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Abstract
FPGA-enabled datacenters have shown great potential
for providing performance and energy efficiency im-
provement. In this paper we aim to answer one key ques-
tion: how can we efficiently integrate FPGAs into state-
of-the-art big-data computing frameworks like Apache
Spark? To provide a generalized methodology and
insights for efficient integration, we conduct an in-
depth analysis of challenges at single-thread, single-node
multi-thread, and multi-node levels, and propose solu-
tions including batch processing and the FPGA-as-a-
Service framework to address them. With a step-by-step
case study for the next-generation DNA sequencing ap-
plication, we demonstrate how a straightforward integra-
tion with 1,000x slowdown can be tuned into an efficient
integration with 2.6x overall system speedup and 2.4x
energy efficiency improvement.

1 Introduction
Nowadays, power and energy efficiency of general-
purpose processors have become two of the primary con-
straints that limit the performance scaling of conven-
tional datacenters. Harnessing FPGA-based heteroge-
neous platforms, which provide low power, high energy
efficiency and reprogrammability, is considered one of
the most promising approaches to yield continued per-
formance and energy efficiency improvement. For exam-
ple, Microsoft has deployed FPGAs into its datacenters
to accelerate the ranking stage of the Bing search engine
with almost 2x throughput improvement while consum-
ing only 10% more power [17]. IBM has also deployed
FPGAs in its data engine for large and fast-growing
NoSQL data stores [4]. In addition, Intel, with acquisi-
tion of Altera, is providing QPI-based CPU-FPGA plat-
forms for datacenters [10]. Predictably, there will be
many FPGA-enabled datacenters in the near future.

With the emerging FPGA-enabled datacenter trend,
one key question is: how can we efficiently integrate
FPGAs into state-of-the-art big-data computing frame-
works like Apache Spark [20]? According to our case
study, a straightforward FPGA integration can actually
lead to a slowdown by 1,000x compared to a CPU-only
cluster. Our goal is to provide generalized insights for
efficient integration of FPGA accelerators into the Spark
MapReduce framework [20], and turn the slowdown
back to performance and energy efficiency improvement.

Our approach is to conduct an in-depth case study for
the acceleration of an important and representative ap-
plication: next-generation DNA sequencing [18]. We
choose this application for the following two reasons.
First, it is an important application that is transitioning
into clinical use where time is a matter of life and death.
Moreover, the FPGA accelerator for this application rep-
resents a category of fine-grained accelerators that im-
pose further challenges to the integration. Unlike con-
ventional coarse-grained accelerators, these fine-grained
accelerators execute for a very short time (e.g., a mi-
crosecond or so) but will be invoked many (e.g., hun-
dreds of millions) times, and thus a straightforward of-
floading of the CPU computation onto the FPGA board
could significantly degrade the overall performance due
to the overwhelming JVM-FPGA communication over-
head (e.g., a few milliseconds for data to be transferred
from JVM to native machine and then to FPGA).

In summary, this paper makes the following contribu-
tions.
1. Methodology and insights for efficient integration

of FPGAs into big-data computing frameworks like
Spark, including what challenges are expected at
single-thread (Section 4.1), single-node multi-thread
(Section 4.2), and multi-node levels (Section 4.3), as
well as how to address them.

2. Design and deployment of an FPGA-enabled Spark
cluster that features batch processing to alleviate
JVM-FPGA communication overhead and the FPGA-
as-a-Service (FaaS) framework to efficiently share
FPGAs among multiple CPU threads, achieving 2.6x
better performance than a CPU-only cluster for the
emerging DNA sequencing application, while con-
suming only 8% more power per server.

2 Background and Related Work
There is an increasing trend to integrate FPGA acceler-
ators into modern datacenters. For example, Microsoft
has developed a customized FPGA board, Catapult, and
placed it into each server to accelerate the ranking stage
of the Bing search engine in a 1,632-node cluster [17].
With a key focus on discussing the robust design of
the large-scale system architecture, this publication did
not reveal many details of the programming framework.
Moreover, IBM has proposed the Coherent Accelera-
tor Processor Interface (CAPI) to connect a PCIe-based



FPGA board to a POWER8 processor, and integrated
such FPGAs into its in-memory data structure store Re-
dis to accelerate its Data Engine for NoSQL [4]. In this
paper we aim to provide a more generalized methodol-
ogy and insight for efficient integration of FPGA accel-
erators into state-of-the-art big-data computing frame-
works like Spark, and therefore stimulate more innova-
tions in this very hot area.

Meanwhile, there are also some efforts that integrate
GPU accelerators into Hadoop and Spark. For exam-
ple, in [8], Grossman et al. proposed an automated flow
to generate OpenCL kernels for Hadoop programs in a
GPU-equipped cluster. In [14], Li et al. integrated GPU
accelerators with Spark for deep learning algorithms.
While these approaches usually target the integration of
coarse-grained accelerators, we mainly focus on the inte-
gration of fine-grained FPGA accelerators, which intro-
duces more challenges, like efficient communication and
sharing as discussed in Section 4.1 and Section 4.2.

3 Cluster Scale Acceleration: Case Study
3.1 Next-Generation DNA Sequencing
Next-generation sequencing results from a combination
of chemical engineering and computer science innova-
tions. To sequence a human’s entire genome, a number
of copies of the individual’s genome are fragmented into
small pieces, called reads, and the sequencers determine
the order of nucleotides for each read. The sequenced
reads are stored as ASCII strings (roughly 100 charac-
ters each), and aligned to specific locations of a reference
genome (a string of 3 billion characters) to be assembled
into an entire DNA sequence.

Generally, a sequencing instance processes billions
of reads, and each read is independently sequenced
and aligned. This billion-degree parallelism makes it
a good candidate for cluster scale acceleration. While
single-machine software tools, such as Burrows-Wheeler
Aligner (BWA) [13], Bowtie [12] and Genome Analy-
sis Toolkit (GATK) [15] are still widely used for read
alignment and successive data analysis, a few cluster
scale tools have been proposed to serve as alternatives.
In [6], Chen et al. proposed CS-BWAMEM, a Spark-
based MapReduce implementation for mapping the short
reads onto the reference genome. In [16], Massie et al.
proposed ADAM, another Spark-based implementation,
which provides a set of formats, APIs and tools for data
analysis on aligned reads.

Conceptually, the sequencing algorithm consists of
two phases, seeding and extending. In the seeding phase,
a read uses its substrings of various lengths, called seeds,
to find candidate alignment positions on the reference
genome. In the extending phase, each seed is extended
leftward and/or rightward to both ends of the read via
a two-dimension dynamic programming algorithm, the
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Figure 1: An overview of the Spark-FPGA cluster
Smith-Waterman (S-W) algorithm [19]. In this paper we
focus on the extending phase of CS-BWAMEM (since
it is more time-consuming) and present the integration
process of CS-BWAMEM and a S-W FPGA accelerator.

3.2 FPGA Acceleration for S-W Algorithm
FPGA acceleration for the S-W algorithm has attracted
great attention in the past. Various approaches have
been proposed and implemented and achieves over 100x
speedup compared to CPU and even GPU based so-
lutions [21][3][5][2]. While the proposed accelerators
show a great potential for accelerating the S-W compu-
tational kernel, FPGA researchers did not pay enough
attention to the system-wide integration of the accelera-
tors. In this paper we focus on the integration of the S-W
accelerator in [5] into the Spark-based CS-BWAMEM,
where the FPGA accelerator achieves around 120x and
10.5x kernel-level speedup over the single-thread and 16-
thread CPU in our experimental system.

3.3 Experimental Setup
Our experimental system comprises a cluster of 1 master
node and 6 worker nodes, as shown in Figure 1. Except
for the master node of the Spark framework, all Spark’s
worker nodes are equipped with a PCIe-attached Alpha
Data ADM-PCIE-7V3 FPGA board [1]. Table 1 lists the
detailed configuration of each server. Currently, we have
only six FPGA boards available, which limits the cluster
size. Nevertheless, it is sufficient to demonstrate our in-
tegration methodology and insights, which can be easily
applied to larger clusters. We are planning to incorporate
more FPGA boards into our cluster in the future.

Table 1: Experimental setup
Host CPU two 6-core Xeon E5-2620v3@2.40GHz

Host Memory 48GB DDR3-1600
FPGA Fabric Xilinx Virtex 7@200MHz

CPU ↔ FPGA PCIe Gen3 x8, 8GB/s as advertised
FPGA Device Memory 16GB DDR3-1600

Development Environment SDAccel 2015.1.5

We use Spark 1.5.1 as our cluster computing frame-
work and HDFS 2.5.2 as our underlying distributed file
system, and run CS-BWAMEM 0.2.2 on top of them.
As illustrated in Figure 1, each read is aligned by a CS-
BWAMEM’s map function that invokes the S-W kernel.
Our test cases are derived from the genome sample of
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a human with breast cancer (HCC1954 [7]). The sam-
ple contains almost 1 billion reads, each with 101 nu-
cleotides (denoted by a 101-character ASCII string). The
performance of DNA sequencing applications is often
measured by the number of reads aligned in a unit of
time. In this paper we use the notation of ”kilo reads per
second (KRPS)”.

For convenience, we will denote the original CS-
BWAMEM program as CS-BWAMEM/CPU, and the
CS-BWAMEM program with the S-W accelerator as
CS-BWAMEM/FPGA in the rest of this paper. CS-
BWAMEM will be also used in the scenarios where both
CS-BWAMEM/CPU and CS-BWAMEM/FPGA fit.

4 Challenges and Solutions
4.1 Harnessing FPGA in JVM
Spark programs are mainly written in Java and/or Scala,
and run on JVMs. FPGA accelerators are typically ma-
nipulated by C/C++ programs, and JVMs do not support
the use of FPGAs by default. Therefore, the first step of
Spark-FPGA integration at the single-thread level is to
bridge the gap between Java/Scala and C/C++.

While the Java Native Interface (JNI) serves as a
standard tool to address this issue, it does not al-
ways deliver an efficient solution. In the single-
thread scenario, we compare the performance of CS-
BWAMEM/CPU and CS-BWAMEM/FPGA, and find
that CS-BWAMEM/CPU achieves 2.1 KRPS (kilo
reads per second) while CS-BWAMEM/FPGA, with the
straightforward Spark-FPGA integration, reaches merely
1.6 RPS. In other words, the straightforward integration
does not fulfill the 120x speedup, but instead decreases
the overall performance by three orders of magnitude.

After an in-depth analysis, we find that the main
reason for the performance degradation is the tremen-
dous JVM-FPGA communication overhead aggregated
through all the invocations of the S-W accelerator. To be
specific, one read produces 24 S-W invocations (either
software or hardware implementation) on average, and
it takes about 480µs for the software to process them in
JVM. That is, each S-W invocation of the software ver-
sion should cost no more than 20µs on average. Mean-
while, a complete routine of a S-W accelerator invoca-
tion involves: 1) data copy between a JVM and a native
machine, 2) DMA transfer between a native machine and
an FPGA board though PCIe, and 3) computation on the
FPGA board. The communication process, including 1)
and 2), costs over 25ms per invocation. That is, even if an
accelerator could reduce the computation time of the S-
W kernel down to 0, the communication overhead would
degrade the performance by 1000x.

The tremendous JVM-FPGA communication over-
head has to be alleviated to make the Spark-FPGA in-
tegration work efficiently. In CS-BWAMEM/CPU, each
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Figure 2: Batch processing in CS-BWAMEM

S-W task has only 1-2KB input data and 20B output data.
These small payloads result in an extremely low com-
munication bandwidth utilization of both DRAM (from
a JVM to a native machine) and PCIe (from a native ma-
chine to an FPGA). This phenomenon motivates our ap-
proach of batching a group of reads together and offload-
ing them to the FPGA board at a time to improve the
bandwidth utilization.

To make batch processing work, a fundamental condi-
tion is that there should be adequate independent tasks
to process as a whole. A Spark MapReduce program
inherently offers a massive degree of parallelism. All
map function calls in a map stage are completely in-
dependent of each other. Therefore, it is both neces-
sary and feasible to conduct batch processing for CS-
BWAMEM. To be specific, we merge a certain number
of CS-BWAMEM/FPGA’s map tasks (derived from the
straightforward integration) into a new map function, and
conduct a series of code transformations to batch the S-
W kernel invocations from different map tasks together.

However, there is a delicate issue in CS-BWAMEM
that imposes challenges in the code transformation for
batch processing, which is illustrated in Figure 2. First, a
read generates N leftward/rightward extending tasks, in-
dicating that a map function of CS-BWAMEM (before
the code transformation for batch processing) needs to
process N S-W tasks (a row in Figure 2), where N is
highly varied for different reads. Moreover, all these S-
W tasks generated in the same read are chain-dependent
(a row in Figure 2) and thus cannot be batched together.
Therefore, a batched map function has to consider mul-
tiple reads (rows) as a group and produce multiple S-W
batches (each column a batch) for this group. To bet-
ter hide the communication, only S-W batches (within
reads) with batch size no less than a threshold (64 in our
experiments) would be offloaded to the FPGA accelera-
tor. All other smaller S-W batches are processed on CPU.

Figure 3 shows the performance of processing a set
of reads in CS-BWAMEM/FPGA with different batch
sizes (the number of reads in a batch), as well as the
performance of CS-BWAMEM/CPU. We can see that
the FPGA integration starts to outperform the CPU-only
version when the read batch size reaches 16k. The per-
formance continues to increase until the program runs
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Figure 3: Performance under different read batch sizes
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Figure 4: FPGA as a Service (FaaS) framework

out of memory, where the batch size exceeds 512k.
With the batch size of 512k, CS-BWAMEM/FPGA
achieves around 8 KRPS and is around 4x faster than
CS-BWAMEM/CPU in the single-thread case.

4.2 Sharing FPGAs Among Threads
Due to the high performance of FPGA accelerators, of-
floading a single-thread CPU workload onto the FPGA
usually makes the FPGA underutilized, which leaves op-
portunities for FPGA accelerators to be shared by multi-
ple threads in a single node. The major challenge is how
to efficiently manage the FPGA accelerator resources
among multiple CPU threads. To tackle this challenge,
we propose an FPGA-as-a-Service (FaaS) framework
and implement the FPGA management in a node-level
accelerator manager.

The FaaS framework abstracts the FPGA accelerator
and its management software on the CPU (called Ac-
celerator Manager (AM)) as a server, and treats each
CPU thread as a client. Client threads communicate with
AM via a hybrid of JNI and network sockets. Different
client threads send requests independently to the AM to
accelerate S-W batches, and the AM processes the re-
quests in a first-come-first-serve way. Figure 4 describes
the functionality and the detailed implementation of the
FaaS framework.

In the single-thread version, CS-BWAMEM/FPGA’s
map functions have been modified into batched map
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Figure 5: Performance under different number of threads

functions. The S-W tasks from these map functions have
also been reorganized into a series of S-W batches, which
are sent through JNI to the native library that manipulates
the FPGA accelerator. The FaaS framework extends the
native library into AM, and extends the communication
mechanism between the batched map function and AM
as follows.
1. When a batched map function in a CPU thread needs

to use the FPGA accelerator, it will first allocate a
shared memory buffer and then send the input data
from JVM to this buffer through JNI.

2. The batched map function sends a request to AM
through a socket to use the accelerator. The request
contains only the address of the shared buffer created
in Step 1, thus generating negligible overhead.

3. If the accelerator is available, it will be locked and
start to process the S-W batch; otherwise, the batched
map function waits in a spin loop until it successfully
gets permission to use the accelerator.

4. After the accelerator completes the current S-W
batch, it will write the output data back to the shared
memory buffer created in Step 1, and become avail-
able again to accept another request.
Figure 5 shows the performance comparison between

CS-BWAMEM/CPU and CS-BWAMEM/FPGA with
different number of CPU threads. We can see that the
speedup of FPGA-equipped system over the CPU-only
system slightly decreases from about 4x (single-thread)
to 3x (16 hyper-threads) due largely to thread contention,
but still maintains a decent speedup. The performance of
CS-BWAMEM/FPGA starts to decrease when 20 hyper-
threads share the FPGA board. Meanwhile, the per-
formance of CS-BWAMEM/CPU sightly decreases at
this point as well, which indicates that hyper-threading
does not always help performance improvement for CS-
BWAMEM. Therefore, we will use 16 hyper-threads
per CPU throughout this paper since it achieves the
best performance for both CS-BWAMEM/CPU and CS-
BWAMEM/FPGA.

4.3 Scaling FPGAs into Cluster Scale
Finally, we address challenges when scaling FPGA in-
tegration into cluster scale. Based on our case study,
when a computational kernel is inside a map function of a
Spark MapReduce program, the inter-node communica-
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tion will be completely independent of the FPGA board
in each server. That is, Spark application developers who
wants to harness the power of FPGA accelerators for
computational kernels residing in map functions merely
need to consider up to the single-node multi-thread level.

Overall Performance and Power. After overcoming
all the challenges at various levels, now we have an ef-
ficient integration of CS-BWAMEM/ FPGA. As shown
in Figure 6, the performance of Spark-FPGA integration
scales well with one to six worker nodes, where each
node runs 16 threads. Through the efficient integration
of FPGA accelerators, CS-BWAMEM/FPGA improves
the overall system performance of a 6-worker clus-
ter by 2.6x, compared to CS-BWAMEM/CPU. Under
the same configuration, CS-BWAMEM/FPGA consumes
only 8% additional power per worker node. That is,
CS-BWAMEM/FPGA achieves 2.4x energy efficiency
improvement and 2.6x performance speedup. This re-
sult goes along with Microsoft’s findings for the ranking
stage of the Bing search engine where the performance is
improved by 2x while consuming 10% more power per
server. It is quite promising that FPGAs can greatly im-
prove performance and energy efficiency in datacenters.

Analysis of Communication Overhead. To bet-
ter demonstrate the effectiveness of FPGA acceleration,
we present the detailed execution time breakdown (nor-
malized to the CS-BWAMEM/CPU baseline) of our 6-
worker Spark-FPGA system in Figure 7. The upper bar
illustrates that the S-W accelerator targets at 86% of
the overall execution time, where the rest 14% of time
mainly involves Spark’s task scheduling and the S-W
tasks that are processed on CPU. As shown in the lower
bar, the S-W accelerator reduces the acceleratable part
(86%) to 8% while paying a 16% communication over-
head. The communication between the Spark program
and AM through JNI introduces 5% overhead, and the
communication between AM and the FPGA accelerator

through PCIe introduces another 11% overhead. The ex-
istence of the above communication overhead reduces
the overall system speedup to 2.6x. We can see that there
is still room to improve the overall performance if FPGA
fabric can be brought closer to CPU so as to further re-
duce the CPU-FPGA communication overhead.

5 Lessons Learned and Open Discussion
This paper presented an in-depth analysis of challenges
and corresponding solutions when integrating FPGA ac-
celerators into Spark at single-thread, single-node multi-
thread, and multi-node levels. Using the next-generation
DNA sequencing application CS-BWAMEM and its
Smith-Waterman accelerator integration as a case study,
we demonstrated how we turned a 1000x slowdown of
the straightforward integration into an efficient integra-
tion with 2.6x system-wide performance improvement,
at the cost of consuming only 8% more power.

We summarize some lessons we learned and discuss
some open topics as below.
1. By decoupling the design and implementation of the

FPGA accelerator and scale-out software, it is feasi-
ble to efficiently integrate existing FPGA accelerators
into MapReduce programs with affordable program-
ming efforts. Our case study shows that an over 2x
speedup and energy efficiency can be achieved with
modest code transformations.

2. It is important to generalize the FaaS framework to
automatically manage and share FPGA accelerators in
the Spark-FPGA integration. There are also research
opportunities to further extend it to a generic accel-
erator management framework that harnesses a vari-
ety of heterogeneous devices, such as GPUs, FPGAs
and even ASICs. At UCLA, we are developing a run-
time system called Blaze [9][11] that extends Spark to
enable automatic FPGA and GPU accelerator sharing
among threads, as well as task pipelining to alleviate
JVM-FPGA communication overhead.

3. The JVM-FPGA communication overhead appears as
a primary performance bottleneck in Spark-FPGA in-
tegration. Worse still, one of our future studies, DNA
sequencing acceleration on a Spark-GPU-FPGA clus-
ter, also demonstrates the same issue on the GPU side.
Batch processing alleviates this overhead to some ex-
tent, but it is not always trivial to transform a given
MapReduce program into a batched style. It could
be greatly helpful if batching-oriented programming
model extensions or (semi)-automated code transfor-
mation tools could be proposed for MapReduce.
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