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Abstract—The radiation dose associated with computerized to-
mography (CT) is significant. Compressive sensing (CS) methods
provide mathematical approaches to reduce the radiation expo-
sure without sacrificing reconstructed image quality. However,
the computational requirements of these algorithms is much
higher than conventional image reconstruction approaches such
as filtered back projection (FBP). This paper describes a new
compressive sensing 3-D image reconstruction algorithm based
on expectation maximization and total variation, termed EM+TV,
and also introduces a promising hybrid architecture implementa-
tion for this algorithm involving the combination of a CPU, GPU,
and FPGA. An FPGA is used to speed up the major computation
kernel (EM), and a GPU is used to accelerate the TV operations.
The performance results indicate that this approach provides
lower energy consumption and better reconstruction quality,
and illustrates an example of the advantages that can be realized
through domain-specific computing.

Index Terms—Compressive sensing, computerized tomography
(CT) image reconstruction, expectation maximization (EM),
field-programmable gate array (FPGA), graphics processing unit
(GPU), iterative reconstruction, total variation (TV).

I. INTRODUCTION

C OMPUTERIZED tomography (CT) plays a critical role
in modern medicine. However, the radiation associated

with CT is significant, and researchers are exploring various
approaches to reduce the radiation. Traditionally, image recon-
struction requires that the number of samples (measurements or
observations) be dictated purely by Nyquist limits. However,
methods such as compressive sensing that exploit object spar-
sity can enable CT imaging with less data and therefore less
radiation exposure, without sacrificing image quality.
Conventionally, the Feldkamp–Davis–Kress (FDK) algo-

rithm has been used for 3-D cone-beam CT image reconstruc-
tion, and it is widely employed in the machines used in clinical
settings. The computation kernel of the FDK algorithm is called
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filtered back projection (FBP). Generally, FBP is used for 2-D
images in association with parallel beam CT [1]. Iterative re-
construction has also been proposed [2], [3] to reconstruct 2-D
and 3-D images from the projections of an object. An iterative
framework can be used in many applications, including com-
puterized tomography (CT), positron emission tomography,
and magnetic resonance imaging. The main advantages of
iterative reconstruction over FBP are reduced sensitivity to
noise and increased data collection flexibility [4]. For example,
the data can be collected over any set of lines, the projections
do not have to be distributed uniformly, and the reconstruction
can also be performed when projections are available for a
limited set of angles.
Various iterative reconstruction/compressive sensing al-

gorithms have been proposed with different objectives or
regularization terms. However, many of these algorithms,
including expectation maximization (EM) [5] and simulta-
neous algebraic reconstruction technique (SART) [6], share a
common underlying computational approach that includes a
forward ray tracing step (forward projection) and a backward
ray tracing step (backward projection).
In the present paper, we focus on a recent compressive sensing

algorithm (EM+TV) that combines the expectation maximiza-
tion (EM) method using Poisson noise with the total variation
(TV) regularization. The only precondition of EM+TV algo-
rithm is that the reconstructed image cannot have an excessive
total-variation. For CT images, this precondition is true and the
EM+TV algorithm can be applied. The effectiveness of this
compressive sensing algorithm has been well documented [7].
The EM+TV method gives superior results to those obtained

by FBP or EM-only and has the additional important advantage
of involving reduced radiation dose.
For example, as illustrated in Fig. 1, the root mean square

error (RMSE) metrics is used to evaluate the algorithm perfor-
mance. The EM+TV algorithm using 36 views can obtain an
image quality similar to that obtained using an FDK/FBP al-
gorithm with 360 views, corresponding to an order of magni-
tude reduction in radiation. Traditionally, FDK/FBP algorithms,
which directly calculate the image in a single backward recon-
struction step, have been accelerated with GPUs or FPGAs [1],
[8]–[11]. However, when the number of samples is reduced,
FDK methods generally generate very poor-quality images.
Thus, there is a strong motivation to accelerate iterative re-

construction methods for practical CT systems. However, while
there has been a substantial amount of previous work aimed
at using a graphics processing unit (GPU) [12]–[14] to accel-
erate iterative reconstruction approaches like SART, there have
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Fig. 1. Reconstruction results by FBP with 36, 180, 360 views and EM+TV with 36 views (RMSE numbers are shown in parenthesis). (a) FDK/FBP with 36
views. (b) FDK/FBP with 180 views. (c) FDK/FBP with 360 views. (d) EM+TV with 36 views.

been far fewer publications addressing field-programmable gate
array (FPGA) implementations of iterative reconstruction. In
[15], for example, backward projection was implemented on
an FPGA, and the forward projection step was performed on
a GPU. GPUs and FPGAs of course have very different fea-
tures. GPUs can have hundreds of parallel computing cores, and
FPGAs can support high performance logic customization for
specific computations. If, for implementing an algorithm such
as EM+TV that has significant computational diversity, the ar-
chitecture advantages of both a GPU and an FPGA can both be
exploited, a higher performance design can be expected. More-
over, the use of FPGA can help to significantly reduce the power
consumption of the overall system.
This paper presents a hybrid architecture for the EM+TV

compressive sensing algorithm [7] for CT image reconstruction.
In this design, for EM part, the computations involved in the
EM forward/backward ray tracing steps are based on MADD
(multiply and add), requiring significant off-chip random ac-
cess. Moreover, the computation and the required data access
for one ray is proportional to the intersection length between the
ray and the object. These factors suggest that for the EM com-
putations, an FPGA is a more suitable platform than a GPU. We
implemented the ray-tracing forward projection and backward
projection on a Convey HC-1ex multi-FPGA platform. By con-
trast, the stencil computation kernel for the TV regularization
portion of the algorithm has attributes that make it well suited
for a GPU. We also use CPUs for task preparation and sched-
uling. The main features of the implementation described here
include the following.
• A hybrid architecture that combines multiple FPGAs, a
GPU and a CPU.

• A shared hardware module that can support both forward
projection and backward projection.

• Separation of the machine configuration and the tracing
engine.

• Better performance in terms of latency or throughput than
a pure GPU implementation on Tesla or Fermi.

• Amapping of high-level algorithmic specification in C into
FPGA using the Xilinx AutoESL high-level-synthesis tool.

This paper introduces a new compressive sensing EM+TV
algorithm for CT application. The related design and system
implementation for this compressive sensing application are
also provided. The limitations and considerations for compres-
sive sensing applications are analyzed in detail. The related

system design methodologies can be extended to other com-
pressive sensing applications. The methodologies are the design
flows, including the algorithm analysis, fixed point conversion,
memory behavior analysis, computation kernel evaluation,
parallel conflicts solution, data prefetching design, etc.
The remainder of this paper is organized as follows. Section II

introduces the mathematical EM+TV algorithm. Section III de-
scribes the computation analysis and the computation kernels.
Architectural design decisions and parallelism are discussed in
Section IV. Details regarding Implementation and optimizations
are given in Section V. SectionVI contains experimental results,
and conclusions are contained in Section VII. An extended ab-
stract of this work was presented in [16].

II. EM+TV ALGORITHM

The EM+TV algorithm, like many iterative algorithms, is
based on solving a system of linear equations

where is the original image repre-
sented as a vector, is the measure-
ment, and is a matrix describing the mapping from
the original image to the measurement. is the discrete Radon
transform [17], with each row describing an integral along one
straight line, and all the elements of are nonnegative.
The expectation maximization (EM) algorithm [18] is

an iterative reconstruction algorithm. The noise can be
represented in as Poisson noise. Then, if is given
and is known, the conditional probability of is

. Given an initial
estimate , the EM iteration for , is

(1)

The summations over and are from 1 to and , respec-
tively.
The total-variation regularization method was originally pro-

posed by Rudin, Osher, and Fatemi [19] to remove noise in an
image while preserving edges. This technique is widely used in
image processing and can be expressed in terms of minimizing
an energy function of the form ,
where is viewed as a 2-D or 3-D image with spatial domain ,
is usually a blurring operator, is the observed noisy-blurry
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image, and is a data fidelity term. For example, for
Gaussian noise, .
In this paper, we combine the EM algorithm with TV regu-

larization as in [7]. We first briefly described the method in [7].
In the classic EM algorithm, no prior information about the so-
lution is provided. However, if we are given a priori knowledge
that the solution has homogeneous regions and sharp edges,
this information can be applied to reconstruct an image with
both minimal total-variation and maximal probability. Under
this framework, the problem becomes

(2)
where is a parameter for balancing the two terms: TV and
EM. This is a convex constraint problem, and the optimal solu-
tion can be found by solving the Karush–Kuhn–Tucker (KKT)
conditions [20]

Using the positivity of , and the complementary slack-
ness condition gives for all .
Multiplying by gives

The last term on the left-hand side is an EM step (1), which can
be denoted by , giving

To solve the above equation in , with identified as noted
above, we use a semi-implicit iterative scheme for several steps,
alternated with a EM step. The algorithm is shown below (con-
vergence was shown in [21]).

Algorithm 1: EM+TV algorithm.

Input: ;

for do / IterMax: number of
outer iterations /

;

for do / K: number of
EMupdates /

; / Including one
and one /

end

;

end

Fig. 2. EM+TV block diagram.

III. COMPUTATION ANALYSIS

A. Algorithm Overview

To efficiently accelerate this compressive sensing algo-
rithm, careful analysis of the computation is required. Fig. 2
shows a high-level flow chart for the EM+TV algorithm as
implemented. It contains two updating modules: EMupdate
and TVupdate. Since there is logic data dependency between
EMupdate and TVupdate, the parallelism is found principally
in the internal processing of each module. EMupdate is more
critical for overall efficiency because it occurs in the inner-most
loop.
Inside the EMupdate kernel, as illustrated in (1), a forward

projection is performed to obtain , followed by an element-
wise division to get . Backward projection is
then performed to obtain or , and then the
updated value is obtained using element-wise scaling.
Because the matrix is very large and sparse, is never

constructed explicitly. A ray-tracing based technique is used to
compute the forward projection and backward projection. The
EM+TV algorithm is very computationally intensive because
it needs to invoke forward and backward projection repeatedly
(on the order of 100 3 times in Fig. 2). By contrast, the con-
ventional FDK algorithm only has a single backward projec-
tion. Scaling, which is also an important element of the overall
computation, is included in the projection step in our imple-
mentation. Since EMupdate occupies the majority (93%) of the
computation time, it is mapped to FPGAs for acceleration. For
TVupdate, since there is no data dependency within one TV
computation iteration, so it can be easily mapped to a GPUmul-
ticore architecture, giving significant acceleration.

B. Ray Tracer Engine

In this section, we focus on EMupdate. The EM algorithm
is often implemented with a ray-driven forward projection and
a voxel-driven back projection. To facilitate hardware resource
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Fig. 3. Ray tracer block diagram.

sharing, we use a ray driven approach in both forward and back-
ward projections. As a result, the forward and backward projec-
tion in EM+TV will have the same iterative hierarchical struc-
ture. The code for the forward and backward projection is shown
in Fig. 4. The first level of iteration comprises the number of
views (sources of the ray). The other two layers consist of the
array of 2-D detectors/sensors. The ray tracer engine works on
one source/detector pair and is the computation kernel for both
forward and backward projections.
As illustrated in Fig. 3, the ray tracer is composed of two

parts: tracer_precal and tracer_loop. For forward projection
and backward projection, the tracer has a similar computational
structure. The tracer_precal part operates in the same manner.
The only difference is in tracer_loop. In forward projection,
tracer_loop will read pixels along with the ray and output one
sinogram value for each ray; while in backward projection, the
tracer_loop will read and update pixels along each ray. The
code first identifies the direction for the next voxel in the ray
and then it performs a MADD operation to accumulate the
sinogram or update the image. Note that provides the
coefficients for the matrix . The forward projection attempts
to compute a line integral, while the backward projection
attempts to distribute a line integral onto the points on the ray.
The tracing stops if the voxel hits the boundary of the object.

C. Intersection Computation

The function is responsible for computing
the intersection point of the ray with the object and identifying
the parameter required for the tracing. Given a source coordinate

and destination , the procedure finds out
the intersection point with the object, which is a cube
, , . The procedure first needs to

identify the intersection ratio in each dimension

(3)

This computes the x-dimension intersection ratio that is closer
to the source. Similarly

(4)

The procedure then finds out the min and the max of the ratios

(5)

(6)

The ray intersects with the object if and only if .
Once it has been established that the ray intersects with the ob-

ject, we then compute the near-end integer intersection coordi-
nate using . Other parameters ,
used in the tracing loop can be derived based on the coordinate

. A number of divisions are used in the procedure.

IV. OVERVIEW OF THE DESIGN

The design proposed in this paper is based on the combination
of Xilinx FPGA and Nvidia GPU. As illustrated in Fig. 5, the
EMupdate portion of the algorithm is accelerated on the FPGA
and the TVupdate portion is accelerated using the GPU.

A. Convey HC-1(ex) Platform and GPU Accelerator

The reconstruction algorithms considered here are generally
memory bound. The multi-FPGA platform Convey HC-1(ex)
from Convey Computer Corporation was selected as the hard-
ware platform due to its high external memory bandwidth and
excellent support for random data access. It uses an interleaved
memory scheme in which different FPGAs access the off-chip
memory using a shared memory model. The system employs an
on-board crossbar to realize the interconnection. Fig. 6 shows
the system diagram for a Convey HC-1, which has Virtex5
LX330 FPGAs. In the HC-1(ex) version of the platform,
Virtex6 LX760 FPGAs are used. The system supports two
modes of interleaving schemes. In prime number interleave,
the system uses a prime number of memory banks to better
support power-of-two strides.
The Convey system has a total of 16 dual in-line memory

modules (DIMMs). As shown in Fig. 6, each memory controller
is connected to two DIMMs. The HC-1(ex) platform has four
user FPGAs. Each FPGA has eight physical memory ports con-
nected to eight memory controllers which run at 300 MHZ. The
core design runs at 150 MHZ. Thus, effectively each FPGA
is connected to 16 memory access ports through time multi-
plexing. The peak off-chip memory bandwidth is 80 GB/s if
each channel supplies one 64-bit data every cycle.
The Nvidia Tesla C1060 is connected with Convey HC1-ex

platform. The Tesla C1060 is built on a 55 nm process and uti-
lizes 240 CUDA Cores (Shaders). The Graphics Clock operates
at 1.3 GHz. You will find 4 GB GDDR3 of memory on board,
running on a 512-bit memory bus at 1.6 GHz. This will provide
a maximum 102 GB/s of memory bandwidth.

B. Ray-by-Ray Parallelism Versus Voxel-by-Voxel Parallelism

As noted earlier, in the forward projection step, it is neces-
sary to read the voxel values along the ray, and update (accumu-
late) the corresponding sinogram value based on voxel values.
In backward projection, the voxel values on the ray are updated
based on the sinogram value associated with the ray. The code
shown in Fig. 4 is consistent with a ray-by-ray tracing approach.
However, there are two approaches to parallelize the ray-

tracing forward/backward projection. One is a ray-by-ray ap-
proach in the manner of Fig. 4, while the other is a voxel-by-
voxel approach. For the forward projection, a ray-by-ray ap-
proach is preferred because the accumulation of signogram data
for each ray is independent, and the need for concurrent up-
dates on the (shared) sinogram data can be avoided. For the
backward projection, the voxel-by-voxel approach avoids ac-
cess conflict. However, since the forward and backward projec-
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Fig. 4. Ray tracing core engine.

Fig. 5. Proposed hybrid system for EM+TV 3-D.

tion sharemany similar features, we use the ray-by-ray approach
to enable the sharing of the hardware.
Using a ray-by-ray approach also enables the tracing engine

more independence from the machine configuration. There are
various source/detector configurations in CT, such as fan-beam,
cone-beam, parallel-beam, etc. If a voxel-based approach is
used, the list of sinograms that contribute to a voxel is highly
dependent on the machine configuration. By contrast, in a
ray-tracing approach that realizes ray-by-ray based parallelism,
once the set of rays are known, the hardware for tracing can
be reused. Using this architecture, it is much easier to migrate
from one machine setup (e.g., cone-beam) to another (e.g.,
fan-beam). The procedure to cope with access conflicts for
backward projection in a ray-by-ray mode will be described in
Section IV-D.

C. No Cache Interleaved Access

Ray tracing involves a significant amount of random data ac-
cess. Those accesses present certain degree of reuse, however,

Fig. 6. System diagram of the Convey HC-1(ex) hybrid computer.

the reuses are hard to capture in the absence of a cache-based
system. Note it is also possible to use a block RAM (BRAM)
scratchpad to capture reuse within the application design [15].
However, that requires deep knowledge of the specific geometry
of rays and how they intersect, and thus changes for different
images and configurations. Based on these considerations the
implementation in the present paper does not use caching.
Most existing FPGA computing boards prefer burst access.

In Li et al. [9], how to obtain good memory bandwidth on a
FPGA-based system that uses burst transfers is introduced. In
the convey HC-1(ex) system, parallel data access is not done
though a burst approach, but rather through interleaving. Re-
quests from different channels can be processed in parallel if
they fall into different banks. The system has 16 DIMMs and
1024 banks in total in the memory system. So the possibility of
the bank conflict is low if the parallel accesses are quite random.
Such an interleaved memory design is also seen in the on-chip
scratchpad memory of Nvidia GPUs. Because of the bandwidth
of the external memory is already quite high, we do not imple-
ment cache but talk to memory channels directly.

D. Resolving Access Conflicts in Parallel Backward Tracing

The forward projection can be easily parallelized by per-
forming simultaneous computations for different source and
detector pairs. For backward projection, however, there are
dependencies among views. Moreover, even within one view
there can be conflicts when two parallel units update one pixel.
To resolve the data conflicts within one view, atomic functions
that guarantee the mutual exclusion of an address in memory
can be used. This approach has already been used to accelerate
the backward projection in a GPU environment [14]. However,
an FPGA platform does not provide atomic operations on the
memory system.
To address this, we ensure that the computations for different

views (sources) are done sequentially. For the same view, the
detectors that are far enough apart are associated with one group.
This ensures that there will be no conflicts within the group and
that all tracers in the group can be processed in parallel. As il-
lustrated in Fig. 7, tracer lines having the same pattern can be
chosen. The selection of the distance between two adjoint detec-
tors involves a tradeoff between parallelism granularity and al-
gorithm performance. In our implementation, we choose the dis-
tance to be 5. The relationship between different distance choice
and the final reconstructed image quality is shown in Fig. 8. The
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Fig. 7. Ray-based parallel mapping.

Fig. 8. RMSE performance with different parallel intervals.

figure shows the RMSE for the results with different intervals.
As shown in the figure, when the interval is 5 8, the algorithm
without atomic operation can obtain the same RMSE result as
with atomic operation.

E. Memory Bandwidth Calculation

Generally, most CT reconstruction applications are memory
bound. For the EM+TV 3-D algorithm, there is data depen-
dency between the projections in the EMupdate step. Therefore,
a global data synchronization is required after forward projec-
tion and backward projection in each iteration. For each iteration
on data sets consistent in size with medical data (
with 4 bytes data type size), the sino data and image data syn-
chronization will require about 350 MB

of data communication.When, as is typically
the case, hundreds of iterations are needed, the overall band-
width requirement will be enormous. This places significant
constraints on the solution architecture. For example, simply
using a platform with many computational cores will not be
sufficient.
To explore this experimentally, we implemented the EM+TV

3-D application on a server with 24 cores with multithread tech-
niques support. As illustrated in Fig. 9, when the core number
increases, the speedup ratio does not increase linearly. Further-
more, since the bottleneck is memory bandwidth, a maximum
speedup will be reached when the memory bandwidth on one

Fig. 9. EMTV speedup on a multicore cluster.

server is consumed, and the performance can not be further im-
proved through the addition of more CPU cores. We also ex-
plored a cloud-based solution using Message Passing Interface
(MPI) framework on hundreds of cores. In this environment, the
data communication, which is performed through a network and
involves high synchronization overhead, once again becomes a
critical factor limiting performance.

V. IMPLEMENTATION AND OPTIMIZATION

In this section, the implementation details of this compressive
sensing application are provided. And the optimization methods
used to improve the performance are also introduced.

A. Fixed Point Conversion

In order to realize an efficient FPGA implementation and ob-
tain the maximum speedup, fixed-point operations are required.
The associated quantization errors must be carefully balanced
against the requirements of the application.We use a range anal-
ysis technique to obtain the range of all the values in our data-
path. Because the algorithm is iterative, for each iteration, the
errors caused by truncation on precision can accumulate. To ad-
dress this, we used a dynamic precision analysis method to de-
termine the number of fractional bits needed.
In the EM+TV algorithm, the computation kernel ray tracer

is the most precision sensitive aspect of the algorithm. To ex-
plore this, we use an original phantom image as a reference,
and examine the mean square error (MSE) between the original
phantom and the reconstructed image as a function of precision.
As illustrated in Fig. 10, the precision has a significant impact on
the reconstructed image quality.When 18 bits (corresponding to
a precision of about ) are used, a fixed point implementa-
tion can achieve the same reconstruction quality as a floating
point implementation. To provide an extra margin of accuracy,
we used 20 fractional bits. Given the many multiplications and
divisions in the operations, to preserve the precision of ,
64-bit arithmetic is used for the intermediate core operations.

B. Streaming Architecture

Function and the , as illustrated in
Fig. 3, can be executed in a task-level pipeline. We synthesize
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Fig. 10. Fractional bit width and reconstruction quality.

Fig. 11. Overall streaming architecture in one FPGA AE.

the and the individually to obtain
their corresponding latency reports. Because the loop bound of
the is not known, a simulation of test data is used
to compute the average-case latency of the . The
throughput of the memory interfaces is also considered. The la-
tency of the is approximately 1/4 of the latency
of the for a data set of size . We
implement two modules and eight
module in a single FPGA. As noted previously, each FPGA
has 16 virtual memory channels. Each module ex-
changes data with two of them (one for read and one for write).
The multi-FPGA system has four user FPGAs (Application En-
gine or AE), and the workload distributed in a SIMD manner.
EM implementation in one FPGA is shown in Fig. 11. To re-

alize such a diagram in C, we invoke the function
twice and invoke the function of the tracer loop eight times.
These different invocations take different FIFO channels and
memory interfaces as parameters, and the compiler parallelizes
function calls that are independent. The round robin distribu-
tion logic is coded in the function. At the re-
ceiver side of , the control is just a simple counter to
maintain the number of rays processed. Each pro-
cesses a predetermined number of rays. In the case where a ray
does not intersect with the object, the sends an
appropriate flag to denote that no processing is needed, and the
counter is updated to maintain a correct exit condition. The con-
trols that identify the list of sources and detectors are also coded
in the function, along with the lookup tables ROM for

Fig. 12. Streaming architecture inside one kernel.

Fig. 13. Masking for backward projection.

functions. This framework makes it easy to change these con-
trols to migrate this code for use with data from a machine with
a different scanning setup.

C. Prefetching

Off-chip memory access has a long latency. For example,
on the Convey platform, the latency is 125 cycles at 150
MHz. And, the latency can be even longer if congestion (bank
conflicts) occur. Given the large amount of random access in
EM+TV, prefetching is critical to overall system performance.
To address this, we model each memory access port with a
request FIFO and a response FIFO. As shown in Fig. 12, it
is necessary to invoke two parallel functions inside the hi-
erarchy of . One function is the “helper thread”

, which is responsible for sending
memory requests for reads, and the other function is the “com-
pute thread” , which obtains data from
the response FIFO and write out the computed result into
another request FIFO. This way, the helper threads can keep
sending as many requests as possible, until the FIFO is full.
Thus, the helper thread in essence is performing the function of
prefetching the required data, and the response FIFO serves as
the prefetch buffer. Fig. 12 depicts the architecture inside the

function.

D. Reducing the Data Accesses via Sparsity

Based on knowledge that the output image is sparse and that
voxel data is nonnegative, we develop a simple heuristic to re-
duce the amount of data access. In the beginning of an iteration,
a single forward projection is performed. If any accumulated
sinogram value falls below a threshold, we conclude that any
image value on that ray is likely to be close to zero. Based on
this, a 1-bit mask of the image called is con-
structed. When the backward projection is performed, it is only
necessary to update the voxels that are not masked, thereby re-
ducing the number of data access in the backward projection.
Fig. 13 shows the modified pseudo code.
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TABLE I
PERFORMANCE AND ENERGY NUMBERS FOR EMUPDATE COMPUTING KERNELS

E. Simultaneous Reconstruction of Two Images

After fixed point conversion, the external data accesses are
all 32-bits wide. However, the memory interface of the multi-
FPGA platform supports 64-bit memory interface. Because the
data access in the tracing is random, it is not feasible to use the
64-bit interface to directly enlarge the application bandwidth.
However, if there are two images to be reconstructed from data
acquired using the same machine setup, then the reconstruc-
tion can be performed simultaneously by packing two 32-bit
data words from different images into each 64-bit word, and the

does not need to be modified.

F. GPU Accelerated TVupdate

In this EM+TV algorithm, TVupdate has three layers of iter-
ations. The first layer comprises the number of views (sources
of the ray). The other two layers consist of the array of 2-D
detectors/sensors. There is no data dependency between the it-
erations, and a fully parallel implementation can be used with
a GPU. The Nvidia GPU has three layers of procesing units,
which are called thread, block and grid layers, respectively.
Given the natural mapping of three layer parallelism, TVupdate
can be implemented very efficiently on the GPU platform.

VI. EXPERIMENTAL RESULTS

The operations destined for hardware implementation are de-
scribed in C and synthesized into verilog RTL using AutoESL
HLS tool ver. 2011.1. The software operations is implemented
with Compute Unified Device Architecture (CUDA) Toolkit 3.2
for parallel computing on a CUDA-enabled NVIDIA GPU. The
target application is a Cone-Beam CT system. An image of size
512 512 256 is tested. It has 500 views (sources) and 736
64 detector vectors. We parallelize the CPU code using p-thread
and implement the GPU kernel using CUDA.

A. Kernel Performance and Energy Consumption

Table I presents the performance and the energy consump-
tion of the forward projection kernel and the backward projec-
tion kernel. The values in the table are obtained by averaging
1000 invocations. The performance on a dual-core CPU and
many-core GPU is also reported. The CPU used is Intel Xeon
5138 with 2.13 GHz clock frequency and 35 W TDP. The GPU
column denotes Nvidia Tesla C1060 with 240 cores and 200 W
TDP.
From Table I, the throughput of the FPGA design is the

highest. The power of the FPGA application engine is mea-
sured using the Xilinx xPower tool. When the latency of
forward and backward projection is combined, the multi-FPGA
engine is about 50% faster than the CUDA implementation on
Tesla C1060. Since it is possible as described above to perform

TABLE II
FPGA AREA CONSUMPTION OF EMUPDATE

two reconstructions simultaneously, the FPGA-engine can be
three times faster than a Tesla C1060. As shown in the table,
the FPGA platform is advantageous from an energy standpoint
as well.
It is also notable that the execution time for backward pro-

jection is noticeably slower on other platforms. This is because
the amount of data access is up to two times larger on these
platforms (due to the need to read the voxel value and then
write it back). Also, more invocations (and synchronization) are
needed to avoid the conflicts and ensure correctness, which re-
duces the available parallelism. In the FPGA design, by con-
trast, the same architecture is used for both forward and back-
ward projection. Each processing element (PE) is connected to
two memory channels, one for read and one for write. Thus, the
execution times of forward projection and backward projection
are similar.
The hardware area consumption for the complete EMupdate

FPGA design is listed in Table II. The core computing RTL
consumes fewer logic slices, because the Convey’s Personality
Development Kit (PDK) infrastructure also consumes about
10%–15% area. Most of the BRAM utilization is due to the
PDK infrastructure. It should be emphasized that since the
computation kernels are independent of the size of the image
data, the designed kernel can work for different machine setups.
The area of the EMupdate will keep almost same for different
data.

B. Application Performance and Energy Consumption

The EM+TV 3-D CT application has been tested on the pro-
posed hybrid system. The EM portion is done by the FPGA-sub-
system and the TV portion is done by the GPU. The flowchart
of the application is shown in Fig. 2, where the outer EM+TV
iterates 100 times, and the inner EM step iterates three times
for each EM+TV iteration. The hybrid configuration connects
the Tesla C1060 onto the Convey HC-1(ex) platform. After one
EM iteration completes, the image data is copied into the GPU
memory space and the TV CUDA kernel starts; the data transfer
does not add substantial overhead in this case. We experimen-
tally confirmed that the pipelined data transfer (FPGA copro-
cessor-sidememory to PCI-e) can achieve close to 1 GB/s, while
each EM iteration only needs to copy 256 MB image data to
GPU. And similarly we need to do the transfer backwards when
one TV invocation finishes. The data communication only adds
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TABLE III
APPLICATION PERFORMANCE AND ENERGY CONSUMPTION

a modest amount of extra time for each EM+TV iteration. Be-
cause the TV kernel is a highly regular stencil computation,
about a 10 speed up can be achieved with GPU. The execu-
tion time of the TV is much shorter than EM (no more than 5%
of the overall time consumption). The performance of the pro-
posed hybrid architecture is compared with that of the CPU only
or GPU only architectures, as illustrated in Table III. The pro-
posed architecture has the highest performance and minimum
energy consumption.
Compared with the GPU/CPU only [14] or FPGA only [15]

implementations, the proposed hybrid architecture takes advan-
tages of the FPGA and GPU at the same time. Since the area
consuming parts, such as TVupdate, has been efficiently accel-
erated with GPU, the area consumption is lower than that of the
FPGA only implementations. For the power consumption, with
the usage of FPGA, the power consumption of the proposed ar-
chitecture is less than 1/3 of the CPU implementation and 1/5
of the GPU implementation.

VII. CONCLUSION

We have proposed a new architecture for implementing
compressive sensing reconstruction. This system is based on
a hybrid involving both FPGA and GPU computations, and
has significant performance advantages over a GPU-only or
cloud-based multi-server approach. The advantages involve
not only speed, but also energy consumption. While we have
explored this in the context of EM+TV, we believe that there
is a broader opportunity to apply hybrid computing approaches
to a wide variety of compressive sensing processing. Solutions
such as the approach presented here reduce the computation
time associated with compressive sensing, and thus make it
more practical to perform medical imaging at lower radiation
exposure levels.
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