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ABSTRACT
Stencil computation is one of themost important kernels in many

application domains such as image processing, solving partial difer-
ential equations, and cellular automata. Many of the stencil kernels
are complex, usually consist of multiple stages or iterations, and
are often computation-bounded. Such kernels are often oloaded
to FPGAs to take advantages of the eiciency of dedicated hard-
ware. However, implementing such complex kernels eiciently is
not trivial, due to complicated data dependencies, diiculties of
programming FPGAs with RTL, as well as large design space.

In this paper we present SODA, an automated framework for
implementing Stencil algorithms with Optimized Datalow Archi-
tecture on FPGAs. The SODA microarchitecture minimizes the
on-chip reuse bufer size required by full data reuse and provides
lexible and scalable ine-grained parallelism. The SODA automa-
tion framework takes high-level user input and generates eicient,
high-frequency datalow implementation. This signiicantly reduces
the diiculty of programming FPGAs eiciently for stencil algo-
rithms. The SODA design-space exploration framework models the
resource constraints and searches for the performance-optimized
coniguration with accurate models for post-synthesis resource uti-
lization and on-board execution throughput. Experimental results
from on-board execution using a wide range of benchmarks show
up to 3.28x speed up over 24-thread CPU and our fully automated
framework achieves better performance compared with manually
designed state-of-the-art FPGA accelerators.

1 INTRODUCTION
Stencil computation [8] is an important kernel extensively used

in many areas such as image processing [1], solving partial diferen-
tial equations [22], and cellular automata [31]. In these application
domains, computation time is often dominated by the stencil ker-
nel, which makes it desirable for acceleration and optimization. For
general-purpose processors like CPUs and GPUs, eforts have been
made to improve locality [15, 27], increase parallelism [13, 14, 16],
and reduce communication [30].

In another dimension, researchers and the industry have been
using FPGA accelerators to achieve better energy eiciency on
stencil computation kernels [3, 7, 9, 17, 21, 23, 24, 28, 34]. For
some stencil kernels, the operational intensity [29], which is de-
ined as the number of operations per input data, is relatively
small. Thus, many existing studies focus on data reuse [3, 18, 26],
which efectively reduces the external memory access by using line
bufers for repeated accesses. For iterative stencil kernels, which
are usually computation-intensive, researchers have been imple-
menting multiple iterations to increase the parallelism [17, 34].
Other optimizationsÐfor example, loop pipelining, processing el-
ement (PE) replication, and double buferingÐare also common
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techniques to improve accelerator throughput. Furthermore, there
are studies trying to distribute the workload to multiple FPGA
accelerators [17, 23].

However, there are still two major challenges that have not been
addressed thoroughly in state of the art. The irst challenge is that
existing accelerator designs are suboptimal when multiple PEs are
used for a single stage. Existing stencil accelerators [28, 34] replicate
the on-chip bufers alongwith the PEs to enable concurrent accesses.
With a bufer size proportional to the number of PEs, both the
maximum achievable number of processing elements (PEs) and the
maximum achievable input tile size are suboptimal. Suboptimal
number of PEs will under-utilize the computation resources and
therefore results in suboptimal performance. Suboptimal input size
causes performance loss due to the fact that the borders (halos)
of stencil kernels need to be retransmitted. The latter problem is
especially severe for 3D or even higher dimensional kernels, since
their halos take larger portion of the input size [34]. When temporal
parallelism (multiple iterations) are implemented at the same time,
this becomes even worse since the halo size increases linearly as
the number of iteration increases [34].

The other challenge that hasn’t been thoroughly addressed is
the lack of complete automation and systematic design-space ex-
ploration. Due to the diiculty of programming FPGAs, vast design
space, and high time-consumption of logic synthesis, having a fully
automated design low and analytical model-based design-space
exploration is crucial. Many existing work are either manually de-
signed or template-based, which lacks the lexibility of designing
various stencil kernels agilely [28, 34]. Although domain-speciic
languages (DSLs) has been developed to facilitate stencil accelerator
design on FPGAs [11, 19, 21], there still lacks a systematic approach
to model the resource and performance, explore the design space,
and optimize for performance.

In this paper we present SODA, i.e., Stencil with Optimized
Datalow Architecture, to address both challenges. To address the
irst challenge, we present an optimal microarchitecture for stencil
kernels in Section 3.2, which minimizes the number of external
data transfer as well as the reuse bufer size required by a certain
number of PEs. We then mathematically prove its optimality in
Section 3.3. To implement the SODA microarchitecture eiciently,
we apply datalow optimization to obtain high-frequency, modu-
larized FPGA accelerators, which is discussed in Section 3.4. To
address the second challenge, we present a programming model
and the corresponding automation framework in Section 4.1, which
fully automate and simplify accelerator design for SODA. To en-
able fast and systematic design-space exploration, we develop a
resource model that predicts the post-synthesis resource utilization
in Section 4.3 and a performance model that predicts the on-board
execution performance in Section 4.4. With these models, we are
able to obtain the performance-optimized coniguration under the
platform resource constraint in just a few minutes.

In summary, our major contributions include:
• Optimalmicroarchitecture:Given a single stage of stencil ker-
nel and the size of the input, the SODAmicroarchitecture requires
the least number of external data transfer. This maximizes the ex-
ternal memory utilization. On the basis of this, given the number
of PEs, SODA also achieves the smallest reuse bufer size. This
minimizes on-chip resource consumption under performance
requirement constraint.

https://doi.org/10.1145/3240765.3240850
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• Design automation: We develop the fully automated SODA
framework, which automatically generates the SODA microar-
chitecture for FPGAs from a high-level DSL. The SODA DSL
concisely describes the algorithm as well as the design parame-
ters. The SODA automation framework takes the DSL as input,
processes the dependency graph, implements the speciied kernel
with datalow optimizations, and generates Xilinx OpenCL code
for both host and kernel. The user can directly invoke the kernel
as a C++ function to use SODA in their own programs.

• Model-driven exploration: The modularized datalow imple-
mentation enables accurate resource and performance model-
ing. We propose accurate models for both resource and perfor-
mance to enable fast and eicient design-space exploration. To
make the models practical, we target post-synthesis resource
utilization and on-board execution performance. With these mod-
els, the SODA DSE framework can automatically search for the
performance-optimized coniguration.

2 BACKGROUND AND RELATED WORK

2.1 Stencil Computation
Stencil computations can be intuitively deined as kernels which

update data elements over a multidimensional array according to
some ixed, local pattern. In practice, the array is often too large to
be stored on-chip. Listing 1 shows a 5-point, 2-dimensional Jacobi
kernel on an M × N input as an example. Figure 1 shows one
possible iteration pattern and the input data elements it accesses
when producing the output for (i, j).

void blur(float input[N][M], float output[N][M])
{

for(int j = 1; j < N-1; ++j)
for(int i = 1; i < M-1; ++i)

output[j][i] = ( input[j-1][i]+
input[j][i-1]+ input[j ][i]+
input[j][i+1]+ input[j+1][i])*0.2f;

}

Listing 1: A 5-point 2-dimensional Jacobi kernel.

(i,j-1)

(i-1,j) (i,j) (i+1,j)

(i,j+1)

i M

N

0

j

Figure 1: Stencil access pattern of the example in Listing 1.

The operational intensity, which is deined as the number of op-
erations per input data, of the example in Listing 1 is relatively
low, which makes such application communication-bounded. In
practice, stencil kernels are often complex. Some stencil computa-
tions consist of multiple stages, where each stage is a simple stencil
kernel. Some stencil computations are executed repeatedly over
time, where each iteration in time can be treated as a stage con-
nected directly with the previous stage. If the number of stages or
iterations is suiciently large, the operational intensity will be sui-
ciently high and the application will become computation-bounded
(resource-bounded on FPGAs).

2.2 Deinitions and Problem Formulation
Stencil Kernel [4]: An n-point,m-dimensional stencil kernel

A deines a spatial window {®a(s) |s ∈ {0, 1, 2, . . . ,n − 1}} and a

function which produces output at spatial coordinate ®y where

®y = (y0,y1,y2, . . . ,ym−1)

by consuming inputs at spatial coordinates

{®x (s) |s ∈ {0, 1, 2, . . . ,n − 1}} = {®y + ®a(s) |s ∈ {0, 1, 2, . . . ,n − 1}}

®a(s) denotes the ofset between the s-th input and the output. For
convenience sake, we use the spatial coordinate to represent the
data element at that position in this paper.

{®a(s) |s ∈ {0, 1, 2, . . . ,n−1}} is deined as the stencil window. The
stencil window size in dimension d , Sd , is deined as

Sd = max
s

(

a
(s)
d

)

−min
s

(

a
(s)
d

)

+ 1

In our 5-point 2-dimensional example in Listing 1,

{®a(s)} = {(0,−1), (−1, 0), (0, 0), (1, 0), (0, 1)}, S0 = S1 = 3

Data Linearization: Computer memory systems use a linear
address space. Anm-dimensional data must be linearized before it
is stored in a memory system. Without loss of generality, a vector
coordinate ®x can be linearized to be a scalar ofset x :

x = x0 + x1T0 + x2T0T1 + · · · + xm−1

m−2
∏

d=0

Td (1)

where ®T = (T0,T1,T2, . . . ,Tm−1) is them-dimensional size of the

input data. Similarly, each coordinate vector ®a(s) of A can also be
linearized as

a(s) = a
(s)
0 + a

(s)
1 T0 + a

(s)
2 T0T1 + · · · + a

(s)
m−1

m−2
∏

d=0

Td

Under the above linearization convention, we will use scalars x and

a(s) instead of vectors ®x and ®a(s) in the following parts of this paper.
Reuse distance Dr can then be deined as

Dr = max
s

(

a(s)
)

−min
s

(

a(s)
)

+ 1

which represents the linearized distance between the irst and the

last access of each input data element. In our example, {a(s)} =
{−M,−1, 0, 1,M}, Dr = 2M + 1.

Stencil Computation:Given an n-point,m-dimensional stencil
kernel A and input set {x}, ind all outputs {y} by applying A on
all inputs {x}. Note that due to the border efect, the number of
valid output data elements in dimension d is always Sd − 1 smaller
than the input, where Sd is the stencil window size in dimension d .
This disappeared region is often referred to as the halo.

Complex Stencil Kernel: Two or more stencil kernels can be
connected to compose a complex stencil kernel, where the output
of the former is used as the input of the latter. Each stencil kernel
component of the complex stencil kernel is deined as a stage of
the whole kernel. Stages are sometimes regarded as the temporal
dimension, in analogy to the spatial dimensions of data elements.
In particular, stencil kernels can be computed repeatedly where
the output of an iteration is used as the input of the next iteration.
Such kernels are deined as iterative. For the sake of simplicity, the
term stage is also used to refer to an iteration of an iterative stencil
kernel in this paper. Note that the halo size in each dimension is
the sum of halo sizes among all the stages in that dimension.

Optimization Objective: Given a stencil computation task and
the resource constraints on a hardware platform, design an acceler-
ator that achieves the maximum sustained throughput.

2.3 FPGA Accelerators for Stencil Computation
Non-uniform memory partitioning-based line bufers are widely

used to enable data reuse and reduce the external memory accesses.
Cong et al. [4] proved that it requires the least bufer size for a sin-
gle PE. Wang and Liang [28] propose to adopt the OpenCL model
for iterative stencil algorithms. While the coarse-grained, tile-level
parallelism increases the on-chip bufer usage and therefore limits
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Figure 2: Reuse bufer in SODA microarchitecture: 5-point 2-dimensional Jacobi example in Listing 1 with 3 PEs.

the tile size, OpenCL pipes are used in [28] to alleviate the per-
formance degradation brought by overlapping tile borders. Natale
et al. [17] propose to implement multiple temporal iterations as
multiple stages and connect them to form a datalow architecture.
This approach scales well as the number of iterations increases, but
does not provide parallelism within a single iteration. Zohouri et
al. [34] propose to use multiple processing elements (PEs) for each
iteration in addition to implementing multiple temporal iterations
as multiple stages. However, the reuse bufers are replicated along
with the PEs in each stage to provide concurrent accesses in [34].
We shall show later on in Section 3.3 that it is in fact suboptimal.

While the line bufer-based approach is widely used, there are
other approaches proposed by researchers. Hegde and Kapre [12]
present a soft vector processor for accelerating stencil kernels for
OpenCV on FPGAs. Escobedo and Lin [9] use a graph theory-based
approach to achieve minimum number of memory banks for a
wide range of stencil kernels. However, this approach does not
generalize to all stencil kernels. Stitt et al. [25] present a scalable
window generator for high bandwidth FPGA systems, which can
be used for stencil applications. However, implementing kernels
with diferent window shapes is still non-trivial due to the manual
RTL design approach of [25].

In the image processing domain, stencil kernels are ubiquitous.
There are several frameworks that can generate eicient FPGA
accelerators from high-level image processing DSLs, including
Darkroom [11], Halide-HLS [19], and Hipacc [21]. While these
DSLs signiicantly reduce the burden of writing high-quality FPGA
codes, analytical model-based eicient design-space exploration
and systematic performance optimization for stencil computations,
especially for iterative stencil computations, are not present.

In this work, we present the SODA microarchitecture to fully
reuse input data while providing scalable ine-grained parallelism
for each stage. We can also prove that the SODA microarchitec-
ture requires the smallest reuse bufer size. In addition, to simplify
accelerator design, we present a fully automated framework to gen-
erate and optimize the SODA microarchitecture. Finally, to perform
systematic design-space exploration, we present models for post-
synthesis resource utilization and on-board execution throughput.
The SODA DSE framework can automatically ind the performance-
optimized coniguration for a given stencil kernel under the plat-
form resource constraints.

3 SODA MICROARCHITECTURE
In this section, the design objectives of the SODA microarchitec-

ture are described irst in Section 3.1. The algorithm used to gen-
erate the SODA microarchitecture is then presented in Section 3.2.
Section 3.3 proves the optimality of the SODA microarchitecture.
Section 3.4 shows the modularized datalow implementation of the
SODA microarchitecture.

3.1 Design Objectives
At the microarchitecture level, we aim to optimize the memory

resource consumption of one stage as a building block. The input

size and throughput constraint is assumed to be given. Choices of
tile size and number of PEs will be discussed in Section 4.2. For the
proposed microarchitecture, we have four design objectives.

1. Full pipelining. Pipelining can increase the throughput with
very little resource overhead. Every PE should be fully pipelined
and able to consume the input data in one cycle and be ready for
the input for the next cycle.

2. Scalable, ine-grained parallelism.Comparedwith coarse-grained
parallelism, ine-grained parallelism enables resource sharing and
reusing, which make it more eicient and scalable.

3. Minimum external memory access. Compared with on-chip
memory, external memory access usually has less bandwidth and
longer latency. The proposed design fully reuses the input data so
that every input data element only needs to be transferred once for
a given tile. The streamlined access also enables datalow optimiza-
tion between stages.

4. Minimum reuse bufer size. We can prove that the proposed
microarchitecture achieves the minimum reuse bufer size with
given input size and throughput requirement. Compared with other
suboptimal architectures, this enables SODA to use more resources
to achieve better performance under a given resource constraint.

3.2 Methodology
As mentioned in Section 3.1, the SODA microarchitecture is

designed to allow full pipelining, provide scalable parallelism, en-
able full data reuse, and minimize the required bufer size. This
section will discuss the design of the reuse bufer, which plays a
crucial role in achieving these objectives. Figure 2 shows an exam-
ple of the reuse bufer architecture. In the SODA microarchitecture,
there are k consecutive output elements generated in each clock
cycle, where k is the number of PEs. Suppose the k outputs are
{y,y + 1,y + 2, ...,y + k − 1}. To compute the k outputs, all the
needed input data elements are

y+k−1
⋃

l=y

{

l + a(s) |s ∈ {0, 1, 2, . . . ,n − 1}
}

Let дk be the number of input data elements needed when pro-
ducing k outputs. All the needed input data elements can then be
represented as {

y + au,k |u ∈ 0, 1, 2, . . . ,дk − 1
}

where au,k denotes the ofset of theu-th input data element needed
in each clock cycle when producing k outputs.

To generate eicient line bufers, elements in
{

au,k
}

are divided
into k sets according to their remainder modulo k . Each set will be
synthesized as a reuse chain. The reuse bufer is the collection of all
reuse chains. In each cycle, there will be k new inputs fed into the
reuse bufer, and each reuse chain will take one input.

Elements in each remainder set cut each reuse chain into several
integer intervals. Each interval corresponds to an FF or a FIFO.
Since numbers in each set have the same remainder modulo k , the
minimum interval length will be k . If the interval length is k , there
will be no data elements in-between and the FIFO is actually a
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register. If the interval length is larger than k , there will be bufered
data in-between, and a FIFO is used. FFs / FIFOs in each set are then
connected sequentially to form a complete reuse chain.

The reuse bufer sizeÐi.e., the total number of data elements
stored in the reuse buferÐcan be calculated as

max
u

(

au,k
)

−min
u

(

au,k
)

+ 1 =

max
s

(

a(s) + k − 1
)

−min
s

(

a(s)
)

+ 1 = Dr + k − 1

Figure 2 shows the proposed microarchitecture with the example
of 5-point 2-dimensional stencil. In our k = 3 example,
{

au,3
}

= {−M,−1, 0, 1,M}
⋃

{−M + 1, 0, 1, 2,M + 1}
⋃

{−M + 2, 1, 2, 3,M + 2}

= {−M,−M + 1,−M + 2,−1, 0, 1, 2, 3,M,M + 1,M + 2}

where д3 = 11. In the example of Listing 1 whereM = 9, there will
be k = 3 remainder sets / reuse chains:

{−M, 0, 3,M}, {−M + 1, 1,M + 1}, {−M + 2,−1, 2,M + 2}

Chain 0 {−M, 0, 3,M} uses two FIFOs for [−M, 0] and [3,M] and
an FF for [0, 3]. The length of the two FIFOs are [0−(−M)]/3 = M/3
and (M − 3)/3 = M/3 − 1, respectively.

Chain 1 {−M + 1, 1,M + 1} uses two FIFOs for [−M + 1, 1] and
[1,M + 1]. The length of the two FIFOs are [1 − (−M + 1)]/3 =
(M + 1 − 1)/3 = M/3.

Chain 2 {−M + 2,−1, 2,M + 2} uses two FIFOs for [−M + 2,−1]
and [2,M + 2] and an FF for [−1, 2]. The length of the two FIFOs are
[−1−(−M +2)]/3 = M/3−1 and (M +2−2)/3 = M/3, respectively.

The reuse bufer size in this case isM + 2 − (−M) + 1 = 2M + 3.

3.3 Optimality
3.3.1 Assumptions. The optimality of the proposed microarchitec-
ture is proven based on the assumptions that the stencil kernel itself,

A, and the size of the input, ®T , are given. The input can be tiled,
and the design choice of tile size will be discussed in Section 4.2. In
this section we will discuss the optimality within an input tile. For
the proof of optimal reuse bufer size in Section 3.3.3, we further
assume that the number of PEs, k , is given.

3.3.2 Optimal Memory Utilization. The minimum requirement on
input data is to feed all input data elements at least once; our mi-
croarchitecture achieves this by storing the input data on-chip until
the last time it is accessed. Therefore, the proposed microarchitec-
ture achieves the optimal memory utilization.

3.3.3 Optimal Reuse Bufer Size. Cong et al. [4] gives a mathemat-
ical proof under the polyhedral model that when there is only one
PE, the line bufer design has the minimum reuse bufer size equal
to the maximum reuse distance, Dr . Based on that, we have the
following deinitions and theorems:

Lexicographic Order [10]: The lexicographic order relation ≺

of twom-dimensional coordinate vectors ®i and ®j is deined as
®i ≺ ®j ⇔ (im−1 < jm−1) ∨ (im−1 = jm−1 ∧ im−2 < jm−2)

∨ (im−1 = jm−1 ∧ im−2 = jm−2 ∧ im−3 < jm−3) ∨ . . .

∨ (im−1 = jm−1 ∧ im−2 = jm−2 ∧ · · · ∧ i1 = j1 ∧ i0 < j0)

Let Ai represent an n-point stencil window accessing inputs on

{®i + ®a(0), ®i + ®a(1), ®i + ®a(2), . . . , ®i + ®a(n−1)} and producing output on ®i .
The lexicographic order relation ≺ of two stencil windows Ai and
Aj is deined as

Ai ≺ Aj ⇔ ®i ≺ ®j

Under the linearization convention in Section 2.2, the lexicographic

order of ®i and ®j is the same as the scalar ascending order of linearized
i and j. For convenience sake, Ai is also used to denote the input

elements of the stencil window Ai and the ofset vector ®i is also
denoted as i in the following parts.

Theorem 3.1. The minimum reuse bufer size can only be achieved
with PEs producing outputs in consecutive lexicographic order, if the
ofset i follows the lexicographic order.

Proof. Suppose an implementation achieving the minimum
bufer size is not implemented with PEs producing outputs in con-
secutive lexicographic order, which means with the k PEs that
produce output elements {i + p1, i + p2, ..., i + pk } and access in-
put elements Ai+p1 ≺ Ai+p2 ≺ · · · ≺ Ai+pk at ofset i , ∃ p′ <

{p1,p2, ...,pk } s .t . Ai+p1 ≺ Ai+p2 ≺ · · · ≺ Ai+p′ ≺ · · · ≺ Ai+pk .
According to Property 1 in [4], data elements are accessed in lexico-
graphic order as long as the ofset vector i follows the lexicographic
order. Therefore, if we allocate the k PEs for p1, p2,. . . , p

′,. . . , pk−1,
the bufer size can be reduced by at least one since PE pk accesses
at least one data element lexicographically greater than any of the
other PEs. Once PE pk is replaced by p′, the data element accessed
only by pk can be removed from the reuse bufer, which is a contra-
diction to the assumption of the minimum bufer size for the given
implementation. Therefore, we know that Theorem 3.1 is true. □

Theorem 3.2. The minimum reuse bufer size with k + 1 PEs is at
least the minimum reuse bufer size with k PEs plus 1.

Proof. Given the an optimal bufer size design with k PEs, if
another PE is to be added but no additional input data element is
necessary, the additional PE must be lexicographically between
the existing PEs. According to Theorem 3.1, we know that the
given design must not be an optimal bufer size design since its
PE inputs are not in consecutive lexicographic order. Therefore, by
contradiction, there must be at least one additional data element
added to the bufer. □

Based on Theorem 3.1, Theorem 3.2, and [4], we know by in-
duction that our microarchitecture with the bufer size equal to
Dr + k − 1 is optimal.

3.4 Datalow-Based Implementation
The SODA microarchitecture can be eiciently implemented

as datalow modules. The datalow implementation enables high-
frequency synthesis result and accurate resource modeling, due to
its localized communication [6] and modularized structure. It also
enables the lexibility to connect multiple stages together in a single
accelerator. Figure 3 shows the datalow modules of 1 iteration of
the Jacobi kernel shown in Listing 1.

input

input

input

FW

FW

FW FW FW

FW

FW FW FW

FW

FW

PE

PE

PE

output

output

output

FW: forwarding module, 

implements FIFO and 

distributes data

PE: compute module, 

implements the 

kernel function

Figure 3: Datalow modules in a SODA microarchitecture.

As shown in Figure 3, the forwarding modules (FW) forward
and distribute input data to proper destination modules. Each for-
warding module either directly forwards data from the input, or
implements a FIFO or FF as part of the reuse bufer. Each FIFO
or FF in Figure 2 corresponds to a forwarding module shown in
Figure 3. The structure of a forwarding module is only determined
by the data type, FIFO depth, and fanout. On FPGAs, FIFOs can be
implemented with either shift register lookup tables (SRLs) or block
RAMs (BRAMs). On our Xilinx platform, we use hls::stream pro-
vided in Vivado HLS to implement FIFO. Large FIFO whose capacity
is larger than 1024 bits is implemented with BRAM and small FIFO
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is implemented with SRL. The compute modules (PE) are the pro-
cessing elements and implement the kernel function. Each compute
module contains 1 PE, which produces 1 output data element per
cycle. For a given stencil kernel, all compute modules in the same
stage have the same structure. The datalow architecture enables
the lexibility of cascading multiple stages together. The inputs and
outputs can be connected to DRAM or to another stage’s outputs
or inputs. Figure 4 shows the overview of an example of a complete
SODA accelerator.

Reuse 
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Units
PE PE PE

FIFO

DRAM
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FIFO FF

FIFO
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Figure 4: Overview of a complete SODA accelerator.

As a common type of external memory on FPGAs, DRAMs have
a burst I/O mode which provides higher bandwidth [32], but it also
puts some restrictions on the data. On our Xilinx platform, burst-
mode DRAM access is fully pipelined, and in each cycleWb = 512

bits are read/written for the maximum throughput. Therefore, 8-
bit, 16-bit, or 32-bit input data must be coalesced before sent /
received to / from DRAM to achieve the maximum throughput. The
SODA automation framework automatically generatesmodules that
handles the memory coalescing and the corresponding host-side
data layout manipulation code, which improves external memory
throughput without adding complexity to the programming model.

Also, although burst I/O are fully pipelined, the latency is quite
long. Therefore, to hide this latency, burst lengthÐi.e., the number
of data elements read/written in each DRAM accessÐhas to be large
enough. Thanks to the datalow implementation, the DRAM access
can be automatically performed in burst mode with suiciently
long burst length, without the need of coarse-grained pipelining
and double bufering as discussed in [2].

4 AUTOMATION AND EXPLORATION
In this section, the programming model for SODA and the corre-

sponding automation framework are discussed irst in Section 4.1.
Under the proposed programming model, the conigurable parame-
ters are then discussed in Section 4.2. Since these parameters form
a large design space and synthesizing an FPGA accelerator is very
time-consuming, a resource model and a performance model are
proposed in Section 4.3 and Section 4.4 to predict the post-synthesis
resource utilization and the on-board execution performance, re-
spectively. With these models, the large design space can be pruned
efectively, which is discussed in Section 4.5.

4.1 Programming Model
To simplify accelerator kernel design, SODA deines a domain-

speciic language (DSL) to specify the design parameters as well as
the stencil kernel in a concise and high-level way.

As shown in Listing 2, the kernel statement speciies the name
of the stencil kernel. The input statement speciies the name, type,
and tile size of the input data. Note that the last dimension of tile

kernel: jacobi2d
input float: in(3000 ,*) # specifies the tile size
output float: out(0,0) = (in(0,-1) +

in(-1,0) + in(0, 0) + in(1,0) +
in(0, 1)) * 0.2f

unroll factor: 3
iterate factor: 2
# SODA supports multiple stages:
# buffer float: tmp(0,0) = (in(0,-1) +
# in(-1,0) + in(0, 0) + in(1,0) +
# in(0, 1)) * 0.2f
# output float: out(0,0) = (tmp(0,-1) +
# tmp(-1,0) + tmp(0, 0) + tmp(1,0) +
# tmp(0, 1)) * 0.2f
# SODA supports multiple arrays as input:
# buffer float: t(0,1) = in(0,0) + tmp(0,2)

Listing 2: 2-dimensional Jacobi kernel in SODA DSL.

size is * because it is not needed for data linearization and there-
fore is given at runtime. The output statement speciies the name
and type of output data as well as the stencil kernel expression
to compute it. If the kernel contains more than 1 stage, interme-
diate stages can be speciied with buffer statements. The unroll
factor statement speciies the number of PEs in each stage. The
iterate factor statement automatically implements the speciied
number of iterations, which simpliies the expression of iterative
kernels. Note that the expressions are not restricted to have only 1
input array; the SODA compiler (sodac) is capable of processing
kernels taking multiple arrays as inputs. To connect with user-
deined code, the SODA automation framework provides a concise
C/C++ binding of the generated accelerator.

To reduce the burden of programming FPGAs, we develop a
fully automated framework to generate eicient hardware accel-
erators for stencil computations. Currently the SODA automation
framework interfaces with Xilinx SDAccel implementation low.
The automation framework takes a high-level DSL as user input,
implements tiling automatically, uses the SODA microarchitecture
discussed in Section 3 as building blocks for implementing stages,
automatically solves the dependencies among the stages, and con-
nects multiple stages or iterations with datalow optimization.

The complete SODA automation framework is shown in Fig-
ure 5. The SODA compiler (sodac) parses the SODA DSL, does a
source-to-source transformation, and generates the HLS C++ code
as the kernel and the OpenCL API code for the host. Then gcc will
be invoked to compile and link the OpenCL API with user-deined
application and xocc will be invoked to launch the Xilinx SDAc-
cel low to do HLS, logic synthesis, placement, and routing. Host
program and FPGA bitstream will be the eventual synthesis results,
ready for execution on any compatible environment. In addition,
there is a standalone design-space exploration (DSE) framework
provided by SODA, which is used to automatically tune the kernel
coniguration parameters for optimal performance.

4.2 Conigurable Parameters
Tile Sizes T0,T1, ...,Tm−2. To generate valid accelerators, the lin-
earization convention has to be determined before synthesis. Since
size of all but the last dimension appear in Formula 1, the size of
the irstm − 1 dimensions of the input must be determined before
synthesis. However, the exact input size may not be determined
at the time of accelerator design. Moreover, the input may be too
large to it the on-chip storage. Therefore, tiling is a reasonable
design choice. Note that our automation framework automatically
does tiling with the size speciied in the DSL and the user does not
have to do tiling manually. In this paper, we argue that with the
ever-increasing resolution of sensors, the input is suiciently large
and the tile size is only limited by the on-chip storage size.

Unroll Factor k . To avoid the confusion with the total number of
PEs in a complex kernel, the term unroll factor is used to represent
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Figure 5: SODA automation framework.

the number of PEs in each stage, in analogy to the case where the
number of PEs generated for an unrolled loop is determined by
the unroll factor. Since all building-block modules in our datalow
architecture can be fully pipelined (which is optimal for through-
put), we argue that it does not make sense to use diferent unroll
factors among diferent stages, which will cause throughput mis-
match among stages and increase the initiation interval (II) of the
stage with higher unroll factor. The SODA automation framework
implements all stages with the same unroll factor.
Iterate Factor q. For iterative stencil kernels, iterate factor is the
number of iterations implemented in the accelerator. In practice,
the number of iterations required by the application is often much
greater than the number of iterations can be implemented in an
accelerator. To complete all required iterations, the execution kernel
must be invoked multiple times. In this paper, we assume that
the number of such invocation is suiciently large and all iterate
factors that can be implemented under the resource constraint are
permissible.

4.3 Resource Model
The SODA DSE framework models all four types of resources

on FPGAs, i.e. LUT, FF, DSP, and BRAM. To make the model more
practical, we target post-synthesis resource utilization instead of
the HLS result. Since the HLS report contains modularized details
and can be obtained within minutes whereas it is hard to distinguish
user-level modules from the post-synthesis report and it takes hours
to obtain, as the irst step we take the HLS report and model the
HLS resource utilization. As the second step, based on the HLS
report and post-synthesis report, we then make adjustments to the
HLS model accordingly so that the inal model can relect the post-
synthesis resource utilization. Thanks to the modularized datalow
implementation, the resource utilization of a SODA accelerator can
be accurately modeled at the datalow module level. Those modules
can be divided into three categories.

Compute modules consume the majority of resources for compu-
tation. The SODA DSE framework obtains the resource utilization
of each compute model by running HLS. Since compute modules
in the same stage for all iterations have the same structure, they
only need to go through HLS once.

Forwarding modules consume the majority of the remaining re-
sources for communication. For a forwarding module with a ϕ-bit
wide data type, LUT and FF consumption grows linearly with fanout
κ. For those who implement a FIFO of depth η > 0, there is an con-
stant LUT and FF overhead for the control logic of the FIFO, in
addition to the SRL or BRAM used to implement the FIFO. Since
only small FIFOs are implemented as SRLs with LUTs, LUTs used
for this purpose are much less than those used to implement logics.
Thus, the SRL contribution to the LUT utilization is ignored in the
model. The coeicients in the model are kernel-independent and
can be obtained from a series of pre-executed HLS results. η, ϕ, and

κ are determined for each module by sodac, according to the tile
size and unroll factor coniguration and the stencil kernel itself.
Forwarding modules do not use any DSP.

We observe that it is very hard to develop a closed-form analytical
formula to predict the BRAM usage Θ(ϕ,η) from data width ϕ
and depth η, due to the undocumented optimizations performed
by Xilinx tools. For example, we observe that a 16-bit × 8K FIFO
is implemented with 8 BRAMs whereas a 16-bit × 16K FIFO is
implemented with only 15 BRAMs. To accurately predict BRAM
utilization, SODA invokes Xilinx Vivado to synthesize a single FIFO
and obtains its BRAM utilization from the synthesis report. Such
a simple synthesis only takes 3 to 4 minutes and SODA keeps the
results in a database so that the result can be reused. Notice that
Θ(ϕ,η) is a step function ofη and does not depend onmodule fanout
κ, the database can be frequently reused and rarely updated. Among
all design-space exploration performed in the experiments done
in Section 5, only 115 entries are needed. Since these entries are
shared for diferent kernels and can be generated in parallel, time
spent on the Θ(ϕ,η) model is negligible compared with the time
needed to synthesize a complete accelerator.

Auxiliary modules, including the interconnections with DRAM,
control signals, and memory coalescing modules, constitute the
remainder of resource consumption. The I/O modules and control
modules are independent with the tile size and the iterate factor,
whereas the unroll factor has a very weak inluence on memory
coalescing modules, which is negligible in size compared with the
total resource utilization. Consequently, resource utilization of aux-
iliary modules is considered as a constant and can be obtained from
the pre-executed HLS results.

With a given kernel and coniguration, the number and parame-
ter of all modules can be determined analytically via the microar-
chitecture generation algorithm presented in Section 3.2. The total
resource consumption is the sum of resource consumption of each
module. Note that the BRAM and DSP models obtained above are
already relecting the post-synthesis results. Experimental results
in Section 5.2 show 1.84% and 0% average prediction errors for
BRAM and DSP, respectively. For the LUT and FF utilization, we
observe that the post-synthesis utilization of LUT and FF have a
linear relationship with the utilization reported by HLS. Moreover,
this linear relationship does not depend on the application kernel
or coniguration parameters. Therefore, we adjust our model for
LUT and FF with a linear adjustment function to get post-synthesis
models. Experimental results in Section 5.2 show 6.23% and 7.58%
average prediction errors for LUT and FF, respectively.

4.4 Performance Model
In this paper, our optimization objective is the sustained through-

put H , which can be measured by the number of output data ele-
ments per unit time. For an accelerator running at frequency f and

having tile size ®T = (T0,T1, ...,Tm−1), unroll factor k , and iterate
factor q, the ideal throughput of the kernel is

Hideal(k,q, ®T ) = kqf

m−1
∏

d=0

Td − q · (Sd − 1)

Td
(2)

wherem is the number of dimensions and Sd is the stencil window
size in each iteration. For non-iterative stencil kernels, q ≡ 1.

Hideal may not be achievable since the hardware put constraints
on H in two aspects: (1) External bandwidth limits the efective
unroll factor (2) Available resource limits the achievable tile size,
unroll factor, and iterate factor. The constraints are modeled as

H ≤ Hideal(k,q, ®T ) (3)

k fW ·
H

Hideal(k,q, ®T )
≤ BMAX (4)

R(AUX, χ ) + kqR(CP, χ ) + q · R(FW, χ )(k, ®T ) ≤ R(MAX, χ ) (5)
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χ ∈ {LUT, FF,DSP,BRAM} represents the type of resource. H is

the achieved throughput. BMAX is the maximum available DRAM
bandwidth.W is the total width of input and output data types.

R(MAX, χ ) is the maximum available χ resource. R(AUX, χ ) is the

resource consumption of auxiliary modules. R(CP, χ ) is the resource
consumption of compute modules of a single PE in a single iteration.

R(FW, χ )(k, ®T ) is the resource consumption of forwarding modules

in a single iteration, which is a function of k and ®T . Note that as a
result of the datalow implementation, the frequency of accelera-
tors achieved is always within 10% of the target, according to our
experimental results. Therefore, in the performance model we treat
f as a constant. Experimental results in Section 5.2 show 4.22%
average prediction error for performance.

4.5 Design-Space Pruning
As shown in Section 4.4, both the objective function and the

constraints are non-linear. Therefore, we do not seek closed-form
solution. Instead, we prune the design space and use branch-and-
bound method to ind the optimal coniguration.

The design space of unroll factor k is limited by the external in-
terface. On our evaluation platform, the input and output interface
are both 512 bits wide. To avoid complex multiplexers, k is restricted
to powers of 2. With the minimum data type width being 8 bits, this
efectively reduces the design space of k to have at most 6 points.
For iterative kernels, the iterate factor q is a positive integer, but it
is bounded by the constraint in Formula 5. That is, the total number
of PEs is bounded by the available resources. On our evaluation

platform, for the simplest PEs, kq ≤ 102. For non-iterative kernels,
q ≡ 1. The design space of tile sizes T0,T1, ...,Tm−2 is much larger
compared with k and q, especially for high-dimensional stencils.
Nevertheless, notice that the bound of H is monotonically increas-
ing with respect to Td in each dimension d for every given k and q,
T0,T1, ...,Tm−2 can be eiciently searched via branch-and-bound.
Note that Tm−1 is not part of the design space because it is deter-
mined by the input and is a runtime parameter instead of a design
parameter. With the on-chip storage size being several megabytes,

the total size of design space can then be reduce to less than 106

and can be explored within a few minutes.

5 EXPERIMENTAL EVALUATION

5.1 Experiment Setup
We evaluate SODAwith a Xilinx Kintex UltraScale FPGA. The Al-

phaData ADM-PCIE-KU3 board used in our experiments is equipped
with XCKU060 FPGA and 2×8GB 1600MT/s DDR3 DRAMs. High-
level synthesis is performed by Xilinx Vivado HLS [5, 33]. Xilinx
SDAccel 2017.2, the latest version ofering support for this plat-
form, is used for system integration. The target clock frequency is
250MHz. The CPU experiments are conducted on a server with two
Intel Xeon E5-2620 v3 CPUs and 4×16GB 2133MT/s DDR4 DRAMs.

We use 3 non-iterative benchmarks and 4 iterative benchmarks to
evaluate our SODA framework. The benchmarks cover a wide range
of application domains and have been used in previous published
works [3, 17]. Among the 7 benchmarks, SODEL 2D is used for
edge detection in the image processing domain. DENOISE 2D/3D
are used in the medical imaging domain [3]. The four iterative
benchmarks, namely JACOBI 2D/3D, SEIDEL 2D, and HEAT 3D,
are used in the linear algebra domain [17].

5.2 Model Validation
In Section 4.3 and Section 4.4 we proposed a resource model and

a performance model. In this section, we run two sets of exper-
iments to validate our model. In the irst set of experiments, we
ix the tile size and explore the unroll factor. For iterative bench-
marks, we also explore diferent iterate factors. In the second set of

Table 1: Benchmarks.

Benchmark
Itera-
tive?

Data Type
Optimal Coniguration
Tile
Size

Unroll
Factor

Iterate
Factor

SOBEL 2D [3] No uint16_t 524302 32 ś

DENOISE 2D [3] No
float×2 in
float×1 out 21846 8 ś

DENOISE 3D [3] No
float×2 in
float×1 out 156×157 4 ś

JACOBI 2D [17] Yes float 16392 8 10
JACOBI 3D [17] Yes float 181×182 8 6
SEIDEL 2D [17] Yes float 32768 8 9
HEAT 3D [17] Yes float 256×257 8 5

experiments, we ix the unroll factor and explore the tile size. In
total, 75 diferent conigurations are synthesized. The average of the
achieved frequency is 245.66MHz with the lowest being 229.1MHz.
To validate the resource model, we compare the model prediction
against the post-synthesis resource utilization. To validate the per-
formance model, we run on-board experiments with 4 diferent
sizes of input and obtain sustained throughput via linear regression
of the execution time and the number of pixels processed. The mea-
surement errors of throughput are within 1% for all conigurations.
The average error rate of the model prediction is listed in Table 2.

Table 2: Average error rate of model prediction.
Prediction Item BRAM DSP LUT FF Throughput
Average Error 1.84% 0% 6.23% 7.58% 4.22%

5.3 Performance Analysis
Table 3 compares the performance of the optimal conigura-

tions found by the SODA DSE framework with four baselines. To
make the CPU baseline realistic, all benchmarks are rewritten in
Halide [20] DSL and optimized via tiling, parallelization, and vector-
ization. The resulting CPU code is able to utilize all 24 hyper-threads
on our server. We implement the FPGA baselines using the method-
ologies proposed in [3], [17], and [34]. Note that [17] and [34] do
not target non-iterative stencil algorithms and [3] does not target
iterative stencil algorithms. The #Op column shows the number of
operations per iteration.

Table 3: Performance Comparison.

Benchmark #Op Platform
Throughput Performance

(Norm. to 24t-CPU)pixel/ns Op/ns

SOBEL 2D 16
CPU 6.66 106.59 1
[3] 0.25 4.00 0.04

SODA 5.37 85.86 0.81

DENOISE 2D 45
CPU 1.86 83.55 1
[3] 0.25 11.07 0.13

SODA 1.05 47.07 0.56

DENOISE 3D 57
CPU 1.91 109.01 1
[3] 0.25 14.24 0.13

SODA 0.93 53.16 0.49

JACOBI 2D 5

CPU 5.49 27.44 1
[17] 16.67 83.34 3.04
[34] 17.20 86.01 3.13
SODA 18.01 90.04 3.28

JACOBI 3D 7

CPU 4.24 29.66 1
[17] 4.72 33.01 1.11
[34] 9.86 69.04 2.33
SODA 12.00 83.98 2.83

SEIDEL 2D 6

CPU 5.82 34.90 1
[17] 15.03 90.18 2.58
[34] 15.99 95.95 2.75
SODA 16.22 97.34 2.79

HEAT 3D 15

CPU 4.21 63.18 1
[17] 4.70 70.57 1.12
[34] 6.65 99.70 1.58
SODA 8.99 134.91 2.14

As shown in Table 3, the 24-thread CPU baseline outperforms
SODA for non-iterative benchmarks. This is because non-iterative
benchmarks are bounded by communication. The CPU platform
has 4 DDR4 channels with 68.3GB/s theoretical bandwidth in to-
tal whereas the FPGA platform only has 2 DDR3 channels with
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25.6GB/s theoretical bandwidth. If they have the same external
memory bandwidth, SODA can outperform CPU by 1.65x on aver-
age. For iterative benchmarks, SODA (and other FPGA platforms)
can compute multiple iterations without extra accesses to the ex-
ternal memory whereas the CPU platform has to make a trade-of
betweenmemory access and redundant computation. Consequently,
SODA outperforms the CPU baseline by 2.76x on average.

Thanks to scalable, ine-grained parallelism provided by the
SODA microarchitecture, SODA shows 9.82x speed up on average
compared with [3]. Compared with [17], SODA achieves 1.08x av-
erage speedup on 2D benchmarks and 2.23x average speedup on
3D benchmarks. Compared with [34], SODA achieves 1.03x aver-
age speedup on 2D benchmarks and 1.28x average speedup on 3D
benchmarks. The speedup comes from three aspects: (1) SODA uses
less resources for communication and can therefore implement
more PEs. (2) SODA can accommodate larger tile sizes and is thus
less sensitive to the halo size (which is proportional to the iterate
factor). (3) SODA provides scalable, ine-grained spatial parallelism
and can reduce the halo size caused by temporal parallelism. The
diference of the speedup on 2D and 3D benchmarks is due to (2),
where 3D benchmarks have much smaller tile sizes in a single di-
mension compared with 2D ones (as shown in Table 1) and are thus
more sensitive to large halo size. The optimal microarchitecture
and systematic DSE brought by SODA give more speedup for 3D
benchmarks compared with [34]. In addition, the optimal conig-
uration for SODA can be obtained from fast and automated DSE,
which previous accelerator designs do not provide.

6 CONCLUSION
In this paper we present SODA, an automated accelerator de-

sign framework for Stencil with Optimized Datalow Architecture,
to address two major challenges for stencil accelerator design on
FPGAs, i.e. the suboptimal microarchitecture and the lack of system-
atic design-space exploration (DSE). The SODA microarchitecture
minimizes the on-chip reuse bufer size while providing scalable,
ine-grained parallelism, which delivers an optimal microarchitec-
ture as a building block. The SODA automation framework auto-
matically generates modularized datalow implementation of the
SODAmicroarchitecture. With analytical and accurate resource and
performance modeling, the SODA design-space exploration frame-
work is able to perform DSE automatically and ind the optimal
coniguration within just a few minutes. Experimental results show
up to 3.28x speedup over 24-thread CPU and our fully automated
framework achieves better performance than manually designed
FPGA accelerators through its systematic, analytical model-based
design-space exploration.
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