HLScope: High-Level Performance
Debugging for FPGA Designs

Young-kyu Choi and Jason Cong
Computer Science Department, University of California, Los Angeles
{ykchoi, cong}@cs.ucla.edu

Abstract—In their quest for further optimization, field-
programmable gate array (FPGA) designers often spend considerable
time trying to identify the performance bottleneck in a current
design. But since FPGAs do not have built-in high-level probes for
performance analysis, manual effort is required to insert custom
hardware monitors. This, however, is a time-consuming process
which calls for automation. Previous work automates the process
of inserting hardware monitors into the communication channels
or the finite-state machine, but the instrumentation is applied in
low-level hardware description languages (HDL) which limits the
comprehensibility in identifying the root cause of stalls. Instead, we
propose a performance debugging methodology based on high-level
synthesis (HLS). High-level analysis allows tracing the cause of stalls
on a function or loop level, which provides a more intuitive feedback
that can be used to pinpoint the performance bottleneck. In this paper
we propose HLScope, a source-to-source transformation framework
based on Vivado HLS for automated performance analysis. We
present a method for analyzing the information collected from the
software simulation to estimate the stall rate and its cause without
the need for FPGA bitstream generation. For detailed analysis, an in-
FPGA analysis method is proposed that can be natively integrated
into the HLS environment. Experiments show that the parameter
extraction from the simulation process is orders of magnitude faster
than bitstream generation, with a 2.2% cycle difference on average.
In-FPGA flow consumes only about 170 LUTs and a BRAM per
monitored module and provides cycle-accurate results.

I. INTRODUCTION

When the initial field-programmable gate array (FPGA)
implementation does not meet the required performance, de-
signers often iterate the process of identifying the bottleneck
in the current design and finding an optimization to fix the
problem. However, unlike CPU and GPU designers who can
use built-in hardware counters with established tools like
VTune [7] and NSight [11] for the performance debugging
process, FPGA designers usually insert hardware monitors into
their design manually. For a large design, this task could take
a very long time; this is a problem that calls for automation.

Previous work on automating the performance debug-
ging process relies on instrumenting hardware monitors into
DRAM/inter-module FIFO communication channels [3], [4],
[6], [8], [9], [13] or into the finite-state machine of a loop
pipeline [3], [13] to measure their active/idle cycle ratios.
However, their instrumentation is performed from the view-
point of individual module with low-level hardware description
language (HDL). Such limited scope makes it difficult to
analyze the root cause for the stall. Instead, we propose
a performance debugging methodology based on high-level
synthesis (HLS). High-level analysis allows tracing the cause
of stalls on a function or loop level, which provides more
intuitive feedback to the programmer to pinpoint the bottleneck
of an FPGA design to further optimize the design.

However, challenges exist for HLS-based performance de-
bugging. The first problem is that generating bitstream after
inserting performance monitoring logic takes many hours.
The second problem is that HLS abstracts hardware cycle
information away from the user. Mixed HLS-HDL flow [3]
can be used to extract cycle, but such flow complicates the
integration process in HLS tools. For example, Intel’s OpenCL
HLS tool [6] does not allow mixed HLS-HDL flow, and
Xilinx’s SDAccel [14] (based on Vivado HLS [15]) only
recently allowed it in their latest version.

To address these two challenges, we propose HLScope, a
performance debugging framework based on HLS for FPGA.
HLScope can interpret the information collected from HLS
software simulation. Based on the analysis, our tool provides
the stall rate and its cause, such as external DRAM access,
synchronization, and dependency stalls on a module level. This
can guide programmers to focus their attention on inefficient
modules. This flow is several orders of magnitude faster than
generating bitstream after hardware monitor insertion. The
second contribution is the cycle-accurate in-FPGA monitoring
in pure HLS code. Using non-blocking FIFO access and
pipelining, we propose a source-to-source (S2S) transforma-
tion method that can be expressed in HLS without the need for
mixed HLS-HDL flow. The code instrumentation for parameter
extraction is automated, as we will be demonstrating with the
quicksort example.

II. PERFORMANCE DEBUGGING FRAMEWORK
A. Overall Framework and Parameters

HLScope framework is shown in Fig. 1. Using the APIs in
the ROSE compiler infrastructure [12], our tool first analyzes
the input HLS code to find the dependency between modules.
The modules are classified as being executed in serial or
in parallel and stored in a hierarchical structure. Next, the
number of cycles for each module is measured using the
Vivado HLS software simulation with a real input testbench.
Our tool automatically makes source-to-source transformation
to include the hardware cycle model in the software source
code (Section II-B). In addition to cycle estimation, we also
record the number of DRAM transactions in bytes for further
analysis.

Using the module structure and cycle information, we mark
each module as to whether it is or is not on the critical path
of overall performance (PCP). The serially executing modules
are classified as ‘yes, and the most time-consuming among
parallel executing modules are also marked ‘yes.” The rest are
classified as ‘no.

Input: 535 For | [FPGA synth
. in-FPGA & execute —-—stall <20% ?
Viado S2S for HLS Cycle # Output:
e [Lswsi SW sim [~ itical tall
sim sim critica sta
€ code module dep # DFEI_’ path [rate & [
e .
I |_analysis | Module structure analysis| [reason

User’s optimization based on stall reason (iterate until perf met)

Fig. 1: HLScope overall framework

Based on the critical path, we compute the stall rate as
the number of cycles of a module divided by the longest
critical path. Next, we provide the reason for the stall and the
name of the module that is causing the stall. If a module is
waiting for data from another module, the stall is classified
as a dependency stall. If a module is waiting for other
parallel-executing modules to finish, the stall is classified as
a synchronization stall. A module could have multiple stall
reasons depending on its place in HLS module hierarchy.

Since the accuracy of software simulation is within 2-7%
on average (Section IV-C), it is possible that softeware-based
analysis might provide misleading information if modules
executed in parallel have similar cycle numbers. This will
result in the stall rate of modules in the critical path having
low value (we set threshold to 20%). In this case, our tool
will recommend going through the in-FPGA flow for accurate
analysis that can replace the cycle information from the soft-
ware simulation flow. This flow is explained in Section II-C.

Next, we determine DRAM bandwidth (DBW). The number
of transferred bytes is from the software simulation. The
time taken is determined either in simulation flow or in-
FPGA flow. We also provide the aggregate DRAM bandwidth
(ADBW) among all modules executed in parallel. We provide
LUT/BRAM/DSP numbers from the HLS synthesis report that
can be used to determine the importance of each module.

Based on the reason for stall provided by HLScope, the
programmer can decide which module to focus his/her at-
tention on for further optimization. An example performance
debugging session will be presented in Section III.

B. Cycle Estimation Based on Software Simulation

To illustrate that we can obtain a good cycle estimate even
for input-dependent applications, we use the quicksort example
[5]. The synthesis report by Vivado HLS [15] cannot provide
the cycle estimate due to the existence of dynamic execution
path and undetermined loop trip count (TC). The tool will only
provide the initiation interval (II, input rate of the loops) and
iteration latency (IL, latency per one loop iteration).

We can obtain the actual TC by inserting a simple counter
statement, as shown in Fig. 2. Regardless of the existence of
undetermined loop bound or conditional break statement, TC
can be correctly estimated. Then the loop cycle estimation [10]
code is inserted after the loop based on the run-time acquired
TC. Finally, the cycle estimate for Loop 2 is hierarchically
added into its parent loop (Loop 1) cycle estimate.

Although details are omitted, we also apply techniques to
estimate cycles for dynamic execution path and the loops that
are not perfectly nested. For DRAM modeling, the access
cycle is estimated as t=DSIZE/DBW +DLAT, where the

int loop_1_cycle = 0;
while (L<R) { // Loop 1

int loop_2_cycle = 0;

int loop_2_TC=0;

while (arr[R]>=piv && L<R){ // Loop 2 // Decrement R ptr
#pragma HLS pipeline //until an element less than
R--; //pivot 1is found or L & R meets
loop_2_TC++;

}

loop_2_cycle = (loop_2_TC-1) * loop_2_II + loop_2_IL;

loop_1_cycle += loop_2_cycle;

// Swap arr[L] and arr[R]

// Swap until L ptr & R ptr meets

Fig. 2: Code instrumentation for software simulation to find dynamic loop
bound in quicksort [5]. Instrumented code is in bold.

void gsort_top_new(...){

#pragma HLS dataflow //mntr and mods run in parallel
stream<bool> p@, pl, p2, p_endmtr; // FIFO probes
gsort_top_old(..., p@, pl, p2, p_endmtr);
monitor_3p(p@, pl, p2, p_endmtr);

i

(a) Connection from modules under analysis to monitor logic

void gsort_compute(..., stream<bool>&p@){
pO.write(1); // module start signal through probe

po.write(0); // module end signal
}

(b) Code instrumentation to signal monitor for module start/end

void monitor_3p(stream<bool>&p@, pl, p2, p_endmtr){
bool endmtr=0; int p@_start=0; ...; int cycle=0;
while(endmtr == 0){

#pragma HLS PIPELINE II=1 //loops once per HW cycle

// start/end probe processing (please see (d))

bool endmtr_data = 1; //monitor termination
if ((p_cycle.read_nb(endmtr_data)) == 1) {
if (endmtr_data == @) { endmtr = 1; }
}
cycle += 1;

3}

(c) Monitor logic structure & termination probe processing

//"cycle" becomes actual HW cycle

bool p0_data = 1;
if ((p@.read_nb(pe_data)) == 1){ //non-blk read
if (pe_data == @) { //success
dbg_mem@ += cycle - p@_start;
} // record module end
else {
po_start = cycle;
k)

(d) Start/end probe processing in monitor logic

// record module start

Fig. 3: Code instrumentation for in-FPGA monitoring. Three submodules
of interest (load(), qsort_comp(), and store()) exist in gsort_top_old().

latency DLAT=580ns and bandwidth DBW = 9.05GB/s
(obtained using the method in [2]), on ADM-PCIE-7V3 [1].

C. Cycle Extraction Based on In-FPGA Monitoring

An in-FPGA monitoring flow can be used to extract cycle
information more accurately than the simulation-based flow, at
the cost of spending time on generating the FPGA bitstream.
For easy integration with HLS-based synthesis flow [14],
we would like the monitoring logic to be expressed in pure
HLS code. Then the biggest challenge is to extract cycle
information, which is hidden from programmers in HLS. To

for(int 1 = @ ; i < batch_num ; i++){ | |SW_cyc|PCP |LUT |BRAM|DSP|Stall|DBW |ADBW|Reason for stall |
load(dram, lmem,n_per_batch,i); | |145k |Yes |481 |@ |4 |98.2 |724M|724M|comp(96.5,dep),store(1.7,dep)||
gsort_comp(1lmem, n_per_batch); |17.75M |Yes |2538[3 |@ [3.5 |@ |@ |load(1.8,dep),store(l.7,dep) ||
store(dram,lmem,n_per_batch,i); | |140k |Yes |445 |0 |4 |98.3 |748M|748M|comp(96.5,dep),load(1.8,dep) ||
}

Fig. 4: Performance debugging parameters collected from the initial unoptimized version of quicksort. Parameter derived from the software simulation
(SW_cyc) result. (batch_num=128, n_per_batch=1024, ‘dram’: external DRAM port, ‘lmem’: local BRAM).

#pragma HLS ARRAY_PARTITION variable="1mem" complete

for(int i = @ ; i < batch_num ; i++){ | | |

load(dram, lmem, ..); |]132k |Yes |3017|0 |4
for(int j = @ ; j < UNROLL_FACTOR ; j++){ | | |
#pragma HLS unroll // 32 duplicated compute PEs | |
qsort_comp(1lmem[j]..); //PE@ ||247k |No |2538|3 |e
B |8 //PE7 |]231k |No 25383 |e
9B s //PE27 ||258k |Yes |2538]|3 |e@
oo 'l I I | |
store(dram, lmem, ..); ||131k |Yes |5809|0 |4

¥

float local_data[UNROLL_FACTOR]; //partitioned BRAM for parallel access, UNROLL_FACTOR=32

| |SW_cyc|PCP |LUT |BRAM|DSP|Stall|DBW |ADBW|Reason for stall

|74.8 |797M|797M|comp27(49.5,dep),store(25.2,dep)

[

[

[

[l

[l
|1d(25.2,dep),comp27(2.2,sync),st(25.2,dep) ||
)

[

[

[

I

| |

|52.6 |0 2}

|55.7 |@ |e |1d(25.2,dep),comp27(5.3,sync),st(25.2,dep
|se.5 |@ |e |1d(25.2,dep),st(25.2,dep)

| | | |

|74.8 |798M|798M|comp27(49.5,dep),load(25.2,dep)

Fig. 5: Performance debugging parameters after unrolling gsort_comp() function 32 times. Some PEs not shown for brevity.

for{ Int 1 =
if(i%2 ==

; 1 < batch_num ; i++){

0 3
0){ //in even 1,

Lmemo for memory access and Lmeml for compute
| |[HW_cyc|PCP |LUT |BRAM|DSP|Stall|DBW |ADBW|Reason for stall

[
loadstore(dram,lmemo,..); | 1299k |Yes |9145|@ |8 |e@.e |701M|701M| [
for(int j = @ ; j < UNROLL_FACTOR ; j++){ [l | | | | | | | [

#pragma HLS unroll // 32 duplicated compute PEs | | | | | | | | | |
gsort_comp(lmemi[j],..); //PE@ |]266k |No |2538|3 |@ |11.e |@ |701M|loadstore(11.0,sync)]||
5 @ //PE7 ||256k |[No [2538]|3 |@ |16.4 |@ |701M|loadstore(16.4,sync)]||
SRR //PE27 |1277k |No [2538]|3 |@ |7.4 |e |701M|loadstore(7.4,sync) ||
else{ . . . } //in odd i, lmeml for memory access and lmem@ for compute
I

Fig. 6: Performance debugging parameters after applying double buffering optimization. Cycle derived from in-FPGA monitoring (HW_cyc) result.

solve this problem, we propose a technique of using non-
blocking FIFO read and pipelining.

HLScope instruments two types of probes: ‘pX’ probes to
signal start and end of module execution (‘1’ for start and
‘0’ for end) and ‘p_endmtr’ to signal monitor termination. It
also inserts ‘dbg_memX’ global variable to record cycle and
a monitor logic for overall processing.

A sample code instrumentation is given in Fig. 3 for quick-
sort. HLScope inserts a monitoring logic monitor_3p() to run
in parallel with gsort_top_old() which contains submodules
under analysis (Fig. 3a). For each submodule, ‘pX’ probe
sends 1/0 to signal module start/end (Fig. 3b). These ‘pX’
probes are connected to the monitor through FIFO (Fig. 3a).
For monitor termination, ‘p_endmtr’ sends a value of O at the
end of gsort_top_old() module (code omitted).

In the monitoring logic, variable ‘cycle’ corresponds to
the actual hardware cycle. This is possible since the loop
is pipelined to II=1, and all FIFO reads are declared non-
blocking (Fig. 3c). Then the loop can run continuously re-
gardless of the input. Note that ‘cycle’ is incremented by one
for each loop iteration.

Based on ‘cycle’ variable, we subtract the cycle obtained at
the start of submodule O execution from the cycle obtained at
the end, and accumulate to ‘dbg_mem0O’ (Fig. 3d). The same
is done for submodule 1 and 2. After the ‘p_endmtr’ has been
processed for program termination (Fig. 3c), ‘dbg_memX’
content is written to DRAM for analysis (code omitted).

III. PERFORMANCE DEBUGGING FOR QUICKSORT

In this section we will demonstrate performance optimiza-
tion steps for the quicksort example based on HLScope. We
assume that we have 128 sets of 1024 single-precision floating-
point numbers to be sorted.

Fig. 4 lists the performance debugging parameters col-
lected from initial unoptimized quicksort. Since this is the
first debugging iteration, the parameters are derived from
the software simulation. The most obvious problem that we
can identify from the report is that qsort_comp() takes most
(96.5%) of the execution time, and probably should be the
target for optimization. Note that the stall rate is very high
(98.2%/98.3%) for load() and store(), but does not cause
significant problems since the LUT and DSP usage is small
(481/445 and 4/4).

Based on the analysis from the initial version, we apply
unrolling on the compute PEs. The result is shown in Fig. 5.
We can confirm that the gsort_comp() function indeed takes
a considerably shorter time—from 7.75M cycles to 231-
258k cycles. For the nodes on the time-critical path (load(),
gsort_comp() PE 27, store()), however, the analysis shows
that the proportion of load() and store() increased to 25.2%,
respectively. This suggests that memory access has now be-
come a major stall reason. A hint for solution can be found in
the aggregate DRAM BW. During gsort_comp(), the ADBW
is 0, which means that DRAM is not being utilized at all.
This suggests that modules that do use the DRAM, load() and
store(), can probably be overlapped in gsort_comp().

For memory and compute overlapping, we perform double
buffering optimization. For simplicity of design, we com-
bined the load() and store() modules into one. The result in
Fig. 6 shows that there is some DRAM BW transaction while
the gsort_comp() module is being executed (ADBW=701M).
Also, there are no more dependency stalls as reasons for
a stall. These two factors suggest that parallelization is
properly taking place. Also, the fact that the stall rate has
decreased drastically from the initial version (98.2/3.5/98.3 —
0.0/11.0/16.4/7.4) suggests that overall efficiency of the design
has improved significantly.

After double buffering, the stall rate becomes low (<20%)
for all modules with PCP. Thus, we have switched to in-FPGA
analysis. The result is similar but with higher accuracy. The
report indicates that the bottleneck is now loadstore(), since all
other modules point to this module as their reason for stall,
and only loadstore()’s PCP is ‘yes.’ Since the DRAM BW
reported that (701MB/s) is far less than ideal BW (9.05GB/s),
we can perform some DRAM access optimization for further
improvement.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

For our evaluation platform, we use the Alpha Data ADM-
PCIE-7V3 board [1] that has Xilinx’s Virtex 7 690T FPGA.
For the FPGA synthesis, we use the Xilinx SDAccel 2016.2
[14] and Vivado HLS 2016.3 [15] software tools.

B. Overhead for Performance Debugging

1) Time Overhead: The source-to-source transformation for
software simulation-based flow, module dependency analysis,
critical path analysis, and stall reason analysis takes 27-51
seconds (Table I). Also, simulation of the instrumented code
requires extra overhead that is proportional to the original
software simulation time. On average, it was 31%. For the in-
FPGA flow of the same applications, the debugging flow takes
13-33 seconds. However, it takes several hours for synthesis.
Thus the software flow is several orders of magnitude faster,
which makes it appropriate for rapid analysis.

TABLE I: Overhead of software simulation flow for various versions
of quicksort. Consists of code instrumentation and additional software
simulation time. (unit:s)

TABLE II: Logic overhead of monitors for in-FPGA flow.

of probes | LUT DSP BRAM
4 654 0 4
16 2802 0 16
35 6072 0 35

the cycle accuracy of the simulation flow, we can use the in-
FPGA flow to compare the exact cycles of each module.

In addition to the quicksort example we provided, we
tested HLScope on matrix multiplication, convolutional neural
network, and logistic regression. For each application, we
classified the submodules into compute-intensive and DRAM-
intensive and averaged the absolute difference. The result in
Table III shows that the average error rate is 2.2% for compute
modules and 7.0% for DRAM modules.

TABLE III: Cycle accuracy of the software simulation flow.

Compute-intensive DRAM:-intensive
Type #mod AVG(|Dif]) o |#mod AVG(Dif|) o
Quicksort | 33 7.3% 0.050 5 8.4% 0.003
Conv NN 1 0.05% - 3 1.8% 0.016
Mat mul 1 0.04% - 3 12.4% 0.021
Log reg 3 1.4% 0.019 1 5.3% -
AVG - 2.2% - - 7.0% -

V. CONCLUDING REMARKS

We have discussed how HLScope can help FPGA pro-
grammers easily identify performance bottlenecks. HLScope
provides automated source-to-source transformation to easily
extract the required parameters. We also have proposed a
pure-HLS in-FPGA monitoring for accurate analysis. The
experimental results show that the simulation flow requires
31% overhead in HLS’s software simulation, but is orders
of magnitude faster than bitstream generation. This flow is
accurate within 2.2% on average for compute PEs. The in-
FPGA flow consumes only about 170 LUTs and a BRAM per
monitored module and provides cycle-accurate results.

ACKNOWLEDGMENT

We would like to thank Xilinx for the FPGA donation, and
Falcon Computing and Xilinx for the software donation.

REFERENCES

[1]1 Alpha Data, Alpha Data ADM-PCIE-7V3 Datasheet, 2013, http://www.alpha-
data.com/pdfs/adm-pcie-7v3.pdf.

SW | SW Sim Instr SW In-FPGA Bitstr
Dbg | Unmod Sim Est Dbg Gen
unopt 27 0.026 0.038 (1.46X) 13 1h27m
unroll 37 0.024 0.034 (1.42X) 22 2h4m
dubbuf 51 0.025 0.034 (1.35X) 33 1h55m
dramopt 51 0.280 0.287 (1.02X) 33 7h58m
AVG (1.0X) (1.31X)

[2]
[3]

[4]

[5]

Y. Choi, et al., “A quantitative analysis on microarchitectures of modern CPU-FPGA
platforms,” in Proc. DAC, 109-114, 2016.

J. Curreri, et al., “Performance analysis framework for high-level language appli-
cations in reconfigurable computing,” ACM Trans. Reconfigurable Technology and
Systems, 3(1), 2009.

R. Deville, I. Troxel, and A. George, “Performance monitoring for run-time
management of reconfigurable devices,” in Proc. IEEE Int. Conf. Engineering of
Reconfigurable Systems and Algorithms, 175181, 2005.

D. Finley, Optimized QuickSort, 2007, http://alienryderflex.com/quicksort.

2) Logic Overhead: The in-FPGA flow has logic overhead
for the performance monitor insertion (Table II). The logic
consumption increases with the number of modules to be
monitored at the rate of approximately 170 LUTs per probe.
Also, one BRAM per probe is needed since it is FIFO-based.

C. Accuracy of Performance Debugging

The in-FPGA flow is cycle accurate by its nature and does
not need accuracy testing. The same applies to the size of
DRAM transactions on simulation flow. For the evaluation of

[6] Intel, Intel FPGA SDK for OpenCL, 2016, http://www.altera.com/.

[7] Intel, Intel VTune Amplifier, 2017, http://www.intel.com/.

[8] S. Koehler, J. Curreri, and A. George, “Performance analysis challenges and
framework for high-performance reconfigurable computing,” Parallel Computing,
34(4-5):217-230, 2007.

[9] J. Lancaster, J. Buhler, and R. Chamberlain, “Efficient runtime performance moni-
toring of FPGA-based applications,” in Proc. IEEE Int. System-on-Chip Conf., 2009.

[10] P.Li, P. Zhang, L. Pouchet, and J. Cong, “Resource-aware throughput optimization
for high-level synthesis,” in Proc. Int. Symp. FPGA, 200-209, 2015.

[11] NVIDIA, NVIDIA Nsight, 2017, http://www.nvidia.com/.

[12] ROSE compiler infrastructure, 2017, http://rosecompiler.org/.

[13] A. Schmidt, N. Steiner, M. French, and R. Sass, “HWPMI: an extensible perfor-
mance monitoring infrastructure for improving hardware design and productivity on
FPGAs,” Int. J. Reconfigurable Computing, 2012.

[14] Xilinx, SDAccel Development Environment, 2016, http://www.xilinx.com/.

[15] Xilinx, Vivado High-level Synthesis UG902, 2016, http://www.xilinx.com/.

