
ST-Accel: A High-Level Programming Platform for Streaming Applications on FPGA

Zhenyuan Ruan∗ Tong He∗ Bojie Li†‡ Peipei Zhou∗ Jason Cong∗
∗University of California, Los Angeles †Microsoft Research ‡University of Science and Technology of China

{zainryan, tonghe, memoryzpp, cong}@cs.ucla.edu, v-bojli@microsoft.com

Abstract—In recent years we have witnessed the emergence of the
FPGA in many high-performance systems. This is due to FPGA’s
high reconfigurability and improved user-friendly programming envi-
ronment. OpenCL, supported by major FPGA vendors, is a high-level
programming platform that liberates hardware developers from having
to deal with the complex and error-prone HDL development. While
OpenCL exposes a GPU-like programming model, which is well-suited
for compute-intensive tasks, in many state-of-art systems that deploy
FPGA, we observe that the workloads are streaming-like, which is
communication-intensive. This mismatch leads to low throughput and
high end-to-end latency.

In this paper, we propose ST-Accel, a new high-level programming
platform for streaming applications on FPGA. It has the following
advantages: (i) ST-Accel adopts the multiprocessing programming model
to capture the inherent pipeline-level parallelism of streaming applica-
tions while reducing the end-to-end latency. (ii) A message-passing-based
host/FPGA communication model is used to avoid the coherency issue of
shared memory, thus enabling host/FPGA communication during kernel
execution. (iii) ST-Accel provides a high-level abstraction for I/O devices
to support direct I/O device access that eliminates the overhead of host
CPU and reduces the I/O latency. (iv) ST-Accel enables the decoupled
access/execute architecture to maximize the utilization of I/O devices. (v)
The host/FPGA communication interface is redesigned to cater to the
demands of both latency-critical and throughput-critical scenarios. The
experimental results on the Amazon AWS cloud and local machine show
that ST-Accel can achieve 1.6X∼166X throughput and 1/3 latency for
typical streaming workloads when compared to OpenCL.

I. INTRODUCTION

The limitation of instruction-level parallelism and the failure of
continuing Dennard scaling is forcing computer architects to switch
from single-core CPU to multi-core CPU [1]. However, more re-
cently, the occurrence of dark silicon signals the end of multi-core
scaling [2]. Architects have to rediscover the computing solution for
higher performance and energy efficiency. Among various alternative
computing engines, such as graphics processing unit (GPU), many
integrated core (MIC), field-programmable gate array (FPGA), and
application-specific integrated circuit (ASIC), FPGA shows great
promise given its flexible reconfigurabilty and high power/cost effi-
ciency. Currently, FPGA has been deployed in large-scale data centers
[3] and is also available in cloud service [4].

Having an efficient high-level programming platform is the key
to massively harnessing the power of FPGA. Traditionally, FPGA
developers use HDL (e.g., Verilog, VHDL) to describe the FPGA
logic. Although it has a strong programing flexibility that allows
the RTL description, HDL is extremely hard to code and debug
and also lacks the support of host-side integration. In order to
improve developers’ efficiency, in recent years both Xilinx and Intel
FPGA have released their OpenCL-based high-level programming
toolchains. OpenCL shares many concepts of GPGPU and exposes
the single instruction multiple thread (SIMT) programming model,
which perfectly matches the compute-intensive workloads [5]. The
host/FPGA communication is handled by the OpenCL library, en-
abling the developers to concentrate on the computational logics.
Equipped with OpenCL, developers are able to achieve considerable
performance speed-ups while reducing a large amount of programing
effort for compute-intensive applications, e.g., [6], [7], [8], [9].

In recent years FPGA-based acceleration has been actively pursued
in a number of research communities, ranging from architecture [10],

[11], to network [12], to database [13], [14], and more recently to
system [15]. After careful examination of these works (detailed in
Section II and III), we surprisingly found that most of them (if not all)
belong to streaming applications, which are communication-intensive
rather than computational-intensive. Since OpenCL was originally
developed to accelerate the computational-intensive workloads, there
is a mismatch between these workloads and OpenCL. For example,
according to the results in Section VI, the OpenCL implementation
of the hash table lookup may even have up to two magnitudes of
performance degradation compared with the HDL implementation.
This motivates us to analyze the source of inefficiency. In Section
III we summarize the limitations of OpenCL, which are the root of
inefficiency when applying OpenCL to the streaming workloads, as
follows.

1) Inappropriate memory model
2) FPGA limited to role of slave
3) Synchronous DRAM access interface
4) Inefficient host/FPGA communication design
FPGA inherently is not constrained by these limitations; they are
actually introduced by the abstraction of OpenCL and can be avoided
if we develop the design in HDL. This raises our question: Could it be
possible to enjoy the programming convenience brought by the high-
level abstraction while incurring only a few performance penalty?

To answer this question, we present ST-Accel, a high-level pro-
gramming platform for streaming applications on FPGA. Our design
goal is to find an appropriate level of abstraction that enables high-
level programming while providing enough programming support to
cater to the demands of streaming workloads. The key design points
of ST-Accel are illustrated in Section IV. First, ST-Accel adopts the
multiprocessing programming model to exploit the inherent pipeline-
level parallelism of streaming workloads. Second, we choose the
message passing model to avoid the coherency issue of shared
memory in language level, enabling the host/FPGA communication
during kernel execution. Third, ST-Accel enables FPGA to directly
access the I/O devices to bypass the host and FPGA DRAM, which
eliminates the host and FPGA DRAM overheads as well as reducing
the data transfer latency. Fourth, the I/O interface is wrapped in a
high-level fashion, and the requirements of its timing protocol are
handled by the ST-Accel library. Last, since streaming workloads
are sensitive to the data communication bandwidth and latency over
PCIe, we design an efficient host/FPGA communication library. We
implement zero-copy to eliminate the overhead of buffer copy during
the data transferring and bypass the operating system kernel to
minimize the data transferring latency. Thanks to the streaming based
interface exposed by our library, the host-side processing and data
transferring will automatically be pipelined to hide the latency of
I/O data transfer. Further, to ease the burden of developers, a credit-
based flow control mechanism is implemented. Developers only need
to describe the data transfer logic, and are no longer worried about
data loss due to unmatched data rates of two endpoints.

Equipped with ST-Accel, developers can achieve performance
that nears the physical limitation for streaming workloads without
sacrificing the programming simplicity. The experimental results on

the Amazon AWS cloud and local machine are shown in Section
VI. ST-Accel can achieve a nearly 50X reduction in latency, and it
improves bandwidth by 5X for host/FPGA communication compared
to SDAccel, an OpenCL implementation from Xilinx. To validate
its effectiveness in real workloads, we select three representative
applications: image processing (IP), hash table lookup (HTL) and
network packets encryption (NPE). The significant end-to-end band-
width (10.7x for IP, 166x for HTL and 1.6x for NPE) and latency
improvements (1/3 for NPE) compared with the implementations of
OpenCL.

II. BACKGROUND AND RELATED WORK

A. Systems that Leverage FPGA to Accelerate Streaming Workloads

In recent years FPGA has frequently appeared in system designs
of top-tier publications for the purpose of accelerating streaming
workloads. In the database field, several core data operations—
like select, aggregation, and sort—are standard streaming processing
tasks. For these operations, [13] shows that FPGA can achieve
significant advantages in terms of power consumption and paral-
lel stream evaluation. Additionally, ExtraV [14] deploys FPGA to
perform near-storage computing, which boosts the graph processing
and outperforms all the other frameworks. In the network field,
ClickNP [12] takes advantage of FPGA to perform in-network packet
processing that achieves a 40 Gbps line rate with an ultra-low
latency. Taking a look at the machine learning field, FPGA also
demonstrates its potential on streaming document classification [10],
latency-sensitive real-time inference [11], etc. More recently, in the
system field, KV-Direct [15] leverages the reconfigurability and the
inherent pipeline parallelism of FPGA to accelerate random local host
memory access and remote atomic operations. After analyzing these
workloads, we find that they share some common characteristics:
1) Communication-intensive rather than computational-intensive.
2) For the host/FPGA collaborative streaming workloads, FPGA and

host need to communicate with each other continuously during
kernel execution.

3) Host bypassing is required for better performance. FPGA should
be able to directly talk to other resources, e.g., NIC (network
interface card), disk, host memory, etc.

4) Support for asynchronous I/O operations is required in order to
maximize the utilization of I/O devices.

5) The throughput and latency of host/FPGA communication are
critical for the end-to-end performance.

B. Design Optimizations for Streaming Applications on FPGA

There exists a large amount of work aimed at optimizing the
mapping of streaming applications to FPGA under power, area,
throughput and latency considerations. [16] proposed the stream fold-
ing algorithms which judiciously replicate the kernels to maximize
the overall throughput under the area and latency constraints. Based
on this, [17] further combines the idea of kernel selection, adopting
slower yet resource-efficient implementations for non-critical kernels
at the data flow path to optimize the area cost subject to the
throughput constraint. Later, [18] optimizes the queue size between
streaming kernels and combines it with previous kernel selection
and replication techniques. More recently, [19] discusses the CPU-
FPGA heterogeneous platform for streaming applications, presenting
algorithms to decide kernel mappings on heterogeneous devices with
power and latency constraints. These techniques are orthogonal to ST-
Accel (which primarily focuses on the level of programming support)
and can be leveraged by the users of ST-Accel to further improve
their designs. Host pipe [20] supports communication between the
FPGA kernel and the host kernel. It can achieve superior bandwidth
compared with the current OpenCL flow. However, its API introduces

the unnecessary kernel invocation for buffer copying, which adds the
CPU overhead and end-to-end communication latency.

III. LIMITATIONS OF OPENCL AND OUR DESIGN GOALS

A. Inappropriate Memory Model

OpenCL defines two memory categories: host memory and device
memory. Device memory consists of four memory regions: global
memory, constant memory, local memory and private memory. Global
memory is defined to be the only device memory accessible to
host. In the OpenCL execution flow, the host first prepares data
at host memory and then transfers it into global memory. After
that, the host launches the OpenCL kernel and cannot further access
global memory during kernel execution in order to avoid coherency
issues brought by simultaneous shared memory accesses. Finally,
when the device finishes kernel execution, the host re-acquires the
access right and reads the results back from global memory. In
the OpenCL implementations of FPGA vendors, global memory
is mapped to FPGA on-board DRAM and PCIe is used for host
memory/global memory transferring. In order to observe the OpenCL
specification, host and FPGA cannot talk to each other during kernel
execution although they are physically connected via PCIe. With
this constraint, the application’s required host/FPGA collaboration
cannot be implemented. In addition, for streaming applications, it is
inappropriate for OpenCL to force the incoming host data to be stored
at FPGA on-board DRAM for later accesses. The original design
purpose is to provide data reuse. However, the streaming applications
usually expose no or very low data locality. In this case, the above
OpenCL mechanism is redundant and has two disadvantages: 1).
Waste of on-board DRAM bandwidth and capacity; 2). Added end-
to-end latency due to unnecessary DRAM accesses.

In summary, the OpenCL memory model is inappropriate for
streaming applications. This abstraction layer should be redesigned
to achieve two goals: 1). Provide the choice to bypass the on-
board DRAM in host/FPGA communication; 2). Enable host/FPGA
communication during kernel execution.

B. FPGA Limited to Role of Slave

OpenCL adopts the master/slave execution model in which host
(master) offloads computing to FPGA (slave) and later retrieves data
back from it. The host serves as a proxy when FPGA wants to
communicate with other devices. This adds the unnecessary data path
which increases the overall latency and burdens the host CPU. For
example, in near-storage computing [21] when FPGA sits between
host and PCIe SSD, disk data should be fetched and processed by
FPGA directly and then transferred to host (dotted line in Figure 1).
Although having the PCIe I/O pins physically, in OpenCL FPGA
is wrapped as a slave which is only allowed to communicate with
the host via limited OpenCL APIs. Thus, in this case, the data
must be fetched by the host and then be dispatched to FPGA (solid
line in Figure 1) which introduces the extra overhead compared
with the primitive HDL design. This also limits the performance of
applications like network processing and multi-FPGA acceleration
when using OpenCL. Therefore, we need a high-level programming
platform that allows FPGA to directly access I/O devices while still
maintaining the programming simplicity.

C. Synchronous DRAM Access Interface

OpenCL exposes the global memory, i.e., FPGA DRAM, in an
array interface. The R/W operation to the array will be transformed
into corresponding low-level signals sent to the DRAM controller.
Though providing a simple programming experience, the array in-
terface hides the critical fact that DRAM access has a long latency
for FPGA, which is about 200 ns. Thus, for each DRAM access, the

Host FPGA Disk

Host Fetch Data

FPGA Return Result

Host Offload Data

FPGA Return Result

FPGA Fetch Data

Fig. 1: Treating FPGA as a slave causes inefficient I/O device access.

BRAM

DRAM

Kernel

(a) The task with great data reuse.

DRAM

Kernel

(b) Streaming task.

Fig. 2: Data access patterns of different types of workloads.

code snippet that relies on this access will be blocked for 50 cycles
when running on a 250 MHz frequency. This will not be the problem
for the computation-intensive tasks which have great data reuse. See
Figure 2a for this kind of workload. The kernel first copies the data
of slow on-board DRAM into the fast BRAM. Later, the kernel will
access BRAM multiple times for computing. In this scenario, the
latency to access DRAM will be amortized by following BRAM
accesses; thus the overall performance will not be hurt. However,
for the streaming workloads (Figure 2b), there is usually little or no
data reuse. In this scenario, the stall cannot be amortized and is fatal
to the overall performance. Thus, a new latency-aware I/O interface
and programming paradigm should be proposed to hide the stall for
performance consideration.

D. Inefficient Host/FPGA Communication Design

As we mentioned previously, streaming applications are
communication-intensive rather than computation-intensive. As
an example, we look at the case of using FPGA to accelerate
database processing [13]. Due to the computational characteristics
of database select or aggregation operation, the internal FPGA
design is totally pipelined, and the overall performance is bounded
by the data transferring rate. Therefore, the PCIe bandwidth
for host/FPGA communication should be fully utilized for the
performance consideration. What’s more, for the most real-time
streaming applications, there is a service-level agreement between
the service providers and end users, which puts constraints on the
communication latency.

Copy Routine

FPGA

User Addr Space

User Buffer

MMIO

Ptr
1

2

…
3 n

(a) Host-side MMIO.

Copy Routine

FPGA

Kernel Buffer
User Addr Space

copy

Phy
Addr

via MMIO

DMA
Read
Resp

DMA
Read
Req

1 2 3 4

User Buffer

(b) FPGA-side DMA.

Fig. 3: Two implementations that transfer host buffer to FPGA.

Traditionally, there are two different ways to implement the trans-
ferring routine: host-side MMIO (memory-mapped IO) and FPGA-
side DMA. The mechanism of MMIO is simple; the driver maps the
PCIe space of FPGA into a kernel space in host memory and any
R/W operation on that memory region will be forwarded to FPGA. In
host-side MMIO (Figure 3a), the transferring routine doesn’t need to
copy the host buffer. It simply traverses the host buffer and transfers

each item via memory store instructions. However, the buffer copy is
necessary for FPGA-side DMA (Figure 3b). In FPGA-side DMA, the
transferring routine first copies a portion of the host buffer located in
user space to a kernel space buffer which is contiguous in physical
address. The kernel space buffer is usually small (less than 4 MB in
Linux), and this explains why FPGA-side DMA can only transfer a
small portion of host data each time. Later, the host program relays
the physical address of this kernel buffer to FPGA via MMIO. After
receiving the address, FPGA issues a DMA read request to fetch
the data. Finally, after ensuring that FPGA has finished reading the
buffer, the host can copy the next portion of the host buffer and start
the next transfer process.

Despite the simplicity of host-side MMIO, it suffers performance
problems. The payload size of each PCIe transfer is limited by the
width of the bus interface unit of the CPU, which is currently 64 bytes
[22]. According to the PCIe Gen3 specification, the header length of
a transaction layer protocol packet is 30 bytes (when enabling 64-
bit addressing and ECRC) [23]. Thus, host-sided MMIO can only
achieve at most 64/(30+64)=68% throughput utilization. For FPGA-
side DMA, the maximum data payload size is 128 or 256 bytes
(bounded by the PCIe root complex). In this case, the theoretical
utilization can be as high as 90%. However, the FPGA-side DMA
implementation introduces an extra data copy, which adds unneces-
sary CPU overheads and increase the communication latency. This
can be addressed by the zero-copy technique, namely mapping the
kernel buffer into user space for direct access. Whereas the physically
contiguous kernel buffer is a precious resource in OS whose size
is usually smaller than the size of data to be transferred. Thus, an
efficient buffer reuse mechanism without hurting the communication
performance must be proposed. The above discussion reveals the
fact that designing a high-performance communication library that
performs well in term of both bandwidth and latency is challenging.
As pointed out by a recent research paper [24], for an AlphaData
FPGA board equipped with PCIe Gen3 x8 interface which has
6.8GB/s theoretical bandwidth, SDAccel, the Xilinx implementation
of OpenCL, can only achieve 1.6GB/s bandwidth due to inefficient
OpenCL buffer allocation and driver memory copy. Also, its commu-
nication latency is reported as high as 160 µs, even two magnitudes
larger than the physical latency of the PCIe hard IP core, which is
about 1 µs. This long latency partly comes from the kernel driver
overheads.

Moreover, since the data processing rates of host and FPGA are
usually different, the flow control mechanism must be implemented
for the host/FPGA communication to prevent data loss. Our design
goal is to provide an efficient host/FPGA communication library with
flow control to achieve both near physically theoretical throughput
and latency.

IV. DESIGN

A. Multiprocessing Programming Model

ST-Accel adopts the multiprocessing programming model to ex-
ploit the inherent pipeline-level parallelism of streaming applications.
The syntax of ST-Accel is based on C++. Actor and channel are two
basic elements in ST-Accel.

a) Actor: Logically, an actor can be regarded as a process
in the concepts of operating systems. An ST-Accel program can
have multiple actors. Each actor has its private memory space and
they execute concurrently but independently. Channels are used to
connect different actors for exchanging data. An actor consists of the
following blocks:
1) Channel declaration. This block declares the input and output

channels connected to the actor.

2) Actor routine. The routine will read data from input channels
and perform processing. The results will be written into output
channels.

3) Termination condition. After finishing the execution of routine,
the termination condition will be checked. If it is met, the actor
will stop; otherwise the actor routine will be invoked again.

4) Persistent state. The persistent state is alive across different
execution iterations of the actor routine.

The identifier actor declares an actor, see Listing 1 for an example.
Each cycle, this actor will read data from the input channel, update
the suffix sum (which is declared as a persistent state) and write
the result of the suffix sum into the output channel. This actor will
terminate when sum ≥ 128.

b) Channel: Logically, a channel can be conceived as a pipe in
the concepts of an operating system that connects different processes.
Users can indicate the data type and the depth when initializing a
channel. The reader-side actor invokes a pull method to read data
from the channel, while the writer-side actor calls push to write data
into the channel. Push is designed to be blocking in case of data loss
when the channel is full; pull is non-blocking to prevent users from
constructing deadlock. Thus, users should always check the return
value of pull to see whether the operation is successful.

1 actor suffix_sum(ST_Channel<int> in, ST_Channel<int> out)
2 { /* Persistent state block */
3 int sum = 0; // This is a persistent state
4 } { /* Actor routine block */
5 int data; // This is a temporal state
6 if (in.pull(&data)) { // Read data from the input
7 sum += data; // Update the suffix sum
8 out.push(sum); // Write the sum to the output
9 }

10 } { /* Stop condition block */
11 exit = (sum >= 128); // actor stops when sum >= 128
12 }

Listing 1: An example of the actor.

1 actor pcie_reader(ST_Channel<uint64_t> addr_chan,
ST_Channel<ap_uint<512>> data_chan)

2 { /* Empty persistent state block */ } {
3 ST_Channel<PCIe_Read_Req> req_chan;
4 ST_Channel<PCIe_Read_Resp> resp_chan;
5 #pragma share_pcie_read req=req_chan resp=resp_chan
6 PCIe_Read_Req req;
7 if (addr_chan.pull(req.addr)) {
8 req.num = 1;
9 req_chan.push(req);

10 }
11 PCIe_Read_Resp resp;
12 if (resp_chan.pull(resp)) {
13 data_chan.push(resp.data);
14 }
15 } { /* Stop condition block */
16 exit = false;
17 }

Listing 2: An example to use PCIe read interface.

A complete ST-Accel program consists of three blocks: 1) actor defi-
nitions, 2) channel definitions, and 3) interconnects. The interconnect
block is used to describe the channel connections between actors. The
detailed syntax is omitted here due to the space constraint.

B. Message Passing Model for Host/FPGA Communication

The root cause of OpenCL preventing the host from accessing
global memory (on-board DRAM FPGA) during kernel execution is
to avoid the coherency issue. Since global memory can be accessed
by both host and device, when they access global memory simul-
taneously, the memory coherency must be handled for correctness.
For devices like the Intel HARP and AMD APU, the coherency is
handled by the specialized hardware which is, however, not available
in general devices. In order to cope with this, OpenCL stipulates that

the host can only access global memory before or after the kernel
execution. Thus the host-side access and the device-side access are
separated, eliminating the coherency issue.

Instead of using the shared-memory model, ST-Accel adopts the
message passing model for host/FPGA communication. In ST-Accel,
host and device have separate memory space, and their accesses
are limited to their own space. Logically, ST-Accel provides a
bidirectional channel between host and FPGA for communication.
Any data pushed into one end is guaranteed to be reliably transferred
to the opposite end. Rather than directly writing to their memory, the
incoming data is handled by the host or FPGA routine provided by the
user. In this way, there is no simultaneous access to the same memory
space. Thus, the coherency issue is at the language level. Additionally,
in this design, the incoming host data are directly accessed by the
FPGA kernel without going through on-board DRAM. This helps
save the DRAM capacity and bandwidth as well as reducing the data
transferring latency.

C. High-Level Abstractions for I/O Devices

I/O Device Name Interface Type Field

PCIe

PCIe Read Req uchar num
uint64 t addr

PCIe Read Resp ap uint<512> data

PCIe Write Req Apply uchar num
uint64 t addr

PCIe Write Req Data ap uint<512> data

On-board DRAM

DRAM Read Req uchar num
uint64 t addr

DRAM Read Resp ap uint<512> data

DRAM Write Req Apply uchar num
uint64 t addr

DRAM Write Req Data ap uint<512> data

Network Net Packet

bool sop
bool eop
ap uint<5> len
ap uint<256> data

TABLE I: I/O interfaces in ST-Accel.

ST-Accel provides high-level abstractions to enable direct access
to I/O devices. Table I presents the I/O interfaces defined in ST-
Accel. These interfaces are wrapped into ST-Accel channels which
support pipelined access. The host is bypassed, and I/O devices are
directly accessed by FPGA through these interfaces. See Listing 2
for an example of using the PCIe read interface. The code defines
an actor that contiguously issues PCIe read requests with addresses
specified by channel addr chan and forwards the read result into
channel data chan. The PCIe read request is wrapped into struct
PCIe Read Req. The address field describes the PCIe address of
the target device. The num field indicates the size of the PCIe read
request: size = num × 512 bit. The on-board DRAM shares the
same interface with PCIe—thus the coding style to perform DRAM
access is exactly the same.

Note, the read request and read response interfaces are separated
in ST-Accel. This provides language-level support for constructing
decoupled access/execute architecture [25] to maximize the utilization
of I/O devices. See Algorithm 1 for an example of the hash table
lookup. Assume that the hash table data is put in DRAM, and it
is implemented in the chained fashion to solve collision. For each
request, the kernel iterates the chain until it finds the matched entry.
Due to the access latency of DRAM, the kernel will be blocked at
line 3 and line 5 until the read response comes back. This leads
to low I/O utilization and overall performance in OpenCL. In ST-
Accel, thanks to the decoupled read request and response streaming
interfaces, the decoupled access/execute architecture can be easily
constructed to hide I/O latency. As presented in Figure 4, two actors
called DRAM Reader and Matcher are defined; these act as the
access processor and execute processor, respectively [25]. The DRAM

Reader is responsible for issuing the DRAM read request according to
the hash table lookup request. After pushing the context information
of this request into the Context channel, the DRAM Reader can
immediately serve the next hash table lookup request and issue its
corresponding DRAM request without stalling. When DRAM read
response is ready, Matcher will read the context corresponding to this
response from the Context channel and then perform key comparing.
If the key is matched, the value will be sent to the Result channel.
Otherwise, the address of the next chain will be sent to the DRAM
reader via an Unmatched channel for reissuing the DRAM read
request. The depth of Context and Unmatched channels are set to
cover the DRAM read latency. The whole logic is fully pipelined
without stalling. Thus, theoretically, it can issue DRAM read requests
and serve DRAM read responses at every clock cycle; this maximizes
the DRAM utilization and kernel throughput.

Algorithm 1 The pseudocode of chained hash table lookup.
1: procedure HASHTABLE-LOOKUP
2: while key ← GETREQUEST() do
3: hashline ← DRAM[HASH(key)]
4: while GETKEY(hashline) 6= key do
5: hashline ← DRAM[GETNEXT(hashline)]
6: SENDRESPONSE(GETVALUE(hashline))

DRAM
Reader Matcher

Context

Unmatched
Reqs Results

DRAM
Read
Req

DRAM
Read
Resp

Fig. 4: Fully pipelined hash table lookup in ST-Accel.

D. Efficient Host/FPGA Communication Library with Flow Control

We identify the two types of data transferring between host and
FPGA:
1) Control data transferring. Host and FPGA will periodically send

commands or metadata to each other, which are used to control
the computation. The data are small but latency-critical.

2) Input/output data transferring. This type of data are used in
computations which are large but throughput-critical.

A single implementation of host/FPGA data transfer can not simul-
taneously meet both requirements. Thus, in ST-Accel, we provide
two different communication interfaces for different scenarios (see
Table II for the host-side APIs). The first two functions are used
for exchanging small control data. So, to provide low latency, we
implement them via host-side MMIO. In contrast, the input/output
data transferring is implemented via FPGA-side DMA for better
throughput. As we discussed at Section III-D, there are four issues to
be solved to provide a reliable communication library that achieves
near-physical performance:
1) Eliminate the overhead of buffer copy, a.k.a. zero-copy.
2) Pipeline the host-side processing and data transferring to overlap

the latency of input/output data transferring.
3) Kernel bypass to minimize and stabilize the latency of control

data transferring.
4) Implement flow control to avoid data loss.
The host-side DMA buffer must be physically contiguous since
there is no hardware-supported virtual memory in general FPGA
hardwares. Implement zero-copy is not trivial here. First, the volume
of the data to be transferred is at GB or even TB scale, much larger
than the maximum size of a single physically contiguous buffer
(which is 4 MB in Linux). Thus, it’s impossible to directly map

Host Program

Communication Library

Available Input
Stack

Available Output
Stack

Communication Library

Free Input Stack Free Output Stack

Available Input Stack

Available Output
Stack

Free Output Stack

ST-Accel
Kernel
Driver

Producer Consumer

Host

FPGA

I2.kernel
buffer ptr

I1.init_
buffer_pool

P1.
get_free_buf P2 ptr

.
commit_buf

C4.get_
data_buf C5.ptr C6.

release_buf

P5.
DMA
read

C3.
DMA
write

P4.pop entry C2.push entry

P6.push entry C1.pop entry

Free Input Stack

User Logic

Fig. 5: The implementation of the host/FPGA communication library to do
input/output data transferring.

void send control msg(uint32 msg) Send a control message to FPGA.

uint32 receive control msg(uint32 tag) Pull control message with specified tag
from FPGA.

bool init buf pools(int Inum, int Onum) Initialize data buffer pools with Inum
input buffers and Onum output buffers.

uint32 *get free buf() Request a free input buffer.

void commit buf() Transfer an input buffer to FPGA.

uint32 *get data buf() Request an output buffer transferred
from FPGA.

void *release buf() Release the most recently requested out-
put buffer.

TABLE II: The host side APIs for host/FPGA communication.

the user data into a single physically contiguous memory region.
Zero-copy buffer must be reused to transfer large amounts of data.
However, this raises the question of synchronization and performance:
a buffer can only be reused after being fully consumed — which
involves stalling. ST-Accel solves these challenges via a credit-based
flow control algorithm presented in Figure 5.

There are two steps I1 and I2 at the initialization stage. The
init buf pools() is called to request the kernel driver to allocate
the physically contiguous buffers for later DMA. The reason for
allocating multiple input and output buffers is to pipeline the host-side
computation and buffer data transmission (which will be discussed
shortly). At I2, the kernel driver maps the kernel buffer into user space
and returns their user space pointers and physical addresses which
will be buffered at the communication library. Both host and FPGA
have four stacks to maintain the status of the input and output buffers.
A porter thread will be periodically invoked to move the entries of
stacks via MMIO in the arrow directions shown in Figure 5 (dotted
line). At the initialization stage, the host-side free input stack and the
FPGA-side output stack are set to {0, 1, 2, ..., Numinput buf − 1}
and {0, 1, 2, ..., Numoutput buf − 1}, respectively. Other stacks are
set to empty. Note that init buf pools is the only library function that
involves the kernel call, and all the other functions are kernel-free.
Since init buf pools is an one-time effort during initialization stage,
all the following host/FPGA communications will bypass kernel to
minimize and stabilize the communication latency.

The host program has two concurrent threads: producer and
consumer. The producer thread is used for generating input data
to FPGA, while the consumer thread is used for consuming the
output data from FPGA. P1-P6 in Figure 5 present the flow for
the producer to send FPGA data. Producer first applies a free input

buffer via get free buf(). Later, the library routine pops an entry
from the host-side free input stack and returns it. After that, the
producer directly generates input data on this buffer. After filling up
the buffer, producer calls commit buf() to push the physical address
of this buffer into a host-side available input stack. Then the producer
can apply a new input buffer and generate new data. The host-side
porter thread will move the stack entries into an FPGA-side available
input stack in the background. When the FPGA user kernel wants to
read input data from host, the hardware communication library will
pop an entry from FPGA-side available input stack (P4) and issue a
DMA read according to the address stored in this entry (P5). After
receiving the data, the hardware communication library will push the
aforementioned entry into the FPGA-side free input stack. Finally,
this will be moved to the host-side free input stack by porter thread.
C1-C6 in Figure 5 demonstrate a symmetrical path for the consumer
to consume data from FPGA.

The input/output stacks decouple the data that is generating/-
consuming from the data transferring; this enables the capability
to overlap the transferring latency. Additionally, the flow control
between host and FPGA is also achieved by the design of stacks.
For example, when the data-generating rate of producer is faster than
the FPGA kernel processing rate, the popping rate of the host-side
free input stack will be faster than the pushing rate of the FPGA-
side free input stack. This will lead the host-side free input stack to
be empty and block the producer when calling get free buf(). The
opposite case, when the FPGA kernel processing rate is faster, works
symmetrically.

V. IMPLEMENTATION

A. The Work Flow of ST-Accel

Host Program

Communication Library

ST-Accel
Driver

Vendor
Driver

ST-Accel Kernel

ST-Accel Library Layer

Unified Interface Layer

Board Specific Layer

ST ST HLS Tools ST-Accel
Backend

HLS
Kernels

Verilog
Files

Host FPGA

PCIe

Fig. 6: The work flow of ST-Accel.

Our initial prototype for ST-Accel has about 3K lines of host-
side code, 1.5K lines of Verilog code and 1K lines of HLS code.
Figure 6 presents the work flow of ST-Accel. At the host-side,
the communication library layer provides the runtime support for
host/FPGA communication. The ST-Accel driver layer is responsible
for allocating physically contiguous kernel buffers and mapping them
into the user space for host programs. The vendor driver is in charge
of MMIO register mapping to the FPGA PCIe space. The FPGA side
architecture consists of four layers.
1) Board-Specific Layer. This layer should be provided by users who

wish to adapt ST-Accel to their specific FPGA board. This layer
initializes the IP core of FPGA I/O interfaces and exposes the I/O
signals in vendor standard interface (AXI-4 for Xilinx and Avalon
for Intel FPGA).

2) Unified Interface Layer. This layer provides a unified represen-
tation over the vendor standard interface. Thus the upper layer
implementations will be compatible across vendors.

3) ST-Accel Library Layer. The signals from the FPGA hard IP
core of the I/O interface should observe its specific timing

protocol. Directly connecting the raw signals with the ST-Accel
I/O interface will burden the high-level programmer. Thus, we
introduce this layer to handle the timing protocol. An example
of PCIe DMA signals is shown in Section V-B. In addition, the
FPGA-side communication library is implemented at this layer.

4) ST-Accel Kernel Layer. The user-written ST-Accel program first
goes through the ST-Accel front end. Each actor will be trans-
ferred into a HLS kernel, and the channel will be transferred into
the HLS stream for Xilinx platform, or Intel OpenCL channel for
Intel platform. Parsed by the HLS tool, the generated RTL files
will be processed and glued by the ST-Accel back end. Finally, the
output will be put into ST-Accel Kernel Layer to form a complete
FPGA project.

B. Handling Timing Protocol Requirements of IO Interfaces

The signals from the IP core must observe its specific requirements
of timing protocol. The ST-Accel Library Level is responsible for this
in order to liberate the upper-level user from this cumbersome task.
Due to the limited space, only the PCIe read/write interface will be
discussed in this section.

Commonly, an actor can have an II (initiation interval) larger than
1 and might be stalled during execution due to a blocking push
operation of channel. However, according to the specification of PCIe
IP core (e.g. [26]), the user logic must be able to continuously receive
incoming PCIe read completion (response) data or send outgoing
PCIe write request data every cycle without stalling. In order to deal
with this mismatch, the ST-Accel Library Layer provides two fully
pipelined helper actors for PCIe read and PCIe write, respectively.
PCIe write requests and corresponding write data are passed to the
PCIe write helper first. Rather than directly forwarding these to the
PCIe write channel connecting to PCIe IP core, the write helper
first buffers them into its local double-ended circular buffer. After
gathering the data belong to this write request completely, the helper
will then start issuing PCIe write requests with data stored at the
buffer. Since the helper actor of PCIe write is fully pipelined, it can
guarantee the sending of valid signals, corresponding to the current
write transaction, to PCIe IP core every cycle—thus observing the
requirements of timing protocols. When the data rate of user kernels
is larger than the date rate of the PCIe link, the circular buffer may
overflow. To prevent this, the helper actor will stop reading data from
the channel connecting to the user kernel when buffer is full. Since
the push method of the ST-Accel channel is designed to be blocked,
the user kernel will soon be blocked in this case, and we don’t
need to worry about data loss. Similarly, the helper actor of PCIe
read also holds a circular buffer to store the incoming PCIe read
response data. However, the logic for read is more complex since
there is no backpressure in the PCIe link, and we need to perform
flow control manually. In ST-Accel, the read helper will maintain a
state λ indicating the remaining space of the circular buffer. Each
time the reader helper receives the PCIe read request from the user
kernel, it will first compare the read request size N with λ. When
N > λ, a circular buffer overflow may occur in the worst case. Thus,
the helper will block this request until λ ≥ N , ensuring the reliable
delivery.

C. Host/FPGA Communication Library

At host side, we set the kernel buffer size as 4 MB, the maximum
size supported by Linux kernel call get free pages(). In this way,
the host-side communication routine will be called per 4 MB data,
reducing the overhead of library call. However, for the FPGA-side
implementation, simply setting the PCIe read/write granularity to 4
MB is not adequate. As we discussed previously in Section V-B,
the library layer must buffer the PCIe read/write data in order to

handle the requirements of timing protocol. This will lead to 8 MB
BRAM usage in total, which is an extremely large consumption for
FPGA. We measure the PCIe bandwidth in different request payloads
of our testbed, shown in Figure 7. As we see, the PCIe read and
write bandwidth stop increasing when payload is larger than 1024
bytes. Thus, in ST-Accel, the PCIe R/W request is split in 1024-byte
granularity by the splitter actor in the library. In this case, a 1024-
byte buffer is enough for PCIe write. However, it is more complex
for PCIe read case. There is about 1 µs latency between issuing the
PCIe read request and finally getting the response. Thus, in order to
fully utilize the read bandwidth, we need to issue the next PCIe read
request before we finish receiving the response data of the current
request. Let T denote the granularity of the PCIe read requests; lat
denote the PCIe round-trip latency; BWread denote the PCIe read
bandwidth. Then the splitter must issue the next read request after
receiving T − lat ·BWread bytes of data for the current request. Let
S denote the buffer size to store the read response data; C denotes
the response data of the current requests that have been consumed by
the user kernel. Then the prerequisite to issuing the next read request
is S−T +C ≥ T which is equivalent to S ≥ 2T −C. Therefore, for
the PCIe read, the buffer size is set to 2T . All of the above design
relies on the the performance of PCIe bandwidth and latency, which
are board-specific. In ST-Accel, we provide configuration files for
users to adapt their specific boards.

Fig. 7: The PCIe bandwidth in different request payloads.

VI. EVALUATION

In this section we first evaluate the performance of the ST-
Accel host/FPGA communication library and then select three typical
streaming applications to compare the end-to-end performance be-
tween ST-Accel and OpenCL. The experiment in Section VI-B3 uses
Altera Stratix V as the FPGA testbed and Altera OpenCL 16.1 as
the OpenCL implementation. Other experiments are evaluated on the
Amazon AWS cloud [4], which is equipped with the Xilinx Virtex
UltraScale+ xcvu9p FPGA board and SDAccel v2017.1.

A. Host/FPGA Communication Library

The host/FPGA communication bandwidth of SDAccel is acquired
by the microbenchmark from [24]. Note that we measure the end-to-
end bandwidth, which takes the buffer allocation and memory copy
overhead of OpenCL into account. The communication latency is the
round-trip latency. The performance result and resource utilization
are presented in Figure 8 and Table III, respectively. ST-Accel
achieves about 1/50 RTT latency and near 4.6x bandwidth compared
with SDAccel. The physical values in figures are measured by a
Verilog testbench which directly connects signals from PCIe IP core,
reflecting the physical capability of our testbed. As we see, ST-Accel
makes full use of the physical capability.

LUT FF BRAM DSP
Used 4332 6573 10 0
Total 1182000 2364000 2160 6840
Utilization 0.37% 0.28% 0.46% 0%

TABLE III: Resource utilization of host/FPGA communication library.

(a) RTT Latency. (b) Bandwidth.

Fig. 8: Performance comparison of host/FPGA communication.

Time (s) Bandwidth (images/s) Speedup
OpenCL 1.562 128 1
OpenCL pipelined 0.68 294 2.3
ST-Accel 0.146 1370 10.7

TABLE IV: Performance comparison of the image processing.

B. Applications

For fair comparison, we use the same core computational-logic
implementation for ST-Accel and OpenCL. Thus, the lines of code
(LOC) and FPGA resource utilizations of ST-Accel and OpenCL
implementations are similar; this is omitted due to space constraints.

1) Image Processing: A wide range of image processing prob-
lems can be abstracted as the two-dimensional stencil computing,
e.g. Gaussian blur, image noise reduction, etc. The results B of
applying a r × r filter stencil F on n×m images G is defined as:

B[x, y] =
x+r∑

i=x−r

y+r∑
j=y−r

F [i, j]G[i, j]. In this section we perform a

3×3 stencil on 1080P (1920×1080) images. Each element in stencil
and image array is a 4B quadruple (red, green, blue, alpha). F is
stored in BRAM while G is stored in FPGA DRAM. Here, two-
hundred 1080P images are processed and the end-to-end execution
time is measured (see Table IV for results). The end-to-end execution
time of OpenCL can be further broken down into three parts (see
Table V). Thanks to the multiprocessing programming model, the
communication library of ST-Accel will automatically overlap execu-
tion of the above three parts. In OpenCL we need extra coding effort
to support overlapping. The inefficiency of OpenCL comes from other
issues: 1). Inefficient host-FPGA transferring leads to long data copy
time. 2). The memory model of OpenCL forces the host data to
be stored in FPGA DRAM first, and then accessed by the kernel.
Compared with ST-Accel, which directly receives data from PCIe,
extra DRAM accesses add overhead. As the result, the computation
time alone in the OpenCL flow is higher than the entire runtime of
the ST-Accel flow.

2) Hash Table Lookup: Algorithm 1 is implemented here. We
assume the data of hash table and lookup keys has been stored in the
FPGA DRAM and BRAM, respectively. We synthesize three different
test cases with 1, 2, 3 average DRAM access times per lookup request
(marked as λ). The hash table entry is 64-bytes large, thus each hash
table entry access will incur a 64-byte DRAM access. Our FPGA
DRAM controller is measured to support up to 78 MOPS 64-byte
DRAM access. Thus, for a benchmark with λ = t, the throughput
will never exceed 78/t MOPS due to the DRAM constraint. The
results of OpenCL and ST-Accel are presented in Figure 9. The upper
bound of the throughputs calculated here are marked as physical in
the figure. Since the ST-Accel implementation is fully pipelined (see
Section IV-C), it can sustain the DRAM bandwidth as long as clock
frequency is higher than 78 MHz (actually reaching 250 MHz in our
design). However, the OpenCL implementation, can only issue one
DRAM read request at a time and must wait for the read response

Host to FPGA Data Copy Time (s) 0.68
Kernel Computation Time (s) 0.232
FPGA to Host Data Copy Time (s) 0.65

TABLE V: Breakdown of the SDAccel end-to-end execution time.

before issuing the next read request due to the synchronous access
interface. The DRAM RTT latency of our testbed is measured to be
50 cycles in 250 MHz clock frequency. Thus, the performance of
OpenCL when λ = 1 should be 77890/50 =1527 KOPS. However,
since DRAM latency is unknown during compiling, and the HLS
tool is feeble when dealing with pipelines of unknown latency, the
generated pipeline structure is inefficient and cannot hide the latency
of hash table access and key comparing. This further downgrades the
throughput from 1527 KOPS to 460 KOPS.

Fig. 9: Performance comparison of the hash table lookup.
3) Network Packets Encryption: The CPU tends to be the bottle-

neck when network packets require intensive computing [12]. Thus,
in-network packet processing can be a good candidate for FPGA
offloading [12], [27], [28]. In this section we choose the network
packets encryption, which is used in secure networks (e.g., IPSec
VPN) as the application used to compare OpenCL and ST-Accel.
AES-256-CTR is selected as the encryption algorithm, and the 40
Gbps network is deployed for this test. For both OpenCL and ST-
Accel, we use the same computing kernel implementation with two
dedicated AES streams which can fully sustain the 40 Gbps line rate.
The final end-to-end results are shown in Table VI. As discussed
in Section III, FPGA is treated as a slave in OpenCL and the
host acts as a proxy for FPGA/IO device communication. Thus, for
the OpenCL case, the network packets should be first fetched by
host and then forwarded to FPGA via PCIe. The overall throughput
is bound by PCIe bandwidth, which explains the final 25.6 Gbps
result. The involvement of host also adds latency. Theoretically,
LatOpenCL = LatNet+LatFPGA+LatTCP/IP Stack+LatPCIe.
For the ST-Accel case, FPGA directly accesses data from the network
(via on-board QSFP port) and performs AES encryption. Thus,
LatST−Accel = LatNet + LatFPGA. In our testbed, the latency
of the host TCP/IP stack and PCIe is measured as about 20 µs
and 15 µs respectively, which explains the difference of end-to-end
latency in Table VI. Another drawback brought by the master/slave
programming model of OpenCL is the cost of three CPU cores to do
packet forwarding. This can be avoided in ST-Accel.

Throughput (Gbps) Latency (us) # CPU Core
OpenCL 25.6 60.3 3
ST-Accel 40.0 23.6 0

TABLE VI: Performance comparison of the network packets encryption.

VII. CONCLUSION

OpenCL for FPGA experienced success in improving the program-
ming efficiency for compute-intensive tasks. However, as researchers
expand the FPGA acceleration efforts into streaming-like applica-
tions, in many cases the current OpenCL support is inadequate and
very inefficient. In this paper we studied the root causes of OpenCL
limitations/inefficiency for the streaming workloads, arriving at ST-
Accel, which addresses the limitations of OpenCL without compro-
mising the programming simplicity. Using ST-Accel, we achieve one
to two orders of magnitude performance improvement for several
streaming applications. We believe that our work will enable more
deployment of FPGAs for accelerating many more applications.

VIII. ACKNOWLEDGEMENT

This work is partially supported by Huawei and Samsung under
the Center for Domain-Specific Computing (CDSC) Industrial Part-
nership Program. Authors would like to thank Amazon for AWS
credits donation, Xilinx for FPGA and software donation and Janice
Wheeler for paper editing.

REFERENCES

[1] J. Parkhurst et al., “From Single Core to Multi-Core: Preparing for a
new exponential,” in ICCAD, 2006.

[2] H. Esmaeilzadeh et al., “Dark Silicon and the End of Multicore Scaling,”
in ISCA, 2011.

[3] A. M. Caulfield et al., “A Cloud-Scale Acceleration Architecture,” in
MICRO, 2016.

[4] “Amazon EC2 F1 Instances.” https://aws.amazon.com/ec2/
instance-types/f1/.

[5] J. E. Stone et al., “OpenCL: A Parallel Programming Standard for Het-
erogeneous Computing Systems,” Computing in science & engineering,
2010.

[6] C. Zhang et al., “Caffeine: Towards Uniformed Representation and
Acceleration for Deep Convolutional Neural Networks,” in ICCAD,
2016.

[7] E. Pezzotti et al., “FPGA-based Hardware Accelerator for Image Re-
construction in Magnetic Resonance Imaging,” in FPGA, 2017.

[8] S.-H. Hung et al., “A Platform-Oblivious Approach for Heterogeneous
Computing: A Case Study with Monte Carlo-based Simulation for
Medical Applications,” in FPGA, 2016.

[9] D. Weller et al., “Energy Efficient Scientific Computing on FPGAs Using
OpenCL,” in FPGA, 2017.

[10] W. Vanderbauwhede et al., “A Hybrid CPU-FPGA System for High
Throughput (10Gb/s) Streaming Document Classification,” SIGARCH
Comput. Archit. News, 2014.

[11] K. Guo et al., “From Model to FPGA: Software-Hardware Co-Design
for Efficient Neural Network Acceleration,” HotChips, 2016.

[12] B. Li et al., “ClickNP: Highly Flexible and High-performance Network
Processing with Reconfigurable Hardware,” in SIGCOMM, 2016.

[13] R. Mueller et al., “Data Processing on FPGAs,” Proc. VLDB Endow.,
2009.

[14] J. Lee et al., “ExtraV: Boosting Graph Processing Near Storage with
a Coherent Accelerator,” Proc. VLDB Endow., vol. 10, pp. 1706–1717,
Aug. 2017.

[15] B. Li et al., “KV-Direct: High-Performance In-Memory Key-Value Store
with Programmable NIC,” in SOSP, 2017.

[16] A. Hagiescu et al., “A Computing Origami: Folding Streams in FPGAs,”
in DAC, 2009.

[17] J. Cong et al., “Combining Module Selection and Replication for
Throughput-Driven Streaming Programs,” in DATE, 2012.

[18] J. Cong et al., “Combining Computation and Communication Optimiza-
tions in System Synthesis for Streaming Applications,” in FPGA, 2014.

[19] X. Wei et al., “Throughput Optimization for Streaming Applications on
CPU-FPGA Heterogeneous Systems,” in ASP-DAC, 2017.

[20] K. Kang et al., “Host pipes: Direct streaming interface between opencl
host and kernel,” In IWOCL, 2017.

[21] O. Arcas-Abella et al., “Hardware Acceleration for Query Processing:
Leveraging FPGAs, CPUs, and Memory,” Computing in Science Engi-
neering, 2016.

[22] L. Wang, “How to Implement a 64B PCIe* Burst Transfer on In-
tel Architecture.” https://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/pcie-burst-transfer-paper.pdf, 2013.

[23] J. Lawley, “Understanding Performance of PCI Express Systems
WP350 (v1.2).” https://www.xilinx.com/support/documentation/white
papers/wp350.pdf, 2014.

[24] Y. k. Choi et al., “A Quantitative Analysis on Microarchitectures of
Modern CPU-FPGA Platforms,” in DAC, 2016.

[25] J. E. Smith, “Decoupled Access/Execute Computer Architectures,” in
ISCA, 1982.

[26] “Intel Arria 10 and Intel Cyclone 10 Avalon-ST Interface for PCIe User
Guide.” https://www.altera.com/content/dam/altera-www/global/en US/
pdfs/literature/ug/ug a10 pcie avst.pdf.

[27] N. Zilberman et al., “NetFPGA SUME: Toward 100 Gbps as Research
Commodity,” IEEE Micro, 2014.

[28] M. Lavasani et al., “Compiling High Throughput Network Processors,”
in FPGA, 2012.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/pcie-burst-transfer-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/pcie-burst-transfer-paper.pdf
https://www.xilinx.com/support/documentation/white_papers/wp350.pdf
https://www.xilinx.com/support/documentation/white_papers/wp350.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_a10_pcie_avst.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_a10_pcie_avst.pdf

