given by Legup HLS. Our work, on the other
hand, is more focused on how to instrument the code to extract
unknown basic block cycles that are apparently hidden by HLS. Thus,
HLScope+ only requires high-level synthesis reports like Table II and
does not need to extract HLS LLVM compiler’s internal data, which
could be proprietary information.

For external memory modeling, [23] links a cycle-accurate trace-
based DRAM simulator to a performance estimator, but cycle-
accurate simulation takes a long time compared to high-level mod-
eling. Work in [4], [5] describes approximately timed transactional-
level SystemC simulation with instruction set simulator (ISS), but
we would like to raise the level of abstraction to a level of function
call or loops, which speeds up the simulation process compared to

modeling individual external memory requests. A simple high-level
model for a single external memory accessor has been provided in
[19], but FPGA typically has multiple processing elements competing
for the shared external memory resource. The work in [15] uses a
statistical model to estimate the external memory latency of fetching
a block, but it is uncertain that such predefined template models for
block access can be generalized for arbitrary access patterns.

VIII. CONCLUDING REMARKS

We have described a high-level cycle estimation methodology for
input-dependent FPGA designs using the HLS software simulation
process. A source-to-source code instrumentation technique was used
to automate the cycle extraction process. Also, we provided a high-
level estimation model for DRAM access for a typical bus-based
architecture with outstanding requests and multiple PEs. In addition,
a stall analysis network was proposed for cycle-accurate in-FPGA
analysis of FIFO-based dataflow applications. Experiments on an
ADM-PCIE-7V3 board showed that our estimation has an error rate
of 1.1% in compute-bound modules and 5.0% in performance-critical
DRAM-bound modules, with a modest 4% time overhead in software
simulation.

IX. ACKNOWLEDGMENT

This work is in part supported by NSF InTrans Award with
additional supports from Fujitsu and Intel. We would like to thank
Xilinx for the FPGA and the software donation. We also thank Peng
Wei for optimizing Machsuite benchmarks and Janice Wheeler for
proofreading this manuscript.

REFERENCES

[1] Alpha Data, Alpha Data ADM-PCIE-7V3 Datasheet, 2017, http://www.alpha-
data.com/pdfs/adm-pcie-7v3.pdf.

[2] Alpha Data, Alpha Data ADM-PCIE-KU3 Datasheet, 2017, http://www.alpha-
data.com/pdfs/adm-pcie-ku3.pdf.

[3] Apache Spark examples, http://spark.apache.org/examples.html.
[4] L. Benini, et al., “SystemC cosimulation and emulation of multiprocessor SoC

designs,” Computer, 53–59, 2003.
[5] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in Proc. Int. Conf.

Hardware/software Codesign and System Synthesis, 19–24, 2003.
[6] A. Canis, et al., “From software to accelerators with LegUp high-level synthesis,”

in Proc. Int. Conf. CASES, 18–26, 2013.
[7] Y. Choi, et al., “A quantitative analysis on microarchitectures of modern CPU-FPGA

platforms,” in Proc. DAC, 109–114, 2016.
[8] Y. Choi and J. Cong, “HLScope: High-Level performance debugging for FPGA

designs,” in Proc. Int. Symp. FCCM, 2017.
[9] J. Cong, et al., “CPU-FPGA co-optimization for big data applications: A case study

of in-memory Samtool sorting,” in Proc. Int. Symp. FPGA, 291, 2017.
[10] D. Finley, Optimized QuickSort, 2007, http://alienryderflex.com/quicksort.
[11] IBM, Application Note: Understanding DRAM Operation, 1996.
[12] Intel, Intel FPGA SDK for OpenCL, 2016, http://www.altera.com/.
[13] J. Jang, S. Choi, and V. Prasanna, “Energy-and time-efficient matrix multiplication

on FPGAs,” IEEE T. VLSI, 13(11):1305–19, 2005.
[14] Kingston, KVR13LSE9/8 memory module specifications, 2012,

http://www.kingston.com/datasheets/.
[15] D. Koeplinger, et al., “Automatic generation of efficient accelerators for reconfig-

urable hardware,” in Proc. ISCA, 2016.
[16] C. Lee, O. Mutlu, V. Narasiman, and Y. Patt, “Prefetch-aware DRAM controllers,”

in Proc. Int. Symp. Microarchitecture, 200–209, 2008.
[17] J. Lei, et al., “A high-throughput architecture for lossless decompression on FPGA

designed using HLS,” in Proc. Int. Symp. FPGA, 277, 2016.
[18] P. Li, P. Zhang, L. Pouchet, and J. Cong, “Resource-aware throughput optimization

for high-level synthesis,” in Proc. Int. Symp. FPGA, 200–209, 2015.
[19] J. Park, P. Diniz, and K. Shayee, “Performance and area modeling of complete

FPGA designs in the presence of loop transformations,” IEEE T. Computers,
53(11):1420–1435, 2004.

[20] L. Pouchet, PolyBench/C, 2015, http://web.cse.ohio-state.edu/pouchet.2/software/
polybench/.

[21] B. Reagon, et al., “Machsuite: Benchmarks for accelerator design and customized
architectures,” in Proc. IISWC, 110–119, 2014.

[22] ROSE compiler infrastructure, http://rosecompiler.org/.
[23] Y. Shao, et al., “Aladdin: A pre-rtl, power-performance accelerator simulator

enabling large design space exploration of customized architectures,” in Proc. ISCA,
97–108, 2014.

[24] A. Verma, et al., “Developing dynamic profiling and debugging support in OpenCL
for FPGAs,” in Proc. DAC, 56–61, 2017.

[25] Xilinx, AXI Reference Guide UG761, 2012, http://www.xilinx.com/.
[26] Xilinx, SDAccel Development Environment, 2016, http://www.xilinx.com/.
[27] Xilinx, Vivado High-level Synthesis UG902, 2016, http://www.xilinx.com/.
[28] C. Zhang, et al., “Optimizing FPGA-based accelerator design for deep convolutional

neural networks,” in Proc. Int. Symp. FPGA, 161–170, 2015.
[29] G. Zhong, et al., “Lin-analyzer: A high-level performance analysis tool for FPGA-

based accelerators,” in Proc. DAC, 136–141, 2016.

