
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 939

TABLE II

Computation Cost Comparison of Finding Both IP3 and Its

Adjoint Sensitivity for the Example Circuits

Type of Type of Harmonic Proposed Speed-Up
Circuit Computation Balance Method

Time (s) Time (s)
Common IP3 8.78 1.22 7.2 times
Emitter Sensitivity 0.81 0.31 2.6 times

Amplifier Total 9.59 1.53 6.3 times
Differential IP3 44.67 3.45 13.0 times
Amplifier Sensitivity 6.03 0.52 11.7 times

Total 50.7 3.97 12.7 times
Singly IP3 118.43 4.01 29.5 times

Balanced Sensitivity 21.63 2.59 8.4 times
Mixer Total 140.06 6.60 21.2 times

Doubly IP3 158.91 5.08 31.3 times
Balanced Sensitivity 41.66 3.34 12.4 times

Mixer Total 200.57 8.42 23.8 times

C. Computation Cost Analysis

A comparison of the computation times between traditional
harmonic balance and the proposed method for determining
the sensitivity of IP3 using the adjoint approach is shown in
Table I obtained using a prototype MATLAB simulator on
a local workstation. As can be seen, the proposed method
presents a significant speedup.

It is important to note that both approaches cannot be taken
independently. In the case of harmonic balance, we must first
compute the value of IP3 from a standard harmonic balance
simulation in order to obtain the harmonic balance Jacobian.
In the case of the proposed approach, we also need to obtain
IP3 using the moments-based method in order to have access
to the moments computation matrix. Therefore, it is more
meaningful to combine the central processing unit (CPU) times
for computing both the nominal value of IP3 and its sensitivity
using both approaches. As a result, when the computation
times shown in Table I are coupled with the time of the original
moments technique for obtaining IP3 as described in [7], the
result is a very efficient technique for finding both IP3 and
its sensitivity with an overall speedup shown in Table II over
harmonic balance. For both methods, the computation time
for finding the sensitivity, with respect to additional circuit
parameters, was negligible. This is a property of the adjoint
method.

VIII. Conclusion

In this paper, a new method was proposed for the effi-
cient sensitivity analysis of third-order nonlinear intermod-
ulation distortion based on adjoint moments analysis. This
new method added insight to the moments-based method for
computing IP3, presented in [7], while still remaining signif-
icantly more efficient than traditional simulation approaches
based on harmonic balance. The method was shown to be
general and, therefore, applicable to arbitrary nonlinearities
and circuit topologies. The sensitivity obtained using the
proposed approach was as accurate as the harmonic balance
adjoint method.

References

[1] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall,
1998.

[2] J. Rogers and C. Plett, Radio Frequency Integrated Circuit Design.
Norwood, MA: Artech House, 2003.

[3] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady-State
Methods for Simulating Analog and Microwave Circuits. Boston, MA:
Kluwer, 1990.

[4] M. S. Nakhla and J. Vlach, “A piecewise harmonic-balance technique for
determination of periodic response of nonlinear systems,” IEEE Trans.
Circuits Syst., vol. 23, no. 2, pp. 85–91, Feb. 1976.

[5] L. O. Chua and P. M. Lin, Computer-Aided Analysis of Electronic
Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[6] S. Maas, Nonlinear Microwave and RF Circuits. Upper Saddle River,
NJ: Artech House, 2003.

[7] D. Tannir and R. Khazaka, “Moments based computation of intermodu-
lation distortion in RF circuits,” IEEE Trans. Microwave Theory Tech.,
vol. 55, no. 10, pp. 2135–2146, Oct. 2007.

[8] E. Gad, R. Khazaka, M. Nakhla, and R. Griffith, “A circuit reduction
technique for finding the steady-state solution of nonlinear circuits,”
IEEE Trans. Microwave Theory Tech., vol. 48, no. 12, pp. 2389–2396,
Dec. 2000.

[9] D. Tannir and R. Khazaka, “Adjoint sensitivity analysis of nonlinear
distortion in RF circuits,” in Proc. Custom Integr. Circuits Conf., Sep.
2009, pp. 633–636.

[10] C. W. Ho, A. E. Ruehli, and P. A. Brennan, “The modified nodal
approach to network analysis,” IEEE Trans. Circuits Syst., vol. 22, no.
6, pp. 504–509, Jun. 1975.

[11] J. W. Bandler, Q. J. Zhang, and R. M. Biernacki, “A unified theory
for frequency-domain simulation and sensitivity analysis of linear and
nonlinear circuits,” IEEE Trans. Microwave Theory Tech., vol. 36, no.
12, pp. 1661–1669, Dec. 1988.

[12] R. Griffith and M. Nakhla, “A new high order absolutely stable explicit
numerical integration algorithm for the time domain simulation of
nonlinear circuits,” in Proc. ACM ICCAD, 1997, pp. 504–509.

[13] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and
Design. New York: Van Norstrand, 1983.

[14] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach.
New York: McGraw-Hill, 2005.

Pattern-Mining for Behavioral Synthesis

Jason Cong, Fellow, IEEE, Hui Huang, and Wei Jiang

Abstract—Pattern-based synthesis has drawn wide interest from re-
searchers who tried to utilize the regularity in applications for design
optimizations. In this letter, we present a general pattern-based behavior
synthesis framework which can efficiently extract similar structures in
programs. Our approach is very scalable in benefit of advanced pruning
techniques. The similarity of structures is captured by a mismatch-
tolerant metric: the graph edit distance. The graph edit distance
can naturally capture different program variations such as bit-width,
structure, and port variations. In addition, we further our approach to
handle control-intensive applications, and this leads to more opportunities
for optimization. Our algorithm uses a feature-based filtering approach
for fast pruning, and a graph similarity metric called the generalized
edit distance for measuring variations in control-data flow graphs.
Furthermore, we apply our pattern-based synthesis system to the resource
optimization problem in behavioral synthesis. Considering knowledge of
discovered patterns, the resource binding step can intelligently generate
the data-path to reduce interconnect costs. Experiments show that our
approach can, on average, reduce the total area by about 20% with

Manuscript received December 3, 2009; revised May 18, 2010 and October
3, 2010; accepted December 9, 2010. Date of current version May 18, 2011.
This work is supported in part by the SRC GRC, under Contract 2006-TJ-
1400, in part by the NSF, Grant CCF-0530261, and a grant from Xilinx and
Magma, under the California MICRO Program. This paper was recommended
by Associate Editor S. Nowick.

The authors are with the Department of Computer Science, University
of California, Los Angeles, CA 90095 USA (e-mail: cong@cs.ucla.edu;
huihuang@cs.ucla.edu; wjiang@cs.ucla.edu).

Digital Object Identifier 10.1109/TCAD.2011.2106370

0278-0070/$26.00 c© 2011 IEEE



940 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

7% latency overhead with our pattern techniques on the Xilinx Virtex-4
field-programmable gate arrays, compared to the traditional behavioral
synthesis flow.

Index Terms—Area optimization, behavioral synthesis, edit distance,
pattern mining.

I. Introduction

Pattern-based synthesis has drawn wide interest from re-
searchers who try to extract and utilize the regularity in
applications for design optimizations. The common tasks of
pattern-based synthesis consist of pattern matching and pattern
recognition. Pattern matching is a technique for checking the
presence of a given pattern. Representative works in pattern
matching include graph-parsing in cognitive studies [1], [2],
symbolic equivalence checking [3], abstract syntax tree-based
matching [4], [5], and graph isomorphism algorithms [6].
Pattern recognition [7] was initially studied in the machine
learning domain for taking action based on the category of
data, i.e., extracting patterns from the raw data. Of all the
pattern recognition techniques, structural pattern recognition
is a methodology which attempts to describe objects in terms
of their parts and connections. Structural pattern recognition
is mainly based on graph matching, where each object is
represented by a labeled graph. Recently, graph matching has
found many applications in data mining, biochemistry, and
very large scale integrated computer-aided design.

In circuit designs, the intelligent use of regularity usually
produces high quality results. Actually, this is one key reason
why careful manual design can excel over the design synthe-
sized by automated tools. In this letter, we attempt to optimize
the resource usage of field-programmable gate array (FPGA)
designs using pattern-based synthesis techniques.

It is not surprising that pattern recognition has been ex-
ploited in every level of the large circuit design, from layout
designs to high-level synthesis [8]–[13]. Previous works on
pattern matching in behavior synthesis has different limita-
tions, such as pattern size, pattern representation (tree or
string), scalability, and mismatch-tolerance. In this letter, we
propose a general and efficient pattern recognition and syn-
thesis framework which benefits from the advanced subgraph
enumeration/pruning/matching techniques. Each pattern is rep-
resented by a labeled directed graph (DAG) to capture the
control/data flows in the original program. In particular, the
contributions of our approach include the following.

1) Use of a graph similarity metric called generalized

edit distance [14] which can naturally handle various
program variations such as bit-width, structure and port
variations, and control flow difference. Our method can
also be extended to handle edit operations with different
costs for area optimization.

2) Efficient pruning techniques for pattern recognition.
3) An efficient and accurate pattern selection strategy

which helps to select optimal pattern combinations from
discovered patterns.

4) A pattern-based behavior synthesis flow targeting FPGA
for resource reduction. With the knowledge of patterns,
our approach minimizes the resource cost through pat-
tern selection, pattern-adaptive scheduling, and binding
on the basis of the target FPGA platform.

The remainder of this letter is organized as follows.
Section II discusses related work; Section III extends our
data flow graph (DFG)-based algorithm to a more generalized
control-data flow graph (CDFG) pattern recognition algorithm.
Section IV presents our overall pattern-based behavior synthe-
sis flow; Section V reports experimental results and is followed
by conclusions in Section VI.

II. Related Work

Graph-matching-based pattern recognition method men-
tioned above has been widely applied to data mining, and
a number of efficient and scalable algorithms have been
developed to find frequent patterns in graphs [15]–[18]. The
a-priori-based graph mining (AGM) work proposed in [18]
uses a level-wise scheme to enumerate the recurring sub-
graphs. The pattern candidates with size k + 1 are constructed
by joining two graphs with size k which share k − 1 common
nodes, and a frequency count of the current pattern candidate
is done by subgraph isomorphism checking. The frequent sub-
graph algorithm proposed in [16] extended the AGM algorithm
to handle connected subgraphs, and they both use a breath-first
search strategy. Another group of algorithms use depth-first
search to find frequent subgraphs like graph-based substructure
pattern mining (gSpan) [17] and fast frequent subgraph mining
(FFSM) [15]. Both approaches calculate the canonical label
of a graph to avoid redundant subgraph enumeration and
graph isomorphism test; gSpan uses a canonical representation
of a depth-first traversal of a graph and FFSM uses the
adjacency matrix of a graph. The canonical labeling problem
is NP-hard in general, and different heuristics have been
proposed to incrementally construct the canonical label. All
of the aforementioned work can guarantee the completeness
of finding frequent subgraphs in terms of graph isomorphism.

A preliminary version of this letter was reported in [19],
in which an efficient subgraph enumeration technique has
been proposed to accelerate pattern recognition process and
mismatches can by handled using the edit distance metric.
In this letter, the original approach is extended to handle
CDFGs. Compared with the previous method, it can utilize
regularities across basic blocks and support sharing with
multi-basic block patterns. Specifically, a hierarchical feature-
based filtering scheme is introduced to effectively reduce the
amount of expensive similarity evaluation computations on
CDFGs. We further extend the edit distance definition in [19]
to handle the matching between two sets of graphs for CDFG
pattern-mining.

III. CDFG Pattern Recognition

In this section, we will first introduce four important tech-
niques used in our CDFG pattern recognition approach. Then a
generalized pattern recognition algorithm for the CDFG will
be described, which can be used to discover patterns with
similar CDFG structures.

A. Techniques

1) CDFG Labeling: In this letter, labeled graphs are used
to describe patterns, and naturally, we can easily derive a



CONG et al.: PATTERN-MINING FOR BEHAVIORAL SYNTHESIS 941

Fig. 1. (a) CFG. (b) Control flow features and CV for the given CFG,
assuming bb1 and bb2 are similar supernodes.

labeled graph of a DFG by choosing the label of a node to be
the type of the respective operation (addition, multiplication,
and so on). For a control flow graph, each basic block will be
treated as one supernode. With the CDFG similarity evaluation
techniques discussed in Section III-A4, we can group basic
blocks according to their internal data structures, and basic
blocks in the same group will be assigned the same label.
When the label of a basic block is obtained, we will attach it
to the original DFG label of the nodes it contains.

Commutativity and other properties can be handled by edge
labels. For example, the two input edges of a+ should have the
same label, while edges of a− operation should have different
label since it is not commutative. Similarly, different edge label
will be used to differentiate the conditional if and else branch
in CDFG pattern.

2) CDFG Subgraph Enumeration: We propose a bottom-
up constructive method for the CDFG subgraph enumeration
problem. Each basic block in CDFG is treated as a supernode.
At step k+1, all the subgraphs with k supernodes are generated,
and they are extended by adding one neighbor in the original
control flow graph. In order to reduce duplication, we define a
global order of each supernode as a unique index, which will
directly correspond to its extension order.

3) Two-Level Feature-Based Filter: In our approach, a sig-
nature called two-level characteristic vector (CV) is introduced
for each CDFG subgraph. The DFG-level CV proposed in [19]
has been extended by including CFG feature in the previous
framework to handle difference between CDFG patterns. How-
ever, the previous CV is constricted to the DFG only.

Definition 1: In a CDFG graph G = (VG, EG), a CFG
feature is a subgraph S = {u, l1, ..., lm | u, li ∈ Vbb} ⊆ G,
such that edge (u, li) ∈ EG (m equals the number of outputs
for supernode u).

Fig. 1 shows the features of a CFG graph, as well as the cor-
responding CV. Here assume basic blocks 1 and 2 are similar,
therefore, the number of the second feature in CFV is 2.

The filtering techniques in [19] has the restriction that
each operation must have uniform cost. In practice, each edit
operation may have different costs in different applications.
For example, replacing + with − is less costly than replacing
+ with ∗ in hardware design. To handle these situation more
precisely, weighted edit distance is introduced as following.

Definition 2: Assume S = {op1, op2, ..., opn} is a sequence
of edit operations which transforms a labeled graph G1 to
G2, and the cost of each operation opi is Ci. The weighted

Fig. 2. (a) Sample feature map matrix. (b) Sample CFG feature F1.
(c) Three sample DFG features

edit distance wd(G1, G2) [14] of two labeled graphs G1

and G2 is the minimal total cost (
∑n

i=1 Ci) of any possible
transformation sequence.

The general weighted edit distance cannot be pruned using
techniques in [19], since the edit distance is not increased by 1
for each edit operation. However, it can be extended to handle
weighted edit distance assuming that the cost of each edit
operation must be a positive integer. We can assign an integer
weight wi to each node ni, then the insertion/deletion cost is
C INSERTi = C DETELEi = wi, and the replacement cost
is C REPLACEi,j = |wi − wj|. For example, in hardware
design, we can use normalized area of operations as the cost,
such that +/− operations are less likely be replaced by ∗
operations with a small edit distance threshold, but they can
be replaced by operators with similar sizes.

With the above restriction, we can further prove the
following.

Theorem 1: Let wd(G1, G2) be the weighted edit distance
between two DAG G1 and G2, CV (G1), CV (G2) be the
CVs of G1 and G2, respectively, ‖CV (G1) − CV (G2)‖1

≤ 4 ∗ wd(G1, G2) (‖X‖1 =
∑ |xi| is L1 norm).

Proof: One edit operation opi can at most change CV in
terms of l1 norm by 4. And since Ci is a positive integer (i.e.,
Ci ≥ 1), we have ‖CV (G1)−CV (G2)‖1 ≤ 4 ≤ 4∗Ci. Adding
all the edit operations together, we come to the conclusion that
‖CV (G1) − CV (G2)‖1 ≤ 4 ∗ ∑

Ci = 4 ∗ wd(G1, G2).
The combination of data flow CV and control flow CV

is used in our approach to capture structural properties of a
given CDFG graph. Theorem 1 tells us that given an edit
distance limit ldist , the data flow CV difference between two
CDFG subgraphs will not exceed 4∗ldist—namely, the maximal
number of possible data flow feature misses is 4∗ldist under the
edit distance constraint. However, this reveals no information
for the similarity degree in the two control flow graphs.

In order to develop an upper bound for the number of
possible CFG feature misses, we propose a data structure
called the feature map matrix. Each row of the feature map
matrix corresponds to a DFG feature, while each column
corresponds to a target CFG feature. Each entry records
whether a DFG feature appears in a target CFG feature. As
shown in Fig. 2, DFG features f1 and f3 appear once in CFG
feature F1 and the corresponding entries in the feature map
matrix are set to one.

Definition 3: Given edit distance limit ldist , lmissUb is defined
to be the maximum number of columns covered by 4 ∗ ldist

rows in feature map matrix.



942 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Theorem 2: Let ldist be the given edit distance limit, and
CVCFG(Gi) be the control flow CV of Gi. If the generalized
edit distance (GED) between G1 and G2 does not exceed ldist ,
we have ‖CVCFG(G1) − CVCFG(G2)‖1 ≤ lmissUb.

Proof: Assume the GED between G1 and G2 is less than
ldist , Theorem 1 tells us that the data flow CV distance be-
tween G1 and G2 is no more than 4∗ldist; if a DFG feature fi is
missing, all the CFG features containing fi in their inside data
flow structures will be destroyed correspondingly. Therefore,
their control flow CV distance ‖CVCFG(G1) − CVCFG(G2)‖1

cannot exceed lmissUb.
Based on the analysis above, we know that subgraphs with

CV difference larger than lmissUb can be filtered in advance
and reduce the number of accurate similarity comparison.

4) Similarity Evaluation: Given two CDFG subgraphs G1

and G2 which have passed the two-level feature-based filter,
similarity evaluation will first be performed between their
control flow structures, in which each basic block is treated
as a supernode. After that, we will look into the DFGs inside
to do further comparisons.

We can observe that the data flow structure inside each
supernode is not connected and consists of several separate
subgraphs which we call subgraph fragments. This situation is
very common. In our approach, we do not allow edge insertion
operation between two separate subgraph fragments, since it
will connect two originally parallel DFGs and latencies of
pattern instances may differ too much. Under this constraint,
we define generalized edit distance as follows.

Definition 4: Given two sets of subgraph fragments SF1

and SF2, in which SFi = {fgi1, fgi2, ..., fgiN} and fgij is
the jth subgraph fragment in set i. Assume the edit dis-
tance between graph fg1a and fg2b is d(fg1a, fg2b), the GED
between SF1 and SF2 is defined as min

∑N
i=1 d(fg1i, fg2pi

),
where (p1, p2, ..., pN ) is a permutation of (1, 2, ..., N).

To calculate GED between two sets of subgraph fragments,
we construct a fragment-edit-distance matrix as follows.

Entry M(i, j) in the matrix records the edit distance between
the ith subgraph fragment in set 1 and the jth fragment in set 2.
When we build M, the condition edit distance d(fg1i, fg2j) ≤
ldist must be satisfied, otherwise, an infinite value will be
assigned to the corresponding entry. In our experiments, we
find that in most cases, the number of fragments with more
than ten nodes in a given subgraph is less than five; therefore,
even though we need to compute edit distance between every
two fragments, the cost is still acceptable. With the fragment-
edit-distance matrix, our problem is to find an optimal index
permutation (p1, p2, ..., pN ) of (1, 2, ..., N), so that the sum
of edit distance between the ith fragment in the first set and
pith fragment in the second set is minimal, for i = 1 to N.
This problem can be formulated as assignment problem, and
Hopfield network has been developed to solve this problem
efficiently in polynomial time [20].

B. CDFG Pattern Recognition Algorithm

Our algorithm iteratively finds patterns of size k starting
from k = 1. At step k + 1, all the size k CDFG pattern
instances are extended by one supernode using the subgraph
enumeration techniques discussed in Section III-A2. If sub-

graph sk is not a pattern instance of a certain pattern P at
step k, it is impossible for it to be a subgraph of another
pattern instance larger than k, which means we do not need
to further extend it. When a new subgraph sk+1 is generated,
it will be compared to the existing patterns by calculating the
CFG level edit distance between itself and existing patterns.
First, the control flow CV of a subgraph is calculated and
used as a signature to find the patterns which have similar
control flow structures. After getting the list of possible pattern
candidates, GEDs are calculated by the techniques discussed
in Section III-A4. If sk+1 matches a pattern P , it will be added
to the pattern instance list of P , otherwise a new pattern will
be generated based on sk+1.

IV. Pattern-Based Synthesis Flow for FPGA

Resource Reduction

Our pattern recognition framework can be applied in many
practical problems, such as the FPGA resource reduction prob-
lem (PBS-RR) discussed in this letter. If all pattern instances
are scheduled and bounded in a uniform way, the internal
data flows are free of multiplexors (except the multiplexors
generated due to resource sharing among nodes inside a single
pattern instance). Based on this observation, a pattern-based
behavior synthesis flow is proposed in this section for FPGA
resource reduction.

Specifically for the PBS-RR problem, only vertex relabeling
is allowed in edit distance calculation. The reason is that vertex
insertion/deletion not only increases the resource usage of a
single pattern with additional multiplexors to handle variations
among pattern instances but also complicates the scheduling
algorithm by introducing latency variations.

Pattern selection attempts to find an appropriate set of
pattern instances which minimize resource usage and latency
overhead.

For the PBS-RR problem, the following metric is used for
a given pattern P with N compatible pattern instances [19] as
follows:

N ∗ mux(io) + area(P)

N ∗ (mux(io) + mux(internal)) + area(P)
+ α ∗ latency(P)

|P | .

(1)
With the definition of pattern gain, the problem is how

to select a subset of patterns which are non-conflicting and
will maximize the total gain. Here “non-conflicting” means
non-overlapping, and no loop will be formed in a DFG after
selecting a certain set of patterns. For example, given a CDFG
graph G which consists of seven basic blocks, indexed from
0 to 6, assume our pattern recognition algorithm finds three
patterns P0, P1, and P2 in G. The corresponding pattern
groups are denoted by {P0|1 ; 2}, {P1|0 1 ; 1 3 ; 4 5}, and
{P2|3 4 ; 5 6}. That is, pattern P0 has two 1-node instances,
and the node index for each instance is 1 and 2, and so on.

A conjunctive normal form (CNF) representation
F (p0, ..., p3) is used in our approach to describe the non-
overlapping constraint among pattern group candidates. If p0

is set to 1, the corresponding pattern P0 will be selected. For
example, the non-overlapping constraint for pattern group 0
can be represented by setting f0 = (¬p0 + ¬p1) · (¬p0 + ¬p2)



CONG et al.: PATTERN-MINING FOR BEHAVIORAL SYNTHESIS 943

TABLE II

Resource Reduction on All Test Cases with CDFG Pattern Recognition

FF (np) LE (np) FF (DFG) CMP (%) LE (DFG) CMP (%) FF (CDFG) CMP (%) LE (CDFG) CMP (%)
IDCT 1514 5071 1601 5.75 3998 −21.15 1193 −21.20 2870 −43.40
SYNFILT 476 1578 394 −17.22 1193 −24.40 325 −31.72 1070 −32.19
BLKSORT 295 1565 277 −6.10 1455 −7.03 235 −20.34 1147 −26.71
BH 850 3288 701 −17.52 2692 −18.13 640 −24.71 2659 −19.13
HEAP 1023 6743 945 −7.62 6291 −6.70 934 −8.61 5995 −11.09
LEXTREE 824 4211 714 −13.35 3740 −11.18 695 −15.66 3543 −15.86
Average −9.34 −14.76 −20.37 −24.73

TABLE I

CDFG Pattern Recognition Results

Line Pattern Inst Avg. Calc MAX
IDCT 215 5 10 1.02 64
SYNFILT 1051 3 7 0.94 24
BH 301 6 14 1.33 37
BLKSORT 289 3 6 0.82 15
HEAP 217 11 23 1.49 10
LEXTREE 696 6 12 1.31 24

to 1. Based on the discussion above, the final CNF constraint
is F (p0, p1, p2, p3) = f0f1f2f3 = 1, and our objective is to
maximize total gain. With this formulation, our problem can
be reduced to a binate covering problem, and the bounding
technique in [21] can be used to compute the optimal solution.

After pattern selection, the scheduling and binding algo-
rithms are fairly easily designed to solve the PBS-RR problem.
Briefly, each pattern is scheduled and bound based on the
resource constraints in advance to get the respective hardware
implementation. Next, patterns are viewed as complex mul-
ticycle operations, and any state-of-the-art behavior synthesis
algorithm can be easily adapted for PBS-RR problem.

V. Experimental Results

Our pattern-based synthesis flow has been implemented
in the xPilot behavior synthesis system [22]. xPilot takes
behavioral languages like C as input and parses them into
control DFGs. The control data flows graphs are viewed
as collections of DFGs for pattern recognition. The graph
matching toolkit [23] is used for graph edit distance calcu-
lation. The synthesis engine will then perform the pattern-
based synthesis flow to reduce the resource usage with certain
design constraints. The synthesis results are dumped into RT-
level VHDL and accepted by the downstream register transfer
level synthesis tools. Our experiments use the Xilinx Virtex-4
FPGA and ISE 9.1 tool [24].

A. Resource Reduction with CDFG Pattern Recognition

To further illustrate the efficiency of our CDFG pattern
recognition algorithm, similar experimental flow has been
applied to six real-life test cases containing common control
flow structures in the program. Our test cases include IDCT,
SYNFLIT, BH, BLKSORT, HEAP, and LEXTREE. Similarly,
we also test the effectiveness of the proposed control-flow-
involved pruning techniques on these six benchmarks. On
average a very small number of GED computations is needed

TABLE III

Pattern Recognition Results on All C Test Benchmarks in

SPEC2006

No. of Lines Patterns Instances MAX Time (s)
401.bzip2 8300 505 986 68 118.2
429.mcf 2692 57 61 9 61.0
433.milc 15 049 455 1745 33 262.5
445.gobmk 197 215 6080 50 969 25 1293.2
456.hmmer 35 999 1277 3571 38 700.2
458.sjeng 13 854 1559 3250 21 495.5
462.libquantum 4364 57 248 20 19.0
470.lbm 1162 46 123 41 66.4
482.sphinx3 23 380 685 2648 50 297.1
998.specrand 81 1 2 13 9.4

as observed in Table I. Line indicates the size of each test
case, Pattern and Inst represent the number of patterns and
total pattern instances, respectively, in Table I, where Avg.Calc

is the average number of GED computations needed and MAX

is the maximal size of patterns in terms of DFG nodes.
The pattern-based FPGA resource reduction results with our

CDFG pattern recognition algorithm applied are shown in Ta-
ble II. Our letter has been compared to a traditional behavioral
synthesis flow without pattern optimization technique involved
and the one with DFG pattern recognition. In Table II, the
second, third, and fifth columns show the synthesis results for
the number of registers used without pattern-based technique,
with a DFG pattern-based technique and with CDFG pattern-
based technique, respectively. Columns 7–11 list the amount
and comparison of logic elements usage in those benchmarks.

Overall, our CDFG pattern synthesis flow has a 24% re-
source reduction on average compared with the traditional
one, and outperforms the one with data flow pattern only
for most of the test cases. The performance improvement is
especially substantial in BLKSORT in which pattern instances
are distributed among different basic blocks, while the DFG-
based approach cannot efficiently deal with sharing at the basic
block level. The latency overhead here is about 9% on average
with 3.5% clock period increase.

B. Scalability of CDFG Pattern Recognition

With the proposed CDFG pruning techniques, our pattern
recognition algorithm scales well as code size increases, which
has been tested on all C programs in SPEC2006 [25]. The
runtime and discovered patterns are shown in Table III.

Table III shows that our pattern recognition can effectively
discover very large patterns from complex programs. The
first column contains names of benchmarks; for each row,



944 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

columns 2–6 represent lines of C code, patterns found, pattern
instances, size of largest patterns, and runtime, respectively.
For example, test bench 445.gobmk has about 200 000 lines of
C code, and the biggest pattern contains 25 operations, yet our
algorithm can discover all patterns in about 20 min. In practice,
with further design constraints (like size of patterns, input
and output limitations, and others) and user-defined pruning
criteria, we believe that runtime will not be a serious issue.

VI. Conclusion

In this letter, we presented a general pattern-based behavior
synthesis framework which can efficiently extract patterns
from behavior specifications. Further, the pattern recognition
framework was applied to solve the resource optimization
problem on FPGA platforms. Experiments showed the efficacy
of both the pattern recognition algorithm and the resource
reduction algorithm.

References

[1] L. M. Wills, “Automated program recognition by graph parsing,” Ph.D.
dissertation, Dept. Comput. Sci., Massachusetts Inst. Technol., Cam-
bridge, MA, 1992.

[2] B. D. Martino and G. Iannello, “PAP recognizer: A tool for automatic
recognition of parallelizable patterns,” in Proc. IWPC, 2004, pp. 164–
174.

[3] C. Alias, “Program optimization by template recognition and replace-
ment,” Ph.D. dissertation, Dept. Inform. Syst., Univ. Versailles, Ver-
sailles, France, 2005.

[4] C. Keler, “Pattern-driven automatic parallelization,” Sci. Program., vol.
5, no. 3, pp. 251–274, 1996.

[5] R. Metzger and Z. Wen, Automatic Algorithm Recognition and Replace-
ment: A New Approach to Program Optimization. Cambridge, MA: MIT
Press, 2000.

[6] M. A. Abdulrahim and M. Misra, “A graph isomorphism algorithm for
object recognition,” Patt. Anal. Applicat., vol. 1, no. 3, pp. 189–201,
1998.

[7] S. Theodoridis and K. Koutroumbas, Pattern Recognition. San Diego,
CA: Academic Press, 1999.

[8] K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching,” in Proc. 24th Des. Automat. Conf., 1987, pp. 341–347.

[9] D. Rao and F. J. Kurdahi, “On clustering for maximal regularity
extraction,” IEEE Trans. Comput.-Aided Des., vol. 12, no. 8, pp. 1198–
1208, Aug. 1993.

[10] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh, “Instruction
generation and regularity extraction for reconfigurable processors,” in
Proc. CASES, 2002, pp. 262–269.

[11] M. R. Corazao, M. A. Khalaf, L. M. Guerra, M. Potkonjak, and
J. M. Rabaey, “Performance optimization using template mapping
for datapath-intensive high-level synthesis,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 15, no. 8, pp. 877–888, Aug.
1996.

[12] O. Bringmann and W. Rosenstiel, “Resource sharing in hierarchical
synthesis,” in Proc. IEEE/ACM ICCAD, Nov. 1997, pp. 318–325.

[13] T. Ly, D. Knapp, R. Miller, and D. MacMillen, “Scheduling using
behavioral templates,” in Proc. 32nd ACM/IEEE Conf. DAC, Jun. 1995,
pp. 101–106.

[14] B. T. Messmer and H. Bunke, “A new algorithm for error-tolerant
subgraph isomorphism detection,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 20, no. 5, pp. 493–504, May 1998.

[15] J. Huan, W. Wang, and J. Prins, “Efficient mining of frequent subgraphs
in the presence of isomorphism,” in Proc. ICDM, 2003, pp. 549–552.

[16] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in Proc.
ICDM, 2001, pp. 313–320.

[17] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
in Proc. ICDM, 2002, pp. 721–724.

[18] A. Inokuchi, T. Washio, and H. Motoda, “An a priori-based algorithm
for mining frequent substructures from graph data,” in Proc. PKDD,
2000, pp. 13–23.

[19] J. Cong and W. Jiang, “Pattern-based behavior synthesis for FPGA
resource reduction,” in Proc. 16th Int. ACM/SIGDA Symp. FPGA, 2008,
pp. 107–116.

[20] C. Douligeris and G. Feng, “Using Hopfield networks to solve assign-
ment problem and n-queen problem: An application of guided trial and
error technique,” in Proc. 2nd Hellenic Conf. AI SETN , 2002, pp. 325–
336.

[21] X. Li, M. F. Stallmann, and F. Brglez, “Effective bounding techniques
for solving unate and binate covering problems,” in Proc. 42nd Annu.
DAC, 2005, pp. 385–390.

[22] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “Platform-based
behavior-level and system-level synthesis,” in Proc. IEEE SOCC, Sep.
2006, pp. 199–202.

[23] GMT Toolkit [Online]. http://www.cs.sunysb.edu/algorith/implement/gmt/
implement.shtml

[24] Xilinx, Inc. [Online]. Available: http://www.xilinx.com
[25] SPEC CPU2006 [Online]. Available: http://pec.it.miami.edu/cpu2006


