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Abstract

We study the nominal delay minimization problem in LUT-
based FPGA technology mapping, where interconnect delay
is assumed proportional to net fanout size. We prove that the
delay-optimal K-LUT mapping problem under the nominal
delay model is NP-hard whenK � 3, and remains NP-hard
for duplication-free mapping and tree-based mapping for
K � 5 (but is polynomial time solvable for K = 2). We
also present a simple heuristic to take nominal delay into
consideration during LUT mapping for delay minimization.

1 Introduction

Lookup-table (LUT) based FPGA [8, 10] is a popular ar-
chitecture in which the basic programmable logic block is a
K-input lookup-table (K-LUT), built in SRAM, which can
implement any Boolean function of up to K variables. The
technology mapping problem in LUT-based FPGA designs
is to transform a general Boolean network into a function-
ally equivalent network of K-LUTs by computing a (not
necessarily disjoint) K-LUT covering of the network.

Extensive study has been done on the mapping algorithms
for LUT-based FPGAs in recent years. Researchers have fo-
cused on area minimization, delay minimization, trade-off
between area and delay, and routability optimization, etc..
Efforts have been made both on the development of effective
and efficient mapping algorithms, and on the study of the
complexity of the mapping problems. It has been shown
that if the network is a tree, or if we use tree-based map-
ping (i.e. by decomposing a general network into trees and
mapping each tree separately), both the area minimum map-
ping problem and the depth minimum mapping problem can
be solved optimally in strong polynomial time [5, 6]. For
general K-bounded Boolean networks, it is shown that the
depth minimum mapping problem can be solved optimally
in strong polynomial time [1], while the area minimum map-
ping problem is NP-hard for K � 5 [5]. If we allow only
duplication-free mapping (i.e. do not allow node duplica-
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tion during mapping), it has been shown that both the depth
minimum mapping problem and the area minimum mapping
problem can be solved optimally in polynomial time for any
fixed K [2]. These results are summarized in Table 1.

tree-based dup-free general
mapping mapping mapping

area O(minfnK; O(nK+1) 2 � K < 5 K � 5
min. n logng) [5] [2] open NP-hard [5]
depth O(minfnK; O(Kmn) O(Kmn)
min. n logng) [5] [1] [1]

Table 1: Summary of previouscomplexity results on K-LUT
mapping of n-node m-edge network

Delay minimization has been an important optimization
objective in FPGA mapping because the speed of FPGA de-
signs is usually slower than that of the gate array or standard
cell designs due to the extra delay introduced by the pro-
grammable interconnects on FPGA chips. Most previous
mapping algorithms for delay minimization use the depth
of the mapping solution as the measurement of delay, i.e.
based on the unit delay model, which assumes uniform delay
at every logic level. As shown in [1], the depth minimization
problem can be solved optimally in polynomial time by effi-
cient network flow computation. However, the assumption
made by the unit delay model is usually over-simplified. In
LUT-based FPGA designs, although the delay of each LUT
is a constant, the interconnect delay of each net may vary
considerably. Since interconnect delay contributes a signif-
icant portion to the total delay, it is natural to ask whether
this portion of delay can be more accurately estimated during
mapping.

Experiments in [9] have shown that the interconnect delay
in an FPGA chip is closely related to the number of fanouts
of the net. This is intuitively true: because an FPGA chip
has fixed routing resources, a net with larger fanouts must
spread over a larger area and use up more routing resources,
and thus has larger delay. It is important to notice that such
net structure based delay estimation is dynamic since the
fanout size of a net may change during mapping.

In this paper we study the LUT-based FPGA technology
mapping problem for delay minimization under the nominal
delay model, which assumes that the net delay is propor-
tional to the net fanout size. This is a very simple case of
dynamic delay model. However, even under this model we
can show that the delay-optimal mapping problem for K-



LUTs becomes NP-hard for K � 3, and remains NP-hard
forK � 5 even for duplication-free mapping and tree-based
mapping (but is polynomial time solvable when K = 2).
These complexity results are summarized in Table 2.

k = 2 K = 3;K = 4 K � 5
tree-based mapping O(mn) open NP-hard
dup-free mapping O(mn) open NP-hard
general mapping open NP-hard

Table 2: Summary of complexity results on K-LUT mapping
for nominal delay minimization on n-nodem-edge network

These results indicate the difficulty of dynamic delay es-
timation in FPGA mapping. On the other hand, since net
structure is closely related to net delay, it is helpful to use
such information, even approximately. In this paper we will
also present a simple heuristic to demonstrate the improve-
ment of mapping quality over the depth-optimal mapping
by taking nominal delay into consideration.

Due to page limit most of the proofs will be omitted.
Interested readers may refer to [3] for details.

2 Problem Formulation

A combinational Boolean network is represented as a di-
rected acyclic graph in which nodes represent logic gates,
and edges represent interconnects. A primary input (PI) is
represented by a node without incoming edge, and a primary
output (PO) is represented by a node without outgoingedge.
The set of fanins of gate v is denoted input(v), and the set
of distinct nodes which supply inputs to the gates in subnet-
work H is denoted input(H). Similarly, the set of fanouts
of v is denoted output(v), and the set of distinct fanouts of
a subnetworkH is denoted output(H). The level (or depth)
of a node v is the number of edges on the longest path from
any PI node to v. The depth of a network is the largest node
level in the network. A Boolean network is K-bounded if
jinput(v)j � K for every node v. In this paper we assume
that the networks to be mapped are always K-bounded.

For a node v in the network, a cone of v, denoted Cv, is a
subgraph of logic gates consisting of v and its predecessors
such that any path connecting a node inCv and v lies entirely
inCv. The root ofCv is v. The fanin cone of node v, denoted
Nv, consists of v and all the predecessors of v. A fanout-free
cone (FFC) at v, denoted FFCv, is a cone of v such that
for any node u 6= v in FFCv, output(u) � FFCv. A K-
feasible cone of v is a cone Cv such that jinput(Cv)j � K.
A cut in a fanin cone Nv of node v is a bipartition (X;X)

of Nv such that X is a cone of v, and for every PI node
w 2 Nv, w 2 X. If X is a K-feasible cone, the cut is called
a K-feasible cut .

A K-LUT LUTv that implements node v covers a K-
feasible FFC Cv of v. If Cv is not fanout free, the non-
root nodes in Cv that have fanouts outside of Cv must be

duplicated in order to cover Cv by a K-LUT. Given a K-
bounded network, the technology mapping problem for K-
LUT based FPGA designs is to cover the network with
K-feasible FFCs, possibly with node duplications. If node
duplication is not allowed, it is duplication-free mapping. If
the network is first decomposed into trees, and each tree is
then mapped separately, it is tree-based mapping.

Given a node v, the nominal delay associated with v is
defined as

D(LUTv) = dL + joutput(v)j � dN ; (1)

where dL is the delay of a K-LUT, which is a constant for
a given technology, and dN > 0 is a constant represent-
ing the additional delay due to adding a fanout branch to
the net (which is determined by the technology, the place-
ment/routing tools, and the style of the design, etc.). In
practice, dN is usually not a constant. However, even under
such a simplified model, the delay minimization problem is
much more difficult than the depth minimization problem in
LUT mapping.
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Figure 1: Complicationof mapping under the nominal delay
model

Under the unit delay model, for any node v, the mini-
mum depth of a K-LUT that implements v only depends
on the depth-optimal mapping of the fanin cone Nv of v.
This allows the depth-optimal solution to be computed us-
ing dynamic programming approach. Under the nominal
delay model, however, the minimum delay of a K-LUT that
implements v may also depend on the mapping of nodes
outside of Nv. Figure 1 illustrates this scenario. Let u be a
predecessor of v which has fanouts x and y outside of Nv.
If both nodes x and y are packed into one LUT, the nominal
delay of node u decreases, since the fanout size of u is de-
creased by one. On the other hand, ifx or y is duplicated, the
nominal delay of u will increase. Therefore, delay-optimal
mapping of v clearly depends on the mapping of the nodes
x and y outside of Nv. This is the inherent difficulty of
nominal delay minimization in LUT mapping, which leads
to the NP-hardness results in the next section.

3 Complexity Results

Our proof of the NP-hardness of the delay-optimal LUT
mapping problem will be based on polynomial time trans-
formations from the RSAT problem to the decision version



of the delay-optimal LUT mapping problem under the nom-
inal delay model. We first define the RSAT problem, which
is a restricted case of the well-known NP-complete problem
SAT, and remains NP-complete. We shall then transform
RSAT to the decision version of the nominal delay mini-
mization problems.

Problem: Restricted Satisfiability (RSAT)

Instance: A set of n Boolean variables X= fx1; x2; :::; xng and
a collection of m clauses C = fC1; C2; :::;Cmg, where (a)
each clause is the disjunction (OR) of 2 or 3 literals of the
variables, (b) each clause contains at most one of xi and xi
for any variable xi, (c) both literals xi and xi of any variable
xi appear in some of the clauses, and (d) for any variable xi,
the number of clauses containing either xi or xi is no more
than 3.

Question: Is there a truth assignment of the variables in X such
that Cj = 1 for 1 � j �m?

By adding the conditions to SAT while maintaining equiv-
alence, we have shown

Lemma 1 RSAT is NP-complete.

Note that conditions (c) and (d) indicate that each literal will
appear in either one or two clauses. This is important to our
construction of the transformations.

3.1 General Mapping

We first define the decision version of the general delay-
optimal mapping problem under the nominal delay model.

Problem: Depth-Bounded LUT Mapping under Nominal Delay
Model (DBLMN)

Instance: A constant K � 2, a Boolean network N of p nodes
and q edges such that for any v 2 N , jinput(v)j � K , and
three other constants dL � 0; dN � 1, and B.

Question: Under the nominal delay model with parameters
dL; dN , is there a K-LUT mapping solution of N that has
delay no more than B?

We shall construct a polynomial time transformation that
transforms each instance of RSAT to an instance of
DBLMN. Intuitively, we want to relate the decision of the
truth assignment of a Boolean variable in an instance F
of RSAT to the decision of a node duplication in the cor-
responding network N of the DBLMN instance. Since
determining the truth assignment is difficult, we can show
that determining the node duplication is also difficult.

Given an instance F of the RSAT with n variables
x1; x2; :::; xn and m clauses C1; C2; :::; Cm, we construct
a K-bounded Boolean network N corresponding to the in-
stance F as follows.

First, for each variable xi, we construct a subnetwork
N (xi) that consists of the followingnodes: (a) Four internal

nodes denoted as xi; x
+
i
; xi, and x+

i
; (b) 5(K�1)� (Lxi

+

Lxi
) PI nodes, whereLxi

andLxi
are the number of clauses

containing xi and xi, respectively; (c) A super-PI nodeNx,
which is a subnetwork to be defined later; and (d) Three
PO nodes denoted as O1

i
; O2

i
; O3

i
. The nodes are connected

as shown in Figure 2(a), where Nx, xi; x
+
i
; xi; x

+
i

, and O3
i

form a direct chain, whilexi and xi are connected toO1
i

and
O2
i
, respectively. There areK�1 PI nodes connected to each

of the PO nodes, K � 1 � Lxi
PI nodes connected to both

xi and x+
i

, and similarly K � 1 � Lxi
PI nodes connected

to both xi and x+
i

. Note that for K � 3, K � 1 � Lxi
and

K � 1 � Lxi
will never be less than zero, since Lxi

and
Lxi

are at most 2. Therefore, for K � 3 the construction is
feasible. We call this subnetwork the subnetwork of xi.

Next, for each clause Cj with 3 literals l1
j
; l2
j
; l3
j
, we

construct a subnetwork N (Cj) consisting of the following
nodes: (a) Three internal nodes denoted as l1

j
; l2
j
, and l3

j
; (b)

3K � 2 PI nodes; (c) One super-PO node Nc, which is a
subnetwork to be defined later. The connection is shown in
Figure 2(b), where l1

j
; l2
j
; l3
j

and Nc form a direct chain, and
each has K, K � 1, K � 1, and 0 PI nodes connected to it,
respectively.

If the clause Cj contains only 2 literals l1
j

and l2
j
, the

subnetworkN (Cj) is constructed with the following nodes:
(a) Two internal nodes l1

j
; l2
j
, and a dummy internal node

dj; (b) 4K � 3 PI nodes; (c) Two PO nodes d1
j

and d2
j
;

(d) One super-PO node Nc. The connection as shown in
Figure 2(c) is similar to the case of 3-literal clause, except
that the additional K � 1 PI nodes and two PO nodes are
attached to the dummy node dj.

The super-PI node Nx and the super-PO node Nc are
shown in Figure 2(d). Nx is a three level subnetwork con-
sisting of 3 internal nodes, 4 PO nodes, and 7K�8 PI nodes,
and has one outgoing edge. Nc is a four level subnetwork
with 3 internal nodes, 4 PO nodes, and 7K�7 PI nodes, and
has one incoming edge. The subnetworks Nx and Nc are
used to balance the delay along different paths in N , which
is necessary to the proof.

Finally, we connect the subnetworks N (Cj), j =

1; 2; :::;m, with the subnetworks N (xi), i = 1; 2; :::; n.
Let lr

j
(1 � r � 3) be a literal in Cj. If for some variable

xi, lrj = xi, we connect the internal node lr
j

of subnetwork
N (Cj) to the internal node xi of subnetwork N (xi). Simi-
larly, if lr

j
= xi, we connect node lr

j
of N (Cj) to node xi of

N (xi). We call xi (or xi) the variable node of lr
j
, and call lr

j

a literal node of xi (or xi). Such connections are illustrated
in Figure 3, and also in Figures 2(a–c) (in dashed lines).

It is clear that the transformation defined above takes
O(K(m + n)) time. Examples of transformations can be
found in [3]. Regarding the network N obtained through
this transformation, we can see that N is K-bounded when
K � 3, and the only ways of packing more than one node
into a K-LUT are to pack xi into the K-LUT of x+

i
(denoted

as pack(xi)), and to pack xi into the K-LUT of x+
i

(denoted
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Figure 2: Transformation of RSAT instance to DBLMN instance: (a) N (xi) for variable xi; (b) N (Cj) for clause Cj

with 3 literals; (c) N (Cj) for clause Cj with 2 literals; (d) Super-nodes Nx and Nc
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Figure 3: Transformation of RSAT instance to DBLMN
instance: Connections between N (xi) and N (Cj)

as pack(xi)), for 1 � i � n. Moreover, every node must
be implemented by a K-LUT regardless such packing (i.e.
if such a packing happens, node duplication must happen).
By linking the variable assignment of xi = 0 for the RSAT
instanceF with the duplication and packing of nodexi in the
network N (and assignment of xi = 1 with the duplication
and packing of xi), we can show the NP-completeness of
the DBLMN problem. We start with a lemma about the
transformation from a satisfiable RSAT instance to a delay-
bounded DBLMN instance.

Lemma 2 IfF is satisfiable, thenN has a mappingsolution
of delay 7dL + 15dN .

The proof is obtained by examining three types of PI to PO
paths, i.e. paths entirely inside N (xi), paths entirely inside
N (Cj), and paths from N (Cj) to N (xi), and calculating
the largest possible path length. We omit the analysis due
to page limit.

In order to derive a truth assignment that satisfies F from
a delay-bounded mapping solution of N , we first analyze
the characteristics of such a mapping solution.

Lemma 3 In a mapping solution of N with delay bound
7dL + 15dN , at least one of the operations pack(xi) and
pack(xi) must be performed for each i, 1 � i � n.

Lemma 4 In a mapping solution of N with delay bound
7dL + 15dN , for each N (Cj), 1 � j � m, at least one
of the operations pack(l1

j
), pack(l2

j
), and (when jCjj = 3)

pack(l3
j
) cannot be performed.

According to Lemmas 3 and 4, if a mapping solutions sat-
isfies delay bound 7dL+ 15dN , it will be similar to the one
we constructed in the proof of Lemma 2, except that for
some xi, it is possible that both pack(xi) and pack(xi) are
performed. In such a case, however, the largest delay of a
path in N (xi) is smaller than 7dL + 15dN , and one of the
packing operations is not necessary, hence can be ignored
in the construction of a truth assignment for F from the
mapping solution. This implies

Lemma 5 If N has a mapping solution S of delay no more
than 7dL + 15dN , then F is satisfiable.

The proofs of the above lemmas are omitted due to page
limit.

Therefore, by setting B = 7dL + 15dN , we can show

Lemma 6 DBLMN is NP-complete for K � 3.

Proof It is easily seen the the transformation takes poly-
nomial time. Moreover, DBLMN is in NP because given
any K-LUT mapping solution, we can easily verify if its
delay is bounded by B. Finally, according to Lemmas 2
and 5, the RSAT instance F has YES answer if and only if
the DBLMN instance N has YES answer. Therefore, the



NP-completeness of RSAT implies that DBLMN is NP-
complete.

Based on Lemma 6, we have

Theorem 1 The delay-optimal K-LUT mapping problem
under the nominal delay model is NP-hard when K � 3.

Note that the construction ofN does not apply whenK = 2,
so the complexity of the problem is still open forK = 2.

3.2 Duplication-Free Mapping & Tree-Based Mapping

We have proved the NP-hardness of the delay-optimal gen-
eral LUT mapping problem under the nominal delay model
by relating the truth assignment of Boolean variables in
an RSAT instance to the duplication of nodes in the map-
ping of corresponding network. An interesting question is
whether node duplication is the only cause of the difficulty.
In this subsection we answer this question negatively, i.e.
even when node duplication is prohibited, or the mapping
is restricted to be tree-based, the delay-optimal LUT map-
ping under nominal delay is still NP-hard when K � 5.
This result indicates that the delay minimization problem is
more difficult than the area minimization problem, which
is polynomial time solvable for duplication-free mapping or
tree-based mapping.

For this proof, we again construct a polynomial time
transformation from an instance of RSAT to an instance of
DBLMN. The network for the DBLMN instance is carefully
constructed so that duplication-free mapping or tree-based
mapping can be easily enforced. Since node duplication
is not allowed in either case, we link the Boolean variable
assignment to the possible packing of multiple fanouts of
the same node into a single K-LUT, and show that even the
choice of packing operations itself is difficult. Due to page
limit, we leave out the construction and the proof, and state
the following theorem directly.

Theorem 2 The delay-optimal duplication-free K-LUT
mapping problem and The delay-optimal tree-based K-LUT
mapping problem under the nominal delay model are both
NP-hard when K � 5.

The construction of the network for the proof of the above
result is feasible only when K � 5. For K < 5, the
complexity problem is open except for K = 2, which will
be solved in polynomial time in the next subsection.

3.3 Optimal Duplication-Free Mapping forK = 2

As defined in [2], the maximum fanout-free cone (MFFC)
of a node v, denoted MFFCv, is an FFC of v such that for
any node w 6= v, w 2MFFCv if output(w) �MFFCv.
One property of MFFC is that a network can be decomposed
into a set of disjoint MFFCs. The MFFC decomposition is
important because every duplication-free mapping solution

contains a mapping solution of each MFFC in the decom-
position. In the case of area minimization, this property
allows us to map each MFFC independently and compose
an optimal solution of the entire network from the optimal
solutions of the MFFCs [2].

In the case of nominal delay minimization, in general this
method no longer works because the delay of some input
nets to an MFFC can be changed due to the mapping of
other MFFCs that share the same input net. However, if
K = 2, we can still combine the optimal mapping solutions
of the MFFCs to obtain an optimal mapping solution for
the entire network. Specifically, we have shown that the
following simple algorithm will produce the delay-optimal
mapping solution if there is no cut of size one existing in the
network1:

1. Decompose the network into disjoint MFFCs;
2. For each MFFC MFFCv, do

2.1. Find the maximum-volume2 min-cut (X;X)

of cut-size 2, and assign LUTv := X ;
2.2. If MFFCv � LUTv 6= _, recursively map

MFFCv � LUTv using this algorithm.

The proof of its optimality, omitted due to page limit,
is based on the fact that for K = 2 and in the absence of
the cuts of size one, any K-feasible cut is a min-cut; and the
followingproperty of the maximum-volume min-cut proved
in [1],

Lemma 7 For any coneCv of a node v, there exists a unique
maximum-volume3 min-cut (X;X) of Cv such that for any
other min-cut (X0; X0) of Cv, X0 � X .

The cut computation in step 2.1 can be implemented us-
ing the augmenting path algorithm as used in FlowMap [1],
which takes linear time in terms of the number of edges. In
he worst case the mapping for Θ(n) nodes must be com-
puted, so the complexity is O(mn). This gives

Theorem 3 For K = 2, the delay-optimal duplication-free
mapping problem under the nominal delay model can be
solved in O(mn) time, where m and n are the number of
edges and nodes in the network, respectively.

4 Considering Nominal Delay in Mapping

In this section, we present a simple heuristic to consider
nominal delay in LUT mapping for delay minimization. We
use the dynamic programming approach similar to that used
in FlowMap [1]. We compute the delay-minimal mapping
of each node according to a topological ordering of nodes
starting from the PIs. The computation of delay-minimal
mappingLUTv of node v depends on the the delay-minimal
mapping of predecessors of v computed in the previous

1A cut (X;X) of size one can be eliminated in a pre-processing step
by collapsing the nodes inX into the root of the cone.

3The volume of a cut (X;X) is defined to be jXj.



steps. After we have computed the delay-minimal map-
ping LUTv of v, we also record the delay to the output of
LUTv (excluding the fanout delay ofLUTv) in the mapping
solution, and denote it as l(u).

u u

w w

... ... ...

...... ww1 2 k-1 k w1 w2 wk

∪
∈output(u)

output (w)
w

output (u)

(a) (b)

Figure 4: Nominal delay estimation.
(a) j
S
w2output(u) output(w)j � joutput(u)j;

(b) j
S
w2output(u) output(w)j � joutput(u)j.

When nominal delay is concerned, as we pointed out
in Section 2, the mapping of node v may depend on the
mapping of some nodes outside of fanin cone Nv of v,
which may have not been processed (since they may appear
later in the topological ordering). This is due to the fact that
the fanout net delay of the nodes in Nv may not be known.
In order to solve this problem, we estimate the fanout net
delays of each node u in Nv by

DN (u) = dN � joutput(u)j+ (2)

� � (j
[

w2output(u)

output(w)j � joutput(u)j);

where � is a positive constant for adjusting the relative
weight of the second term. The first term depends on the
fanout size of u. If it is large, it is likely that LUTu will
also have large fanout size, thus, large nominal delay. The
second term is a correction of the simple estimation by the
first term. In the second term, j

S
w2output(u) output(w)j

is the total fanout size of the fanouts of u. If it is smaller
than joutput(u)j, the fanouts of fanouts of u converges (see
Figure 4(a)), thus some fanouts of umay be packed together
in one or more LUTs. Thus, the nominal delay ofLUTu will
decrease. On the other hand, if j

S
w2output(u) output(w)j

is larger, the fanouts of fanouts ofu diverge (see Figure 4(b)).
In this case, some fanouts of u are likely to be duplicated.
Thus, the nominal delay of LUTu will increase. Note that
the value of DN (u) may be corrected later on when partial
mapping solution is known.

Given the fanout delay estimation DN (u) of every node
u in Nv and the delay to the fanout net of LUTu in the
delay-minimal mapping solution, we can compute the delay-
minimal mapping of node v as follows. We compute a K-
feasible cut (Xv; Xv) such that the height of this cut, defined
as

H(Xv; Xv) = maxfl(u) +DN (u) j u 2 Xvg; (3)

is minimum. Note thatH(Xv; Xv) corresponds to the maxi-
mum delay to the input ofXv (which will be the LUT imple-
menting v). Such a cut can be computed using the minimum-
height K-feasible cut algorithm introduced in FlowMap [1].

The minimum-height K-feasible cut algorithm was orig-
inally used in FlowMap for depth-optimal mapping under
the unit delay model. The minimum-height K-feasible cut
at each node can be found in O(Km) time, where m is the
number of edges in the network. Later on, the algorithm was
generalized to delay-minimum mapping when each net has
a fixed pre-assigned delay of arbitrary value [4]. The gen-
eralized minimum-height K-feasible cut algorithm runs in
O(Km logn) time, where m and n are the number of edges
and nodes in the network, respectively. We use the general-
ized minimum-height K-feasible cut algorithm in our map-
ping of node v and useDN (u) as the fanout delay estimation
of each node in Nv. After we find the minimum-height K-
feasible cut (Xv; Xv) inNv, we setLUTv = Xv. For some
node u in Nv, it may have two or more fanouts packed into
a single input toLUTv. Therefore, we update the fanout net
delay estimation of every node in input(LUTv). Finally,
we compute the delay to the output of LUTv in the mapping
solution and record it in l(v).

After we have computed delay-minimal mapping of each
node, we shall generate all the necessary LUTs starting from
the POs using the same procedure as in FlowMap, which
can be done in O(m) time. Since we need to compute
a minimum-height K-feasible cut at each node, the time
complexity of our algorithm is O(Kmn logn). Since the
time complexity is bounded by a low order polynomial, this
algorithm can handle circuits of large sizes very efficiently,
and can be invoked several times for the same design with
different choices of� in theDN (u) estimation to obtain the
best result.

5 Experimental Results

We have implemented the heuristic algorithm described in
the preceding section and tested it on a set of six mid-
size MCNC benchmark circuits which were also used in
[1]. These circuits were chosen because each of them can
be mapped into a single Xilinx XC3000 series FPGA chip
[10], and be placed and routed using Xilinx design tools, so
that we were able to measure the real delays of the mapping
solutions (the second entry in Table 3 shows the type of Xil-
inx XC3000 chip used for each example). The circuits have
been optimized for delay minimization using technology in-
dependent synthesis and decomposed into two-input simple
gate networks. Each circuit was mapped using the heuristic
algorithm into 5-LUTs. Then, we packed the LUTs into
XC3000 series 2-output CLBs, whenever possible, using a
maximum matching algorithm. Finally, we used the Xil-
inx apr program to place and route the mapping solutions,
and used the Xilinx xdelay program to measure the actual
delays. We selected the smallest possible FPGA chips that



circuit XC3000 FlowMap new heuristic
name part# #clb ndly adly (ns) � #clb ndly adly (ns)
9sym 3020PC68 50 8.8 96.3 0.06 50 8.7 94.3
C880 3090PQ208 166 15.7 209.1 0.06 195 14.3 208.3
alu2 3064PC84 120 17.3 204.3 0.03 149 17.1 200.1

apex7 3042PP132 66 8.7 99.4 0.02 65 6.3 93.2
count 3020PC68 59 7.5 83.5 0.02 60 7.1 79.8
vg2 3020PC68 34 5.9 83.0 0.03 39 5.1 78.1

Table 3: Experimental results.
(ndly = nominal delay, adly = actual delay after routing. For nominal delay, dL = 1; dN = 0:1)

can accommodate the circuits and complete the routing. For
comparison, we also mapped the circuits using FlowMap.
The same FPGA chips were used, although FlowMap often
uses fewer CLBs and sometimes can fit into smaller chips.
We set dN = 0:1dL in Eq.(2) in our nominal delay for-
mulation. For each circuit we tried 10 different � values
(� = 0:1dN ; :::; 1:0dN), and kept the one that produced
the solution with the smallest nominal delay for placement
and routing. Table 3 summarized these results. As one can
see, with proper choice of parameters in the delay estima-
tion model, our simple heuristic based on nominal delay
estimation can produce better mapping solutions than the
depth-optimal mapping algorithm.

6 Conclusion

We have studied the LUT-based FPGA technology mapping
problem for delay minimization under the nominal delay
model, a very simple case of net structure based dynamic
delay model. Contrary to the fact that the depth minimiza-
tion problem in LUT mapping is polynomial time solvable,
we have shown that the nominal delay minimization problem
is NP-hard for general LUT mapping when K � 3, and re-
mains NP-hard for duplication-free mapping and tree-based
mapping when K � 5 (but is polynomial time solvable
for K = 2). Despite such difficulty, it is still beneficial
to consider nominal delay during LUT mapping for delay
minimization. We have demonstrated this using a simple
heuristic.

Accurate delay modeling is very important in FPGA tech-
nologymapping. Our complexity results shown in this paper
indicates that dynamic delay model is difficult to use directly.
Currently we are working on more effective static approx-
imation of dynamic delay minimization. An alternative to
dynamic delay minimization is iterative static delay mini-
mization via feedback from placement and routing, which
we are also working on.
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