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Abstract

We study the nominal delay minimization problemin LUT-
based FPGA technol ogy mapping, whereinterconnect delay
isassumed proportional to net fanout size. We provethat the
delay-optima K-LUT mapping problem under the nominal
delay model isNP-hard when K > 3, and remains NP-hard
for duplication-free mapping and tree-based mapping for
K > 5 (but is polynomia time solvable for K = 2). We
also present a simple heuristic to take nominal delay into
consideration during LUT mapping for delay minimization.

1 Introduction

Lookup-table (LUT) based FPGA [8, 1Q] is a popular ar-
chitecturein which the basic programmable logic block isa
K-input lookup-table (K-LUT), built in SRAM, which can
implement any Boolean function of upto K variables. The
technology mapping problem in LUT-based FPGA designs
is to transform a general Boolean network into a function-
ally equivalent network of K-LUTs by computing a (not
necessarily digoint) K-LUT covering of the network.
Extensive study has been doneon the mapping algorithms
for LUT-based FPGASsinrecent years. Researchers havefo-
cused on area minimization, delay minimization, trade-off
between area and delay, and routability optimization, etc..
Efforts have been made both on thedevel opment of effective
and efficient mapping agorithms, and on the study of the
complexity of the mapping problems. It has been shown
that if the network is a tree, or if we use tree-based map-
ping (i.e. by decomposing ageneral network into trees and
mapping each tree separately), both the area minimum map-
ping problem and the depth minimum mapping problem can
be solved optimally in strong polynomid time [5, 6]. For
genera K-bounded Boolean networks, it is shown that the
depth minimum mapping problem can be solved optimally
in strong polynomial time[ 1], whilethearea minimum map-
ping problem is NP-hard for X' > 5[5]. If we alow only
duplication-free mapping (i.e. do not alow node duplica-
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tion during mapping), it has been shown that both the depth
mi nimum mapping problem and the area minimum mapping
problem can be solved optimally in polynomial timefor any
fixed K [2]. These results are summarized in Table 1.

tree-based dup-free genera

mapping mapping mapping
aea | O(min{nK, | O(nXTY) | 2< K <5 K>5
min. | nlogn}) [5] [2] open NP-hard [5]
depth | O(min{rnK, | O(Kmn) O(Kmn)
min. | nlogn}) [§] [ [

Table1: Summary of previouscomplexity resultson K-LUT
mapping of n-node m-edge network

Delay minimization has been an important optimization
objectivein FPGA mapping because the speed of FPGA de-
signsisusually slower than that of the gate array or standard
cell designs due to the extra delay introduced by the pro-
grammable interconnects on FPGA chips. Most previous
mapping agorithms for delay minimization use the depth
of the mapping solution as the measurement of delay, i.e.
based on the unit delay model, which assumes uniformdelay
at every logiclevel. Asshownin[1], thedepth minimization
problem can be solved optimally in polynomial time by effi-
cient network flow computation. However, the assumption
made by the unit delay model is usually over-simplified. In
LUT-based FPGA designs, athough thedelay of each LUT
is a constant, the interconnect delay of each net may vary
considerably. Sinceinterconnect delay contributesa signif-
icant portion to the total delay, it is natural to ask whether
thisportion of delay can bemore accurately estimated during
mapping.

Experimentsin[9] have shownthat theinterconnect delay
inan FPGA chipis closaly related to the number of fanouts
of the net. Thisisintuitively true: because an FPGA chip
has fixed routing resources, a net with larger fanouts must
spread over alarger area and use up more routing resources,
and thus has larger delay. It isimportant to notice that such
net structure based delay estimation is dynamic since the
fanout size of anet may change during mapping.

In this paper we study the LUT-based FPGA technology
mapping problem for delay minimization under the nominal
delay model, which assumes that the net delay is propor-
tional to the net fanout size. Thisis avery simple case of
dynamic delay model. However, even under this model we
can show that the delay-optimal mapping problem for K-



LUTs becomes NP-hard for £ > 3, and remains NP-hard
for K > 5evenfor duplication-freemapping and tree-based
mapping (but is polynomial time solvable when K = 2).
These complexity results are summarized in Table 2.

k=2 | K=3K=4| K>5

tree-based mapping | O(mn) open NP-hard

dup-freemapping | O(mn) open NP-hard
general mapping open NP-hard

Table2: Summary of complexity resultsonK-LUT mapping
for nominal delay minimization on »n-node m-edge network

These results indicate the difficulty of dynamic delay es-
timation in FPGA mapping. On the other hand, since net
structure is closely related to net delay, it is helpful to use
such information, even approximately. In thispaper we will
also present a simple heuristic to demonstrate the improve-
ment of mapping quality over the depth-optimal mapping
by taking nominal delay into consideration.

Due to page limit most of the proofs will be omitted.
Interested readers may refer to [3] for details.

2 Problem Formulation

A combinational Boolean network is represented as a di-
rected acyclic graph in which nodes represent logic gates,
and edges represent interconnects. A primary input (Pl) is
represented by anode withoutincoming edge, and aprimary
output (PO) isrepresented by anodewithout outgoing edge.
The set of fanins of gate v is denoted input(v), and the set
of distinct nodes which supply inputsto the gatesin subnet-
work H isdenoted input(H ). Similarly, the set of fanouts
of v is denoted output(v), and the set of distinct fanouts of
asubnetwork H isdenoted output(H). Thelevel (or depth)
of anode v isthe number of edges on the longest path from
any Pl nodeto v. Thedepth of anetwork isthelargest node
level in the network. A Boolean network is K-bounded if
|input(v)| < K for every nodew. In this paper we assume
that the networksto be mapped are aways K-bounded.

For anode v in the network, acone of v, denoted C,,, isa
subgraph of logic gates consisting of v and its predecessors
such that any path connectinganodeinC,, and v liesentirely
inC,. Theroot of C, isv. Thefanin coneof nodev, denoted
N,, consistsof v and all the predecessors of v. A fanout-free
cone (FFC) at v, denoted 7' F'C,, isacone of v such that
for any node w # v in FFCy, output(u) C FFC,. A K-
feasible cone of v isacone C, such that |input(Cy)| < K.
A cut in afanin cone N, of node v is abipartition (X, X)
of N, such that X is a cone of v, and for every Pl node
w € Ny, w € X. If X isaK-feasible cone, thecutiscalled
aK-feasiblecut .

A K-LUT LUT, that implements node v covers a K-
feasible FFC C, of v. If C, isnot fanout free, the non-
root nodes in C', that have fanouts outside of C,, must be

duplicated in order to cover ', by a K-LUT. Given a K-
bounded network, the technol ogy mapping problem for K-
LUT based FPGA designs is to cover the network with
K-feasible FFCs, possibly with node duplications. If node
duplicationisnot alowed, it isduplication-freemapping. If
the network is first decomposed into trees, and each treeis
then mapped separately, it istree-based mapping.

Given a node v, the nominal delay associated with v is
defined as

D(LUT,) = dr + |output(v)| - dn, (1)

where dy, isthe delay of a K-LUT, which is a constant for
a given technology, and dx > O is a constant represent-
ing the additiona delay due to adding a fanout branch to
the net (which is determined by the technology, the place-
ment/routing tools, and the style of the design, etc.). In
practice, d isusualy not aconstant. However, even under
such asimplified model, the delay minimization problemis
much more difficult than the depth minimization problemin
LUT mapping.
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Figure1: Complicationof mapping under thenominal delay
model

Under the unit delay model, for any node v, the mini-
mum depth of a K-LUT that implements v only depends
on the depth-optima mapping of the fanin cone N, of v.
This alows the depth-optimal solution to be computed us-
ing dynamic programming approach. Under the nomina
delay model, however, the minimum delay of aK-LUT that
implements v may also depend on the mapping of nodes
outside of N,. Figure 1 illustratesthis scenario. Let u bea
predecessor of v which has fanouts « and y outside of N,.
If both nodes « and y are packed into one LUT, the nominal
delay of node u decreases, since the fanout size of « isde-
creased by one. Ontheother hand, if « or y isduplicated, the
nominal delay of « will increase. Therefore, delay-optimal
mapping of v clearly depends on the mapping of the nodes
z and y outside of N,. Thisis the inherent difficulty of
nominal delay minimization in LUT mapping, which leads
to the NP-hardness resultsin the next section.

3 Complexity Results

Our proof of the NP-hardness of the delay-optima LUT
mapping problem will be based on polynomial time trans-
formationsfrom the RSAT problem to the decision version



of the delay-optimal LUT mapping problem under the nom-
inal delay model. Wefirst definethe RSAT problem, which
isarestricted case of the well-known NP-compl ete problem
SAT, and remains NP-complete. We shdl then transform
RSAT to the decision version of the nominal delay mini-
mization problems.

Problem: Restricted Satisfiability (RSAT)

Instance: A set of n Boolean variables Y= {1, z2,...,z,} and
a collection of m clausesC = {C1, Cy, ...,Cy }, where (a)
each clauseis the digjunction (OR) of 2 or 3 literals of the
variables, (b) each clause contains at most one of z; and 7;
for any variable z;, (c) both literals z; and ; of any variable
z; appear in some of the clauses, and (d) for any variable z;,
the number of clauses containing either z; or z; is no more
than 3.

Question: |s there a truth assignment of the variablesin X" such
that C; = 1forl <y < m?

By adding the conditionsto SAT while maintaining equiv-
alence, we have shown

Lemmal RSAT isNP-complete. |

Notethat conditions(c) and (d) indicatethat each literal will
appear in either one or two clauses. Thisisimportant to our
construction of the transformations.

3.1 General Mapping

We first define the decision version of the general delay-
optimal mapping problem under the nominal delay model.

Problem: Depth-Bounded LUT Mapping under Nominal Delay
Model (DBLMN)

Instance: A constant X' > 2, a Boolean network N of p nodes
and ¢ edgessuch that for any » € N, |input(v)| < K, and
three other constantsd;, > 0,dy > 1, and B.

Question: Under the nominal delay model with parameters
dr,dy, is there a K-LUT mapping solution of N that has
delay no morethan B?

We shall construct a polynomial time transformation that
transforms each instance of RSAT to an instance of
DBLMN. Intuitively, we want to relate the decision of the
truth assignment of a Boolean variable in an instance F
of RSAT to the decision of a node duplication in the cor-
responding network N of the DBLMN instance. Since
determining the truth assignment is difficult, we can show
that determining the node duplicationis aso difficult.

Given an instance F of the RSAT with n variables
%1, T2, ..., 2, and m clauses C1, Cy, ..., Cy,, We construct
a K-bounded Boolean network N corresponding to the in-
stance F asfollows.

First, for each variable z;, we construct a subnetwork
N (#;) that consists of thefollowingnodes: (a) Four internal

nodesdenoted as z;, =}, 7;, and 7;"; (b) 5(K — 1) — (L, +
Lz,) Pl nodes, where L, and Lz, arethe number of clauses
containing «; and z;, respectively; (c) A super-Pl node N,
which is a subnetwork to be defined later; and (d) Three
PO nodes denoted as O}, 02, O2. The nodes are connected
as shown in Figure 2(a), where N, z;, ;7 , 7;, 7, and O3
formadirect chain, whilez; and z; are connected to O} and
02, respectively. Thereare K —1 Pl nodes connected to each
of the PO nodes, i’ — 1 — L., Pl nodes connected to both
z; and z}, and similarly K — 1 — Lz, PI nodes connected
tobothz; and 7. Notethat for K > 3, K —1— L,, and
K — 1— Lz, will never be less than zero, since L., and
Lz, area most 2. Therefore, for K > 3 the constructionis
feasible. We call this subnetwork the subnetwork of ;.

Next, for each clause C; with 3 literas I3, 17,13, we
construct a subnetwork N (C';) consisting of the following
nodes: (&) Three internal nodes denoted as i}, i7, and i%; (b)
3K — 2 Pl nodes; (c) One super-PO node N., which isa
subnetwork to be defined later. The connection is shownin
Figure 2(b), where}, %, 12 and N, form adirect chain, and
eachhas K, K — 1, K — 1, and 0 PI nodes connected to it,
respectively.

If the clause C; contains only 2 literals [} and %, the
subnetwork NV (C'; ) isconstructed with thefollowing nodes:
(8) Two internal nodes /}, %, and a dummy internal node
dj; (b) 4K — 3 Pl nodes; (c) Two PO nodes d} and d%;
(d) One super-PO node N.. The connection as shown in
Figure 2(c) is similar to the case of 3-literal clause, except
that the additional X' — 1 Pl nodes and two PO nodes are
attached to the dummy node d;.

The super-PlI node N, and the super-PO node N. are
shown in Figure 2(d). N, isathree level subnetwork con-
sisting of 3internal nodes, 4 PO nodes, and 7K — 8 Pl nodes,
and has one outgoing edge. N. isafour level subnetwork
with 3internal nodes, 4 PO nodes, and 7K — 7 Pl nodes, and
has one incoming edge. The subnetworks N, and N, are
used to balance the delay along different pathsin NV, which
is necessary to the proof.

Finaly, we connect the subnetworks N(C;), j =
1,2,...,m, with the subnetworks N(z;), i = 1,2,...,n.
Let 7 (1 <r < 3)bealiteral in C;. If for some variable
i, l}“ = z;, we connect the internal node l}“ of subnetwork
N(C;) totheinterna node z; of subnetwork N (z;). Simi-
larly, if l; = z;, we connect nodel}“ of N(C};) tonodez; of
N(#;). Wecdl z; (or z;) thevariablenodeof /7, and call l;
aliteral node of ; (or z;). Such connectionsareillustrated
in Figure 3, and aso in Figures 2(a—) (in dashed lines).

It is clear that the transformation defined above takes
O(K(m + n)) time. Examples of transformations can be
found in [3]. Regarding the network N obtained through
thistransformation, we can see that N is K-bounded when
K > 3, and the only ways of packing more than one node
intoaK-LUT areto pack x; intothe K-LUT of «;" (denoted
aspack(x;)), andtopack Z; intothe K-LUT of Z; (denoted



Figure 2: Transformation of RSAT instance to DBLMN instance: (a) N(x;) for variable z;; (b) N(C;) for clause C;
with 3 literals; (c) N(C;) for clause C; with 2 literals; (d) Super-nodes N, and N,

Figure 3: Transformation of RSAT instance to DBLMN
instance: Connectionsbetween N (x;) and N (C})

as pack(Z;)), for 1 < i < n. Moreover, every node must
be implemented by a K-LUT regardless such packing (i.e.
if such a packing happens, node duplication must happen).
By linking the variable assignment of «; = 0 for the RSAT
instance F with theduplication and packing of nodez; inthe
network N (and assignment of «; = 1 with the duplication
and packing of z;), we can show the NP-completeness of
the DBLMN problem. We start with a lemma about the
transformation from a satisfiable RSAT instanceto a delay-
bounded DBL M N instance.

Lemma?2 If Fissatisfiable, then N hasa mappingsolution
of delay 7dy, + 15dy . [ |

The proof is obtained by examining three types of Pl to PO
paths, i.e. pathsentirely inside N (z;), paths entirely inside
N(Cj), and paths from N(C;) to N(xz;), and calculating
the largest possible path length. We omit the analysis due
to page limit.

In order to derive atruth assignment that satisfies 7 from

. a delay-bounded mapping solution of N, we first analyze
the characteristics of such a mapping solution.

Lemma3 In a mapping solution of N with delay bound
. 7dr + 15dx, at least one of the operations pack(z;) and
. pack(T;) must be performed for each 7, 1 < i < n. n

Lemma4 In a mapping solution of N with delay bound
. 7dp, + 15dy, for each N(Cj), 1 < j < m, at least one
. of the operations pack(l}), pack(I%), and (when |C;| = 3)
. pack(I?) cannot be performed. ]

According to Lemmas 3 and 4, if a mapping solutions sat-
isfies delay bound 7d;, + 15d v, it will be similar to the one
we constructed in the proof of Lemma 2, except that for
some z;, it is possible that both pack(x;) and pack(Z;) are
performed. In such a case, however, the largest delay of a
pathin N(z;) issmaler than 7d; + 15d, and one of the
packing operations is not necessary, hence can be ignored
in the construction of a truth assignment for F from the
mapping solution. Thisimplies

Lemma5 If N hasamapping solution S of delay no more
than 7dy + 15d, then F is satisfiable. [ |

The proofs of the above lemmas are omitted due to page
limit.
Therefore, by setting B = 7dy, + 15dy, we can show

Lemma6 DBLMN isNP-completefor K > 3.

Proof It is easily seen the the transformation takes poly-
nomial time. Moreover, DBLMN is in NP because given
any K-LUT mapping solution, we can easily verify if its
delay is bounded by B. Finaly, according to Lemmas 2
and 5, the RSAT instance F has YES answer if and only if
the DBLMN instance N has YES answer. Therefore, the



NP-completeness of RSAT implies that DBLMN is NP-
complete. |
Based on Lemma 6, we have

Theorem 1 The delay-optimal K-LUT mapping problem
under the nominal delay model isNP-hardwhen K > 3. 1

Notethat the construction of N doesnot apply when K = 2,
so the complexity of the problemis still open for K = 2.

3.2 Duplication-FreeMapping & Tree-Based Mapping

We have proved the NP-hardness of the delay-optimal gen-
eral LUT mapping problem under the nominal delay model
by relating the truth assignment of Boolean variables in
an RSAT instance to the duplication of nodes in the map-
ping of corresponding network. An interesting question is
whether node duplication is the only cause of the difficulty.
In this subsection we answer this question negatively, i.e.
even when node duplication is prohibited, or the mapping
is restricted to be tree-based, the delay-optimal LUT map-
ping under nominal delay is still NP-hard when K > 5.
Thisresult indicates that the delay minimization problemis
more difficult than the area minimization problem, which
is polynomial time solvablefor duplication-free mapping or
tree-based mapping.

For this proof, we again construct a polynomia time
transformation from an instance of RSAT to an instance of
DBLMN. Thenetwork for theDBL M N instanceiscarefully
constructed so that duplication-free mapping or tree-based
mapping can be easily enforced. Since node duplication
is not allowed in either case, we link the Boolean variable
assignment to the possible packing of multiple fanouts of
the same node into asingle K-LUT, and show that even the
choice of packing operationsitsef is difficult. Due to page
limit, we leave out the construction and the proof, and state
the following theorem directly.

Theorem 2 The delay-optimal duplication-free K-LUT
mapping problemand The delay-optimal tree-based K-LUT
mapping problem under the nominal delay model are both
NP-hard when K > 5. |

The construction of the network for the proof of theabove
result is feasible only when K > 5. For K < 5, the
complexity problem is open except for X' = 2, which will
be solved in polynomial timein the next subsection.

3.3 Optimal Duplication-Free Mapping for K = 2

As defined in [2], the maximum fanout-free cone (MFFC)
of anode v, denoted M F'F'C,, isan FFC of v such that for
any nodew # v, w € MFFC, if output(w) C MFFC,.
One property of MFFCisthat anetwork can be decomposed
into a set of digoint MFFCs. The MFFC decomposition is
important because every duplication-free mapping solution

contains a mapping solution of each MFFC in the decom-
position. In the case of area minimization, this property
allows us to map each MFFC independently and compose
an optimal solution of the entire network from the optimal
solutions of the MFFCs[2].

In the case of nominal delay minimization, in general this
method no longer works because the delay of some input
nets to an MFFC can be changed due to the mapping of
other MFFCs that share the same input net. However, if
K = 2, we can till combine the optima mapping solutions
of the MFFCs to obtain an optimal mapping solution for
the entire network. Specificaly, we have shown that the
following simple agorithm will produce the delay-optimal
mapping solutionif thereisno cut of size oneexistinginthe
network™:

1. Decompose the network into digoint MFFCs;
2. For eech MFFC M F F(C,, do
2.1. Find the maximum-volume? min-cut (X, X)
of cut-size2, and assign LU T, := X
22. 1t MFFC, — LUT, # V, recursively map
MFFPC, — LUT, using thisagorithm.

The proof of its optimality, omitted due to page limit,
is based on the fact that for A’ = 2 and in the absence of
the cuts of size one, any K-feasible cut isamin-cut; and the
following property of the maximum-volume min-cut proved
in[1],

Lemma7 For anycone(C, of anodev, thereexistsaunique
maxi mum-volume® min-cut (X, X) of ¢, such that for any
other min-cut (X', X’) of C,,, X’ C X. n

The cut computation in step 2.1 can be implemented us-
ing the augmenting path algorithm as used in FlowMap [1],
which takeslinear time in terms of the number of edges. In
he worst case the mapping for ©(n) nodes must be com-
puted, so the complexity is O(mn). Thisgives

Theorem 3 For K = 2, the delay-optimal duplication-free
mapping problem under the nominal delay model can be
solved in O(mn) time, where m and » are the number of
edges and nodesin the network, respectively. |

4 Considering Nominal Delay in Mapping

In this section, we present a simple heuristic to consider
nominal delay in LUT mapping for delay minimization. We
use the dynamic programming approach similar to that used
in FlowMap [1]. We compute the delay-minima mapping
of each node according to atopological ordering of nodes
gtarting from the Pls. The computation of delay-minimal
mapping LU T, of nodev depends on thethe delay-minimal
mapping of predecessors of v computed in the previous

IA cut (X,X) of size one can be eliminated in a pre-processing step
by collapsing the nodesin X into the root of the cone.
3Thevolume of acut (X, X) is defined to be | X |.



steps.  After we have computed the delay-minimal map-
ping LUT, of v, we also record the delay to the output of
LUT, (excludingthefanout delay of LUT,,) inthe mapping
solution, and denoteit as /().

N |:| output (w)/v

w Coutput(u)

(@) (b)

Figure4: Nomina delay estimation.
(a) | UwEoutput(u) OUtPUt(w)| S |OUtPUt(u)|'
(b) | UwEoutput(u) OUtPUt(w)| Z |OUtPUt(u)|

When nomina delay is concerned, as we pointed out
in Section 2, the mapping of node v may depend on the
mapping of some nodes outside of fanin cone N, of v,
which may have not been processed (since they may appear
later in the topological ordering). Thisisdueto thefact that
the fanout net delay of the nodesin N, may not be known.
In order to solve this problem, we estimate the fanout net

delays of each node « in NV, by
Dy(u) = dn -|output(u)|+

a (U

wEoutput(u)

)
output(w)| — |output(u)]),

where « is a positive constant for adjusting the relative
weight of the second term. The first term depends on the
fanout size of w. If itislarge, itislikey that LUT, will
also have large fanout size, thus, large nomina delay. The
second term is a correction of the simple estimation by the
first term. In the second term, |U,, ¢ output(u) output(w)]
is the total fanout size of the fanouts of «. If it issmaller
than |output(w)|, the fanouts of fanoutsof « converges (see
Figure4(a)), thussome fanoutsof « may be packed together
inoneor more LUTs. Thus, thenominal delay of LU T, will
decrease. On the other hand, if |U,, ¢ oupue(u) output(w)]
islarger, thefanouts of fanoutsof « diverge (see Figure4(b)).
In this case, some fanouts of u are likely to be duplicated.
Thus, the nomina delay of LUT;, will increase. Note that
the value of Dy (u) may be corrected later on when partial
mapping solution is known.

Given the fanout delay estimation Dy («) of every node
u in N, and the delay to the fanout net of LUT,, in the
del ay-minimal mapping sol ution, we can computethedel ay-
minima mapping of node v as follows. We compute a K-
feasiblecut (X, , X, ) suchthat theheight of thiscut, defined
as

H(Xy,Xy) = max{l(u) + Dn(u) |u€ Xy}, (3)

isminimum. Notethat H (X,,, X, ) correspondsto the maxi-
mum delay totheinput of X, (whichwill betheLUT imple-
menting v). Such acut can becomputed using the minimum-
height K-feasible cut algorithmintroduced in FlowMap [1].

The minimum-height K-feasible cut algorithm was orig-
inally used in FlowMap for depth-optima mapping under
the unit delay model. The minimum-height K-feasible cut
at each node can be found in O(K'm) time, where m isthe
number of edgesinthenetwork. Later on, thea gorithmwas
generalized to del ay-minimum mapping when each net has
a fixed pre-assigned delay of arbitrary value [4]. The gen-
eralized minimum-height K-feasible cut algorithm runs in
O(Kmlogn) time, where m and n are the number of edges
and nodes in the network, respectively. We use the general -
ized minimum-height K-feasible cut agorithm in our map-
ping of nodewv and use Dy (u) asthefanout delay estimation
of each nodein N,. After we find the minimum-height K-
feasiblecut (X,, X, )inN,,weset LUT, = X,. For some
node u in N, it may have two or more fanouts packed into
asingleinputto LUT,,. Therefore, we update the fanout net
delay estimation of every node in input(LUT,). Findly,
we computethe delay to the output of LU T, inthe mapping
solutionand record itin {(v).

After we have computed delay-minimal mapping of each
node, we shall generate all the necessary LUTs startingfrom
the POs using the same procedure as in FlowMap, which
can be done in O(m) time. Since we need to compute
a minimum-height K-feasible cut a each node, the time
complexity of our algorithmis O(Kmnlogn). Since the
time complexity is bounded by alow order polynomial, this
algorithm can handle circuits of large sizes very efficiently,
and can be invoked several times for the same design with
different choices of « inthe Dy («) estimation to obtain the
best result.

5 Experimental Results

We have implemented the heuristic algorithm described in
the preceding section and tested it on a set of six mid-
size MCNC benchmark circuits which were also used in
[1]. These circuits were chosen because each of them can
be mapped into a single Xilinx XC3000 series FPGA chip
[1Q], and be placed and routed using Xilinx design tools, so
that we were able to measure the real delays of the mapping
solutions (the second entry in Table 3 showsthetype of Xil-
inx X C3000 chip used for each example). The circuits have
been optimized for delay minimization using technology in-
dependent synthesi s and decomposed into two-input simple
gate networks. Each circuit was mapped using the heuristic
algorithm into 5-LUTs. Then, we packed the LUTSs into
XC3000 series 2-output CLBs, whenever possible, using a
maximum matching algorithm. Finaly, we used the Xil-
inx apr program to place and route the mapping solutions,
and used the Xilinx xdelay program to measure the actual
delays. We selected the smallest possible FPGA chips that



circuit XC3000 FlowvMap new heuristic

name part# #clb | ndly | adly (ns) o #clb | ndly | adly (ns)
9sym | 3020PC68 50 8.8 96.3 0.06 | 50 8.7 94.3
C880 | 3090PQ208 | 166 | 15.7 209.1 0.06 | 195 | 14.3 208.3
alu2 3064PC84 | 120 | 17.3 204.3 003 | 149 | 171 200.1

apex7 | 3042PP132 | 66 8.7 99.4 002 | 65 6.3 93.2
count | 3020PC68 59 75 835 002 | 60 71 79.8
vg2 3020PC68 34 | 59 83.0 003 | 39 51 78.1

Table 3: Experimental results.
(ndly = nominal delay, adly = actua delay after routing. For

can accommodate the circuits and compl etethe routing. For
comparison, we also mapped the circuits using FlowMap.
The same FPGA chips were used, athough FlowMap often
uses fewer CLBs and sometimes can fit into smaller chips.
We set dy = 0.1dg in Eq.(2) in our nomina delay for-
mulation. For each circuit we tried 10 different « values
(0 = 0.1dy, ..., 1.0dy), and kept the one that produced
the solution with the smallest nominal delay for placement
and routing. Table 3 summarized these results. As one can
see, with proper choice of parameters in the delay estima-
tion model, our simple heuristic based on nominal delay
estimation can produce better mapping solutions than the
depth-optimal mapping agorithm.

6 Conclusion

We have studied the LUT-based FPGA technology mapping
problem for delay minimization under the nominal delay
model, a very simple case of net structure based dynamic
delay model. Contrary to the fact that the depth minimiza-
tion problemin LUT mapping is polynomia time solvable,
we have shown that thenominal delay minimization problem
isNP-hard for general LUT mapping when K > 3, and re-
mains NP-hard for duplication-freemapping and tree-based
mapping when K > 5 (but is polynomial time solvable
for K = 2). Despite such difficulty, it is still beneficia
to consider nominal delay during LUT mapping for delay
minimization. We have demonstrated this using a simple
heuristic.

Accurate delay modelingisvery important in FPGA tech-
nology mapping. Our complexity resultsshowninthispaper
indicatesthat dynamicdelay mode isdifficult tousedirectly.
Currently we are working on more effective static approx-
imation of dynamic delay minimization. An alternative to
dynamic delay minimization is iterative static delay mini-
mization via feedback from placement and routing, which
we are a so working on.

nomind delay, d, = 1,dy = 0.1)
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