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Abstract. We present in this paper a linear time optimal al- 
gorithm for minimizing the density of a channel (with exits) 
by permuting the terminals on the two sides of the channel. 
This compares favorably with the previously known near- 
optimal algorithm presented in [6] that runs in super-linear 
time. Our algorithm has important applications in hierarchi- 
cal layout design of intergrated circuits. We also show that 
the problem of minimizing wire length by permuting termi- 
nals is "-hard in the strong sense. 

1 Introduction 
Channel routing is an important problem in VLSI layout de- 
sign and has been extensively studied before [2,8, ll, 221. 
Conventional channel routers assume the positions of the ter- 
minals on each side of the channel are fixed. However, it is 
typical in practice that after the placement phase, the po- 
sitions of the terminals are not completely fixed, and there 
is some degree of freedom to choose positions for the ter- 
minals. This freedom should be used to our advantage to 
make the subsequent routing task easier and hence obtain 
reduction in routing area. This type of problems have been 
studied by many researchers before [3,4, 10, 12, 13, 14,15, 
16, 17, 19,20, 211. We study in this paper the problem of 
permuting the terminals on the two sides of a channel to min- 
imize the channel density. An important application of rout- 
ing channels with permutable (interchangeable) terminals is 
for solving the pin assignment and global routing problem in 
building-block layout design, as it was shown that the com- 
bined pin assignment and global routing problem can be re- 
duced to routing a set of channels with permutable terminals 
171. 

Several special cases of the problem of minimizing chan- 
nel density by permuting terminals have been studied before. 
In [18], an optimal algorithm was presented for the case 
where the channel has no exit. Another optimal algorithm 
was given in [71 for basic channels, i.e., channels contain- 
ing only two-terminal nets with one terminal on each side of 
the channel. No optimal polynomial time algorithm for the 
general case was known before. Recently, a near-optimal 
polynomial time algorithm was presented in [6], which can 
guarantee to produce results that are within one of the opti- 
mal channel density. We show in this paper that the general 
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problem can be solved optimally in polynomial time by pre- 
senting a linear time exact algorithm for this problem. We 
also show that the closely related problem of permuting the 
terminals so that the channel can be routed in minimum wire 
length is "-hard in the strong sense. Due to space limita- 
tion, proofs of the results are not included, details can be 
found in [ 51. 

2 Preliminaries 
With respect to a horizontal channel, a net is said to have a 
left exit (respectively, right exit) if it has a terminal to the left 
(respectively, right) of the channel (outside the channel). A 
channel is said to have an exit if it has a net with either a left 
or a right exit. Each net N k  is specified by an ordered pair 
( t k ,  b k ) ,  where t k  is the number of terminals on the top of 
the channel (called top terminals), and b k  is the number of 
terminals on the bottom of the channel (called bottom termi- 
nals). We say N k  is of the form ( t k  , b k )  and use the notation 
N k  = ( t k ,  b k )  A net N k  is called apositive net if t k  2 b k ,  a 
negative net if t k  5 b k .  If either t k  = 0 or b k  = 0, then N k  

is called a one-sided net, otherwise it is a wo-sided net. If 
t k  = 0, then N k  is a bottom-sided net. If b k  = 0, then Ne is 
a top-sided net. 

The Density Minimization (DM) problem is the problem 
of permuting the terminals on the two sides of a channel to 
minimhe its density. An instance of the DM problem is 
a 3-tuple = (N, L, R), where N is the set of nets to be 
routed, L, R C_ N are, respectively, the set of nets in N with 
left, right exits. We use n = JNI to denote the number of 
nets in N .  For any subset N C N, we define:' tNi  = 

t k ;  b,! = ~ N ~ E N '  b k ;  t;, = minNkEN1 t k ;  

b;) = minNkEN' b k ;  "1 = C N k E N l  max{tk, b k } .  We 
may assume that tN = bN = I, where 1 is the length of the 
channel. This assumption is possible because we can always 
realize it by introducing trivial nets, i.e., nets of the form 
(0,l) or (1 ,O)  without exits. Trivial nets represent nets re- 
quiring no connections. Without loss of generality, we may 
also assume no net in N has the form (0,O). It is easy to see 
that no matter how the terminals are permuted, the density 

'For convenience of presentation, we define 
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Figure 1 : Illustration of definitions 

of the channel is at least max{lLI, IRI} because all the nets 
in L cross the leftmost column of the channel, and all the 
nets in R cross the rightmost column of the channel. 

Given an instance = (N, L, R) of the DM problem, we 
use B = L n R to denote the set of nets with both left and 
right exits, and M = N - L U R to denote the set of nets 
without exits. The set of trivial nets MT is a subset of M .  
and we let M p  = M - MT. Also, we let L* = L - B and 
R’ = R - B. L is said to be top critical if 

can be achieved by permuting ,terminals is at,least I L I + 1 or 

t i .  - bL* > 0 and t,. - b p  > 0, for otherwise we have 
either t i .  > b M T u B  + bL* = bLUMT Or tk.  > b R u M T ,  
contradicting the fact that 6~ = 6~ = 0. To avoid a net in 
R’ U M p  crossing all the nets in L at some column, we need 
t ; .  - bL. bottom terminals from the nets in B U MT to be 
assigned to columns with a terminal of a net in L’ on them. 
Similarly, to avoid a net in L’ $J M p  crossing all the nets 
in R at some column, we need t R .  - bR- bottom although 
there are enough bottom terminals from the nets in B U MT 
to accomplish either one of the goals, there are not enough 
such bottom terminals to accomplish both goals at the same 
time. Hence the claim follows. 

IRI + 1. suppose bM7uB < ( t L .  - b L * )  + ( t p  - b R * ) ,  then 

Theorem 2.1 Given an instance = (N, L, R) of the DM 
problem, the minimum channel density achievable by per- 
muting terminals is at least 

D = m a x { l B I + ~ , m a x { l L I + 6 ~ , I R I + ~ ~ ) + 6 ) ,  

bottom critical if 

> 1 - t M p u R *  = tLUMT = t L *  + tBUMT 9 

and critical if it is either top critical or bottom critical. That 
R is top critical, bottom critical and critical are similarly 
defined. Let 

1 ifLiscritical 
6L = { 0 otherwise, 

and similarly define S R .  We also make use of a variable 6, 
such that 6 = 1 if ILI = [RI, 6~ = 6~ = 0, and $ither 
b M T u ~  <, ( t i*  - b L * )  + ( t ~ *  - b R * )  O r t M T u B  < ( b L .  - 
t ~ = )  + (bR .  - t R * ) ,  and 6 = 0 otherwise. 
Example 1: Consider the channel shown in Figure 1, we 
have n = 7, 1 = 16, NI = (3, l ) ,  N2 = (4: l) ,  N3 = 
(1, lo), N4 = (1,2),Ns = (2, 1),N6 = (I ,()) ,& = (4, I) ,  
L = {Ni ,N2rN4} .  L* = ( N i , N 2 ) ,  R = {N4,N7} ,  

MP = { N 3 , N s } .  Since ILI = 2 > [RI = ,l, we have 
S = 0. Since bLuMT = 1 + 1 + 2 +  0 = 4 > t , .  = 3 and 
t m M T  = 3 + 4 + 1 + 1 = 9 > b i .  = 1, L is not critical 
and hence 6L = 0. Since bRuMT = 2 + 1 = 3 <: t k .  = 4, 
R is top critical and hence 6~ = 1. 0 

The significance of L being top critical is that no matter 
how the terminals are permuted, the density of the resulting 
channel is at least 1 L I + 1. To see this, consider the net Nk E 
L’ with the property that the rightmost column that contains 
a terminal of Nk is the leftmost afnong all such rightmost 
columns of the nets in L* . Since t L .  > b L u M T ,  among the 
t k  2 t ; .  columns with a top terminal of Nk on it, at least 
one of them has a bottom terminal of a net in R* LI M p  on it. 
Hence this net crosses every net in L at this column, making 
the local density at this column at least I L I + 1. We can also 
claim that if 6 = 1, then the minimum channel density that 

R’ = (N7)r B = {N4}r M = (N37 N5, N6} ,  M!r = {N6}, 

0 i f t k , b k  5 1 f 0 r d N k  E M 
d’ = { 1 i f 1  2 m L * U M p U R *  

2 otherwise. 

In other wordr, the chan4el cannot be routed in fewer than 
D tracks. 

Theorem 2.1 provides a lower bound on the minimum 
density of a channel achievable by permuting terminals. For 
the example shown in Figure 1, we have m L * u M p u R ’  = 
( 3 + 4 ) + ( 1 0 + 2 ) + 4  = 23 > 1,henced’ = 2. Since 
IBI = 1, I L I = 3, I RI = 2 , 6 ~  = 1 and 6~ = 6 = 0, we have 
D = 3. Figure 1 shows a terminal permutation that actually 
achieves channel density 3. Later on, we will show that this 
bound is always achievable by presenting an algorithm that 
constructs a channel that achieves it. The following lemma 
is used in showing the optimality of the algorithm. 

Lemma2.2 Let X = ( x 1 , x 2  , . . . ,  x u )  and Y = 
( y 1 ,  E, . . . , y v )  be sequences of non-ngative integers, such 
thatu 2 U , X l  5 1 2  5 . . .  5 x , , y 1  2 y2 2 . . .  2 yv 
and S = Cy=’=r X i  = E,”=, yj, then for 1 5 k 5 U ,  

a k  = x i  5 Yj = p k .  

3 Alternate Packing 
It is convenient to present our algorithm using a technique 
called alternate packing C6.181, which computes a terminal 
permutation by “packing nets” one at a time. After a net is 
“packed”, the positions of all its terminals on one side of the 
channel are determined. The algorithm proceeds in such a 
way that after the packing of a net, there is at most one par- 
tially assigned net (PAN for short), i.e., a net for which the 
positions of some but not all of its terminals are determined, 
and all the unassigned terminals of the PAN are on the same 
side of the channel. If these terminals are on the top of the 
channel, then the next net to be packed is a negative net, if 
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Figure 2 Altemate Packing 

there is any, otherwise the next net to be packed is a positive 
net. This technique is described formally in the following 
algorithm. 

Algorithm: Altemate-Packing (W); 
(* W = ( N I ,  N z , .  . . , N n )  is anorderedsequenceof *) 
(* the nets to be routed *) 
Begin 

pan := 0; U := 0 
current := 1; 

while W # I$ do 

(* index of next net to be packed *) 
col-:= 1; t := t i ;  b := b l ;  

begin 
Remove the current net from W ;  
i f u > O  
(* the PAN has U unassigned top terminals *) 
(* and the current net is negative *) 
then fork := 1 tomin{t  + U, b }  do 

i f k s m i n { u , b - t }  
then AC(co1umn + k - 1, pan, current) 
else AC(co1umn + k - 1, current, current) 

(* U < 0, the PAN has -u unassignedbottom *) 
(* terminals, and the current net is positive *) 

else for k := 1 to min{t, b - U }  do 
i l k  5 min{t - b,u} 
then AC(co1umn + k - 1, current. pan) 
else AC(co1umn + k - 1, current, current); 

if U + ( 2  - b )  > 0 
(* next PAN has only unassigned top terminals *) 

then N ,  := the next negative net in W 
else N ,  := the next positive net in W; 

then pan := current; 
if It - bl 2 I4 

column := col- + k; U := U + ( 1  - b ) ;  
current := j; t := t , ;  b := b, 

end 
End. 

A call to procedure AC(c, i, j )  assigns a top terminal of 
net Ni to column c, a bottom terminal of net Nj to col- 
umn c. Since we can use two linked lists to separately 
store the positive nets and the negative nets, the algorithm 
can be implemented to run in O(I) time, where I is the 
length of the channel. Figure 2 shows a channel obtained 
by applying Algorithm AltematePacking on the example 
showninFigure1 withW = 
The nets are actually packed in the following order: 
(NI , N3, N2, N5, N6, N7, N4). The density of the channel 
is equal to 4, instead of the optimal value 3. 

Note that if the channel has no exits, then the density of 
the channel obtained by Algorithm AltematePacking is at 
most two. This is because at most two nets intersect each 
column, one of them is the PAN when the column is under 
consideration, the other is the net under packing at that time. 
By carefully ordering the nets in L * and R* , the algorithm 
can also be used to compute a terminal permutation for a 
given channel with exits so that the resulting channel has 
density within one of the optimal value [6]. 

Observe that for any net of the form (k , I C ) ,  Algorithm Al- 
tematePaclcing assigns all of its terminals to k consecutive 
columns. In particular, any net of the form ( 1 , l )  have both 
its terminals assigned to the same column. 

4 The Optimal Algorithm 
As we have seen in the last section, Algorithm Alter- 
natePacking is not optimal in general. In order to achieve 
optimality, the terminals of the nets have to be carefully dis- 
tributed, so that, for example, no net in M p  U R* is to cross 
all nets in L at some column, if this is necessary and pos- 
sible (i.e., when D = (LI and hence max(b,bL} = 0). A 
convenient way of doing this is to partition the nets into a 
number of “smaller” nets, each containinga subset of the set 
of terminals of the original net. This is done in the following 
procedure. (We use X.Y to denote the concatenation of two 
sequences X and Y. This notation extends to the case that 
X or Y is a set because we can consider a set as a sequence 
by arbitrarily ordering its elements.) 

Procedure: DistributeNets (); 
(* = ( N ,  L ,  R )  is an instance of the DM problem *) 
Begin 

(* decompose the nets in L * and R’ *) 
L’ := e;  R’ := e;  
for Nk E L’ do 

i f t k  * bk = 0 
then L‘ := L‘ . (Nk)  

(* e is the empty sequence *) 

else begin 

end ; 
NL := ( tk ,  0); N i  := (0, b k ) ;  L’ := L‘.(NL, N l )  

for Nk E R’ do 
i f t k  * bk = 0 
then R’ := R’ . (Nk)  
else begin 

end ; 
N; := ( tk ,O);  N i  := (0, b k ) ;  R‘ := RI.(&, N l )  

S := MT; 
(* decompose nets in B into trivial nets *) 
for N ,  E B do 

begin 
for j := 1 t o t ,  + b, do 

ifj I t ,  
then N,,  := (1,O) 
else N,,  := (0,l); 

S := S . ( N , , )  

(* distribute the nets in S *) 

if D = 1LI 
then if t‘,. 2 bL* 

end; 

SL := 4; SR := 4; 
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then SL := 6rst (t;. - b L . )  negative nets of S 
else SL := fist  max(0, b i .  - t L .  } positive nets of S; 

if D = IRI 
I 

then I t R *  2 b ~ *  
then SR := last (4~. - b ~ p  ) negative nets of s 
else SR := last "(0, b;. - t p }  positive nets of S; 

S M : = S - S L U S R  
End. 

A net of the form (t, b )  is said to have dispa?'y It - bl. A 
tag of L* is a net Nk E L* such thattk = t , ,  IftL= 2 bL., 
and bk = b i .  otherwise. The tag of R* is similarly defined. 

Procedure DistributeNets decomposes each net in L* U 
R* into two one-sided nets, if it is not itself one sided. It also 
partitions each net in B into nets of the form (1,O) and (0,l). 
These nets together with the trivial nets in MT form the set 
S. Note that the set of new nets obtained from decomposing 
the same net are grouped together and the ordering of the 
new nets are consistent with the original ordering of the old 
nets (i.e., if an old net Nj appeared before N, , then all the 
new nets obtained from decomposing Ni appear before all 
the nets obtained from decomposing N,). The set of new 
nets S is partitioned into three subsets SL , SR and SM . The 
set SL is introduced to avoid having some net in M p  U R' 
crossing every net in L at some column. This is necessary 
if D = I L ( ,  because otherwise the density of the channel is 
at least ILI + 1 > D. It is also possible in this case because 
D = ILJ implies max(6,b~) = 0, hence there are enough 
terminals in LUMT to pad the columns with terminals of the 
tag of L* on it. The set SR is similarly introduced to avoid 
having a net in L' U M p  crossing every net in R. The set 
SM is introduced to keep positive nets in M p  from crossing 
negative nets in M p .  This is necessary if D = JBI + 1, 
for otherwise the density of the channel would be at least 
IBI + 2. It is possible if d* 5 1. 

With the nets decomposed as described in k e d u r e  Dis- 
tribute-Nets, we can distribute the terminals to where we 
want them to be in applying Algorithm AlternatePacking 
by carefully ordering the nets. This is enough to achieve 
optimality. 

Algorithm: OptimalJacking 0; 
(* = ( N ,  L ,  R) is an instance of the DM problem *:I 
Begin 
Sort L' into increasing order of net disparities; 
Sort R' into decreasing order of net disparities; 
if D = ILI and (iL. > b ~ .  orb;. > t L . )  

then Select a tag of L' as its first net; 

then Select a tag of R' as its last net; 
if D = IRI and(iR. > bR. orb;. > t R * )  

M$ := { N k  E MP : t k  2 b k } ;  MG := M p  - M:; 
DistributeNets (); 
i f t ~ *  > b p  

then W := SL .L'. M; .SM .M: .R'.SR 
elsew := sL.LI.M,+.sM.M;.R'.sR; 

AltemateSacking (W) 
End. 

Example 2: Consider the channels shown in Figure 3. We 
have n = 7, NI = (1 ,3) ,  Nz = ( l ,S) ,  N3 = (1,2), 

1 2 4 4 4  4 4 6  3 6 6  5 5 5 

1 1 1 2 2 2 2 2 3 3 6 7 5 5  

(a) An optimal solution 

1 4 4 2 4 4 4 6  6 6 3 5  5 5 

1 1  1 2 2 2 2 6 2 7 3 5 5 3  

(b) A =-optimal solution 

Figure 3: Optimal Packing 

The channel constructed by our algorithm is shown in Figure 
3(a) which achieves optimal density 3. Figure 3(b) shows 
the channel constructed by the algorithm in [61 which has 
density equal to 4, one more than the optimal value. The 
difference is that because the nets in L* and R' are decom- 
posed in our algorithm, net N3 does not cross every net in R 
in the channel constructed by our algorithm, whereas it does 
in the channel constructed by the algorithm in [a. 0 
5 The Optimality of Our Algorithm 
We show in this section that Algorithm OptimaLPacking 
constructs a channel with minimum density given an in- 
stance of the DM problem. We first state the correctness 
of the algorithm, which follows from the correctness of Al- 
gorithm AltemakPacking. 

Theorem 5.1 Algorithm OptimalPacking computes a valid 
terminal permutation of a given instance of the DMproblem, 
i.e., each terminal is assigned a unique position and no WO 

terminals are assigned to the same position. 

To establish the optimality of the algorithm, we need the 
following lemmas. 

Lemma 5.2 In the channel produced by Algorithm Alter- 
natepacking, no net in L' U R' crosses two nets in M p  
at some column. 
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Lemma 5.3 If L’ = R’ = 4, then Algorithm Opti- 
malPacking produces a minimum density channel. 

Lemma 5.4 If M p  = 4, then Algorithm OptimalPacking 
produces a minimum density channel. 

Based on the above lemmas, we can now show: 

Theorem 5.5 Algorithm OptimalPacking computes a min- 
imum density channel. 

Since both L’ and R’ can be sorted in linear time by 
bucket sort [ 11, the running time of the algorithm is easily 
seen to be linear, as stated in the following theorem. 

Theorem 5.6 Algorithm OptimalPacking runs in 0(1) 
time, where 1 is the length of the channel. 

6 NP-Hardness Results 
In this section, we show that the problem of permuting the 
terminals of a channel so that it can be routed in minimum 
wire length is NP-hard in the strong sense by proving the 
following decision version of the problem is NP-complete 
in the strong sense. 
Wire-Length-Minimization (WLM) 
INSTANCE: A set of nets N = { N I ,  N2, . . . , N,,} to be 
routed with t k  = b k  = 1, and a positive integer 
W .  
QUESTION Is there a permutation of the terminals such 
that the channel can be routed in total wire length 5 W? 

Theorem 6.1 The WLM problem is NP-complete in the 
strong sense even for channels with no exits. 

We prove Theorem 6.1 by a polynomial time transforma- 
tion from the following 3-Partitionproblem, which is known 
to be NP-complete in the strong sen% [91. We now have 

Corollary 6.2 The problem of computing a terminal permu- 
tation so that the resulting channel can be routed in min- 
imum wire length is NP-hard in the strong sense even for 
channels without exits. 
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