
Communication Optimization on GPU: A Case Study of Sequence Alignment
Algorithms

Jie Wang
University of California, Los Angeles

Los Angeles, USA

Xinfeng Xie
Peking University

Beijing, China

Jason Cong
University of California, Los Angeles

Los Angeles, USA

Abstract—Data movement is increasingly becoming the bot-
tleneck of both performance and energy efficiency in modern
computation. Until recently, it was the case that there is
limited freedom for communication optimization on GPUs,
as conventional GPUs only provide two types of methods for
inter-thread communication: using shared memory or global
memory. However, a new warp shuffle instruction has been
introduced since the Kepler architecture on Nvidia GPUs,
which enables threads within the same warp to directly
exchange data in registers. This brought new performance
optimization opportunities for algorithms with intensive inter-
thread communication. In this work, we deploy register shuffle
in the application domain of sequence alignment (or similarly,
string matching), and conduct a quantitative analysis of the
opportunities and limitations of using register shuffle. We
select two sequence alignment algorithms, Smith-Waterman
(SW) and Pairwise-Hidden-Markov-Model (PairHMM), from
the widely used Genome Analysis Toolkit (GATK) as case
studies. Compared to implementations using shared memory,
we obtain a significant speed-up of 1.2× and 2.1× by using
shuffle instructions for SW and PairHMM. Furthermore,
we develop a performance model for analyzing the kernel
performance based on the measured shuffle latency from a suite
of microbenchmarks. Our model provides valuable insights for
CUDA programmers into how to best use shuffle instructions
for performance optimization.

I. INTRODUCTION
The graphics processing unit (GPU) is a widely used het-

erogeneous platform that is equipped with a massive number
of threads, offering high performance for many applications.
It has become an integral part of today’s computing systems.

Communication is an important factor for both perfor-
mance and energy efficiency on GPUs. Table I shows the
computation throughput, shared memory and global memory
bandwidth (BW) on two Nvidia GPUs. As we can see,
there is a huge gap between computation and memory
systems, making it usually unrealistic to fully exploit the
rich computation resources on GPUs. This has spawned an
active research community for communication optimization
on GPUs [1]–[3].

Communication among threads (inter-thread communica-
tion) takes up a large portion of the total communication
on GPU, considering that the GPU uses a large number
of threads to explore the parallelism in applications. For
applications with intensive inter-thread communication, the
performance will be limited by the efficiency of inter-thread

Table I: Overview of the gap between computation and
memory systems on modern GPUs.

Nvidia K1200 Nvidia Titan X
GFLOPs 1,057 6,611
shared memory BW(GB/s) 550 3,302
global memory BW(GB/s) 80 336

communication methods. There are two conventional types
of methods for GPU threads to communicate with each
other: shared memory and global memory. Threads within
the same thread block can communicate through shared
memory, which is basically a scratchpad memory that can
offer high bandwidth. Threads in different thread blocks
can communicate via global memory. For both methods, we
need to set explicit synchronization barriers for potential data
hazards.

Starting from the Kepler architecture, threads within the
same warp can communicate with each other using a new
instruction called SHFL, or ”shuffle” [4]. Shared memory
can be saved by using shuffle instructions, which may help
improve the occupancy, and synchronization overheads are
eliminated because shuffle is used by threads within one
single warp with implicit synchronization.

This new instruction provides a unique opportunity for
optimizing communication in applications with intensive
inter-thread communication. However, shuffle has its limita-
tions, as it can be used only for threads within the same
warp, and it will increase the register usage which may
become the new limiter for occupancy. Trade-offs between
the benefits and limitations of shuffle need to be considered
before deploying shuffle in kernels. Previous works [5]–[7]
using shuffle instructions to obtain performance gains did not
investigate such trade-offs and there is a lack of quantitative
and systematic approaches for analyzing the impacts of
shuffle instructions on kernel performance. This motivates
us to conduct a detailed analysis of shuffle instructions.

In this work we select two algorithms, Smith-Waterman
(SW) and Pairwise-Hidden-Markov-Model (PairHMM),
from a widely used genomic application (GATK) [8] as case
studies for analyzing the effectiveness of shuffle instructions
on communication optimization. For each algorithm, we
implement two designs using either shared memory or



shuffle for inter-thread communication. Furthermore, we
develop a suite of microbenchmarks to evaluate the latency
of shuffle and other instructions in detail. A performance
model to analyze the kernel performance is built based on the
measured latency from these microbenchmarks. We conduct
a detailed analysis of shuffle instructions in two kernels with
the help of the performance model and microbenchmarks.

We summarize the contributions of our work as follows.
• We conduct a quantitative and systematic analysis of

the impact of shuffle instructions on communication
optimization. A suite of microbenchmarks is devel-
oped for measuring the latency of shuffle instructions.
Furthermore, a performance model for analyzing the
performance of sequence alignment algorithms is de-
veloped. This model helps validate the results from
microbenchmarks and estimates the performance gains
of using shuffle instructions, taking all trade-offs into
consideration.

• We use shuffle instructions to optimize the inter-thread
communication for two sequence alignment algorithms,
SW and PairHMM. Compared to designs using shared
memory, we achieve speedups of 1.2× and 2.1× for
SW and PairHMM, respectively, using shuffle instruc-
tions.

• We conclude the trade-offs of using shuffle instructions
from the case studies of two sequence alignment algo-
rithms. This work provides valuable insights for CUDA
programmers to use shuffle instructions for communi-
cation optimization in a wider class of applications.

The remainder of this paper is organized as follows.
In Section II we present details of shuffle instructions.
Microbenchmarks for testing the shuffle latency are dis-
cussed. Section III describes the algorithms of SW and
PairHMM. In Section IV we discuss the general design
methodology of using shared memory or shuffle instructions
for these algorithms, and optimization techniques to further
improve the performance. Then we present the performance
model for analyzing and estimating the performance of these
designs. Experimental results are presented in Section V. We
discuss the overall performance of our designs and conduct
a detailed analysis on trade-offs of using shuffle instructions.
Section VI summarizes prior research. Finally, we conclude
our work in Section VII.

II. UNDERSTANDING SHUFFLE INSTRUCTIONS

In this section we will first introduce the shuffle instruc-
tions. Then we will present the microbenchmarks for testing
the latency of shuffle and several related instructions.

A. Shuffle Instruction

Shuffle allows threads within a warp to directly share data
in registers. It can be used only for threads within a single
warp, and all the threads involved in the shuffle instruction
need to be active during the execution time. No explicit

Figure 1: Variants of shuffle instructions.

a b c d

c d a bd a c b c d a b

__shfl __shfl_up/down __shfl_xor

any-to-any shift to neighbor butterfly exchange

Figure 2: An example of using shuffle instructions for
reduction.

1 1 1 1 1 1 1 1

2 2 2 2

4 4

8

v+=__shfl_down(v,4)

v+=__shfl_down(v,2)

v+=__shfl_down(v,1)

synchronization is needed for shuffle as it is executed within
the single warp.

There are four variants of shuffle instructions, as depicted
in Figure 1. shfl can directly copy data from any indexed
lane. shfl up and shfl down copy data from a lane with
either a lower or a higher ID relative to the caller. The
last instruction shfl xor copies data from a lane based
on bitwise XOR of its own lane ID.

Figure 2 depicts an example using shuffle for reduction.
Without shuffle, we need to store the intermediate data at
each reduction stage back to either shared or global memory.
The benefits of using shuffle are summarized below [9].

• Save shared memory usage. Using register shuffle can
free up shared memory. The shared memory can be
either used for other data or to increase the occupancy.

• Reduce instruction count. As for read-after-write access
(e.g., Figure 2), when using shared memory, three
instructions (write, synchronize, and read) are needed.
Shuffle can finish the same work with only one single
instruction.

• Eliminate synchronization. Explicit synchronization is
not required since threads within the same warp are im-
plicitly synchronized due to the single-thread-multiple-
thread (SIMT) execution model on GPU.

Nevertheless, we find that with the exception of the third
point above, the benefits are not obvious performance-wise.
Although using register shuffle can save shared memory, the
register usage will increase, which may become the new
limitation factor for occupancy, and thus may affect perfor-
mance. As for the second point on the reduced instruction
count, the latency of shuffle instructions is not disclosed
publicly, which makes it difficult to estimate the performance
gains using shuffle. These observations motivate us to study
the shuffle instructions in a quantitative and systematic ap-
proach, using sequence alignment algorithms as case studies.



1 __global__ void reg(float* in, float* out) {

2 float a = in[threadIdx.x];

3 for (int i=0; i<ITERATIONS; i++)

4 a *= a;

5 out[threadIdx.x] = a;

6 }

7 __global__ void shuffle(float* in, float* out) {

8 float a = in[threadIdx.x];

9 for (int i=0; i<ITERATIONS; i++)

10 a *= __shfl(a, src_thread);

11 out[threadIdx.x] = a;

12 }

13 __global__ void sharedMem(float* in, float* out) {

14 __shared__ float buf[32];

15 for (int i=0; i<32; i++)

16 buf[i] = in[i];

17 int ind = buf[0];

18 float a = 1.0;

19 for (int i=0; i<ITERATIONS; i++) {

20 ind = buf[ind];

21 a *= ind;

22 }

23 out[0] = a;

24 }

25 __global__ void sharedMemSync(float* in, float* out) {

26 __shared__ float buf[32];

27 for (int i=0; i<32; i++)

28 buf[i] = in[i];

29 int ind = buf[0];

30 float a = 1.0;

31 for (int i=0; i<ITERATIONS; i++) {

32 ind = buf[ind];

33 a *= ind;

34 __syncthreads();

35 }

36 out[0] = a;

37 }

Listing 1: CUDA code for testing the instruction latency.

B. Microbenchmark for Testing the Shuffle Latency

The shuffle instructions are first introduced on the Ke-
pler architecture. However, latency of these instructions
is not disclosed and therefore remains unclear to CUDA
programmers. Such information is critical to performance
estimation. Therefore, we develop a suite of microbench-
marks to estimate the latency of shuffle and several other
related instructions. This benchmark is conducted on several
GPUs with different architectures to further evaluate the
performance across different GPU generations.

This microbenchmark covers all variants of shuffle in-
structions, as shown in Figure 1 in Section II. To provide
performance comparison, the microbenchmark also cov-
ers the shared memory access and synchronization using
syncthreads().

The major code used in the microbenchmark is shown
in Listing 1. For the kernel shuffle(), each thread in the
warp loads one item from the global memory and updates
it using data from other threads for several iterations. Con-
sidering the RAW dependency of variable a across different

Figure 3: Test results of microbenchmarks.

1 1
5

13 13 13 13 13

28

35

1

15
9 9 9 9 9 9

21

57

1

7
4 5 5 5 5 5

16

52

0

10

20

30

40

50

60

la
te

n
cy

(c
y
cl

e)

K40 K1200 Titan X

iterations, the elapsed time of the kernel can be calculated
as below.

tshuffle = #iteration× (latencyshuffle + α) + β (1)

The factor α refers to the sum of latency of all the
remaining instructions (e.g., multiplication). The factor β
covers overheads outside the loop.

The kernel register() uses only register access. Similarly,
the elapsed time for this kernel is calculated by the equation
below.

treg = #iteration× (latencyreg + α) + β (2)

Therefore, by conducting multiple runs with different
numbers of iterations, we can use a linear regression model
to obtain the slope factors kshuffle = latencyshuffle + α
and kreg = latencyreg+α. The latency of the shfl() instruc-
tion is therefore derived as latencyreg + kshuffle − kreg .

To avoid the effects of warp scheduling among different
thread blocks, we will launch only one block with 32
threads. We apply this approach to test all shuffle instruc-
tions.

The kernel sharedMem() tests the shared memory access
latency. The goal of this test is to evaluate the latency instead
of throughput; therefore, we launch only one thread block
with one thread inside for pointer chasing in the shared
memory. The kernel sharedMemSync() is used for evaluat-
ing the latency of syncthreads(). We add syncthreads()
after each iteration in the code. With the same methodology,
we can derive the latency of shared memory access and
synchronization as shown below.

latencysharedMem = latencyreg+ksharedMem−kreg (3)

latencysync = latencyreg+ksync−kreg−latencysharedMem

(4)
On GPUs, register access takes one cycle to finish, there-

fore, latencyreg = 1 in all the equations. In the test, we
will conduct ten runs with different values of ITERATIONS.
The results are shown in Figure 3. We test shfl up/down
with different strides and shfl with randomly generated
lane IDs.

As we can see, on average the latency of shuffle is in-
between that of shared memory access and register access.



Besides, the latency of different types of shuffle instructions
varies. For example, on K1200, shfl xor takes longer latency
than any other shuffle instruction. Such results indicate that
the underlying mechanisms might be different for different
shuffle instructions.

The latency pattern of shuffle is consistent on GPUs
with the same architecture (K1200 and Titan X, using
Maxwell architecture). However, we notice that such latency
varies across different architectures. As we can see, on K40
(Kepler architecture), shfl xor is the instruction with the
lowest latency among all shuffle instructions, while it is the
instruction with the highest latency on Maxwell architecture.
It shows that the underlying architecture for shuffle is also
modified across different GPU generations.

The results from this microbenchmark help clear up
previous confusion regarding shuffle instructions. Clearly,
the shuffle instruction is not as fast as direct register access,
but it is still faster than shared memory access. The latency
also varies across different types of instructions and GPU
architectures.

III. OVERVIEW OF SEQUENCE ALIGNMENT ALGORITHMS

In this section we will first introduce the general idea of
sequence alignment algorithms, and then describe the details
of SW and PairHMM.

A. Algorithm Overview

Sequence alignment algorithms, e.g., Smith-Waterman,
Needleman-Wunsch, and PairHMM, have been employed in
many application domains such as bioinformatics, finance,
language processing, etc. The principle of these algorithms is
to traverse possible alignments between two sequences and
select the alignment with the best score according to certain
criteria using a dynamic programming approach. This is
done by updating a matrix with the size of M×N , in which
M,N are the lengths of two sequences. The computation
complexity of these algorithms is O(MN). Each entry in
the matrix depends on its neighbors from certain directions.
Figure 4 shows the common dependency graph of these
algorithms. Each entry depends on its left, up, and left-up
neighbors.

To accelerate the application, programmers can explore
two kinds of parallelisms: 1) inter-task parallelism and 2)
intra-task parallelism. Inter-task parallelism refers to the par-
allelism among different alignment tasks which are indepen-
dent of each other while intra-task parallelism refers to the
parallelism among different cells on the same anti-diagonal.
Figure 4 shows one example of intra-task parallelism. Many
previous works [10]–[13] use either one or both of these two
kinds of parallelisms to accelerate the computation.

Exploiting intra-task parallelism in these algorithms will
introduce intensive inter-thread communication. Therefore,
we choose these algorithms as our application drivers to
justify the effectiveness of shuffle instructions.

Figure 4: Dependence graph for sequence alignment algo-
rithms.

Figure 5: PairHMM model.

𝑀

𝐷

𝐼 𝜖

𝛼

𝛽

𝛾

𝛿
𝜁

𝜇

B. Algorithm Details

The SW and PairHMM algorithms in this paper are ex-
tracted from the HaplotypeCaller [14] of GATK. These two
algorithms are used to align DNA sequences for discovering
variants in human genes.

SW [15] is a well-known algorithm for sequence align-
ment. It is exploited to identify the optimal local alignment
between two sequences by means of dynamic programming.
Given two sequences s1 and s2 of length M and N , it
computes the score matrix H as follows.

Hi,j = max


0

Hi−1,j−1 + s(ai, bj)

maxk≥1{Hi−k,j +Wk}
maxl≥1{Hi,j−l +Wl}

(5)

where 1 ≤ i ≤ M and 1 ≤ j ≤ N . ai and bj are i-
th and j-th characters in sequence s1 and s2, respectively.
s(a, b) is a similarity function for two characters, and Wk

and Wl are the gap-scoring scheme. For the latter two cases
in Equation 5, we maintain two buffers holding the local
maximum along each direction so that each time only the left
and up neighbors need to be accessed. Meanwhile, a back-
tracing matrix btrack recording the paths chosen for each
cell is updated. After the computation, we will locate the cell
with the maximal value in the last row and column of the
score matrix H , and retrieve the optimal alignment of two
sequences back from this position using the matrix btrack.
Note that the conventional SW will find the maximum
throughout the whole score matrix, and the algorithm has
been modified to adapt to the needs of HaplotypeCaller.

PairHMM [16] is a variant of SW. However, there are
several fundamental differences between the two algorithms.
PairHMM uses the hidden Markov model to align two
sequences and will generate a probability score, measuring
the similarity of two sequences. Figure 5 shows the HMM



Figure 6: GPU designs for sequence alignment algorithms
with different types of inter-thread communication: a) design
A: using shared memory, b) design B: using shuffle.

̇̇̇̇̇̇̇̇

sequence2

se
q
u
en

ce
1

a)

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

thread

thread

thread

thread

thread

thread

sequence2

se
q
u
en

ce
1

b)

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

thread

thread

thread

thread

thread

thread

reg1reg3 reg2

used for this algorithm. There are three states in total:
match, insertion, and deletion. α, β, γ, δ, ε, ζ, µ are transition
probabilities among different states.

Different from SW, in PairHMM, we will com-
pute three score matrices (match(M), insertion(I), and
deletion(D)) using the following equations.

Mi,j = Pi,j(αMi−1,j−1 + βIi−1,j−1 + γDi−1,j−1)

Ii,j = δMi−1,j + εIi−1,j

Di,j = ζMi,j−1 + µDi,j−1

(6)
where Pi,j is the prior probability of emitting two characters
(ai, bj) in the two sequences s1 and s2. The sum of all the
cells in the last row of matrix I and D is the probability
that measures the similarity of two sequences.

In conclusion, compared to SW, there are three matrices
(M ,I , and D) to update instead of only one score matrix H .
Also, there is no back-tracing phase in PairHMM, and the
output of the PairHMM will be one single number measuring
the similarities between two sequences.

IV. IMPLEMENTATION DETAILS

In this section we will first discuss the general method-
ology of implementing sequence alignment algorithms in
Section III. Then, optimization techniques for both kernels
are described. In the end, we present the performance model
for analyzing the performance of our designs.

A. Design Methodology
In this section we discuss the general design methodology

for algorithms with dependence graph as shown in Figure 4
by exploiting the intra-task parallelism. Shared memory
and shuffle are used as two alternatives for inter-thread
communication.

Respecting the dependence order between two adjacent
anti-diagonals, we will iterate through all the anti-diagonals
one by one. Each thread will be assigned one cell on the
anti-diagonal.

The inter-thread communication occurs when loading and
writing data among threads. This can be implemented either
using shared memory or shuffle. Figure 6 shows the designs
using shared memory or shuffle (denoted by design A and
B). Listing 2 shows the major CUDA code for two designs.

Figure 7: Two-level tiling scheme for SW: a) coarse-grained
tiling, b) fine-grained tiling. In a), cells on the boundaries
that are surrounded by dashed boxes need to be stored back
to the global memory. The data on the horizontal boundaries
will be retrieved and consumed by the next block, and data
on the vertical boundaries are used for finding the maximal
value in the last column of the score matrix.

̇ ̇
̇

̇̇̇
̇
̇

̇

sequence2

se
q
u
en
ce
1

a)

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇
b)

BSIZE

N

M BSIZE

BSIZE

thread

thread

thread

̇̇ ̇̇

In design A, we use shared memory to store the data
on the anti-diagonals. Data on the same anti-diagonal are
stored in one line buffer. This enables coalesced shared
memory access from different threads on the same anti-
diagonal. From the dependency graph, three line buffers
are sufficient for these algorithms, as shown in Figure 6a).
After the computation on each anti-diagonal has finished, we
will rotate three line buffers and synchronize all the threads
before the next iteration.

In design B, data in the anti-diagonals are stored in local
registers, and the three line buffers using shared memory in
design A are freed up. Each thread will hold three registers,
as denoted by reg1, reg2, reg3. These registers store the three
cells calculated or to be calculated by the current thread.
As shown in Figure 6b), in order to calculate a cell, it
will load its left neighbor from reg2 locally, and its up or
left-up neighbors from reg2 or reg3 of the adjacent thread,
respectively, using shuffle instructions. There is no explicit
synchronization at the end of each iteration, because the
threads within the warps are implicitly synchronized.

The characteristics of the algorithms and the instructions
(shared access vs. shuffle) will bring unique design chal-
lenges and opportunities for each kernel. In the following
sections, we will describe the techniques we employ to
tackle those obstacles and help further improve the perfor-
mance.

B. Design Optimization of SW

1) Shared Memory: The major challenge for SW is that
we need to store the whole back-tracing matrix btrack for
retrieving the optimal alignment later. Storing the whole
btrack matrix in the shared memory is impossible due to
the limited shared memory resource. Therefore, we apply
a two-level tiling method to mitigate the problem, which
is depicted in Figure 7. We first tile the matrix at the row
dimension. The whole matrix will be tiled into blocks of size
BSIZE×N. Cells lying in the boundaries of the block will be
stored back to the global memory, as the horizontal boundary



1 __shared__ data_t buf1[BUF_SIZE];

2 __shared__ data_t buf2[BUF_SIZE];

3 __shared__ data_t buf3[BUF_SIZE];

4 for (int diag = 0; diag < DIAG_NUM; diag++) {

5 // LOAD

6 data_t left = buf2[threadIdx.x];

7 data_t up = buf2[threadIdx.x-1];

8 data_t leftup = buf3[threadIdx.x-1];

9 data_t cur = compute(left, up, leftup); // COMPUTE

10 buf1[threadIdx.x] = cur; // WRITE

11 rotate(buf1, buf2, buf3); // ROTATE

12 __syncthreads(); // SYNC

13 }

1 data_t reg1, reg2, reg3;

2 for (int diag = 0; diag < DIAG_NUM; diag+) {

3 // LOAD

4 data_t left = reg2;

5 data_t up = __shfl(reg2, threadIdx.x-1);

6 data_t leftup = __shfl(reg3, threadIdx.x-1);

7 // COMPUTE

8 data_t cur = compute(left, up, leftup);

9 // WRITE

10 reg1 = cur;

11 // ROTATE

12 reg3 = reg2; reg2 = reg1;

13 }

Listing 2: CUDA code for implementations of using shared memory (design A) and shuffle (design B).

will be used by the next block, and the vertical boundary
will be used for searching for the maximal score later. Inside
each block, we further tile it into smaller tiles with the shape
of parallelograms. Therefore, each tile covers BSIZE anti-
diagonals. We choose the shape of parallelograms instead of
normal rectangles due to the fact that using rectangular tiles
will result in low warp efficiency considering most threads
will be wasted at the upper left and lower right corners of
the tiles.

In the end, we will have three line buffers of length BSIZE,
and a matrix of size BSIZE×BSIZE to store the data in
btrack. We will assign BSIZE threads for the task. Each
thread will work on one complete row in the matrix, and
data along the row can be reused locally inside each thread.
The execution order of tiles is depicted in Figure 7.

2) Shuffle: The two-level tiling scheme is applied to
shuffle as well. Data in the anti-diagonals are stored in
local registers, and the previous three line buffers in shared
memory are freed up as depicted in Figure 6b).

C. Design Optimization of PairHMM

As discussed in Section III, there are several differences
between PairHMM and SW, which may affect the design
choices when implementing the kernels. Several architecture
modifications are made to adapt to these features.

1) Shared Memory: The implementation for PairHMM
is nearly the same as depicted in Figure 6a). The last
thread working on the last row will have an additional
job as accumulating the results of cells in matrix match
and insertion. Tiling is no longer needed here, because
the shared memory is mostly used by line buffers to hold
the intermediate results in anti-diagonals, whose size can
be fit on-chip in our experiments. However, based on the
observations that sequence lengths vary a lot in our datasets,
setting the same line buffer length for all tasks is not
efficient. We optimize the performance by duplicating the
kernels with several copies, each with different line buffer
size. Tasks with different sequence lengths will fall into
different kernels at the launch time to efficiently use the
shared memory.

Figure 8: Shuffle implementation for PairHMM. In this
example, each thread will hold six registers for two cells in
total, and compute them one by one on each anti-diagonal.
Inter-thread communication only happens between boundary
cells.

sequence2

se
q
u
en

ce
1

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

thread

thread

thread

reg1reg3 reg2

reg4reg5reg6

Similar to SW, each thread will work on one complete
row in the matrix, which offers the opportunity of data
reuse along the horizontal axis. PairHMM benefits more
from this feature, as there are more metadata (e.g., transition
probabilities) of sequences used for calculation, and the
movement of these data can be saved by data reuse.

2) Shuffle: The implementation that uses the shuffle in-
struction faces the limitation that this instruction can be
only used within one warp. Therefore, if there is more
than one warp working on the anti-diagonal, threads in
different warps need to communicate with each other using
either shared memory or global memory. This will result
in branch divergence. Besides, the access of shared/global
memory will unfortunately cancel the benefits of using
shuffle instructions because every shuffle instruction within
the warp is accompanied by one shared/global memory
access across the warps. Based on these considerations and
experiments, we make the compromise to use 32 threads
(one warp) for calculating the whole sequence alignment
task. This solution still delivers remarkable performance, as
shown in Section V.

Similar to what we have done for SW, we create three reg-
isters (reg1, reg2, reg3) for each thread. Threads look up data
from neighbors via shuffle instructions. However, using only
32 threads will bring problems for tasks whose sequence



lengths are longer than 32. We solve this by assigning
multiple cells along the anti-diagonal for each thread, and
each thread will compute these cells one by one. We cannot
use a fixed number of cells for each thread because this
will cause inefficiency across tasks with different sequence
lengths. Based on the similar heuristic adopted in the shared
memory implementation, we will create subfunctions with
different numbers of cells to calculate for each thread, and
assign tasks with different subfunctions during the runtime.

Figure 8 depicts one example when each thread needs
to compute two cells on the anti-diagonal. This scheme
will bring even more benefits for performance. As we can
see, inter-thread communication only takes place between
boundary cells across different threads. For the rest of the
cells, communication can finish by using direct register
access, with the lowest access latency among all the data
access methods on GPU.

D. Performance Model

In this section we present the performance model which
provides a quantitative perspective to analyze the perfor-
mance of different kernels for accelerating sequence align-
ment algorithms.

CUPs (cell update per second) is the widely used metric
for measuring the performance of sequence alignment algo-
rithms. It measures the number of cells in the matrix that
can be computed per second. We adopt this metric as the
measurement of kernel performance in this work. Note that
for PairHMM, we count three updates in three matrices (M ,
I and D) as one cell update for simplicity.

The performance model is shown as below.

performance(CUPs) =
parallelism× frequency

latency
(7)

parallelism is defined as the number of cells updated
in parallel. If each thread is assigned to update one cell in
the matrix, this factor equals the active threads lying in all
the SMs on GPU. This factor can be calculated using the
equation below.

parallelism = #SM ×min{ #reg/SM

#reg/thread
,

#sharedMem/SM

#sharedMem/threadBlock
× thread

threadBlock
}

(8)

where #reg/SM , #sharedMem/SM , and #SM
are platform-dependent information, #reg/thread,
#sharedMem/threadBlock and thread/threadBlock
are kernel characteristics, which can be derived from
kernels with the help of the Nvidia nvcc compiler by
setting specific compilation flags. Note that this factor is in
proportional to occupancy as well.

The factor frequency is gathered from hardware specifi-
cation. latency refers to the average time interval to finish

one cell. More specifically, when every cell on the anti-
diagonal is assigned to one thread, it refers to the latency
to finish the entire anti-diagonal. The latency is dominated
by the critical path in each iteration which includes 1) load
data from neighbor cells, 2) compute the current cell, and
3) write back the current cell.

This performance model is intuitively simple and can be
quite handy when estimating and analyzing the performance
of kernels. In our work, this model serves two purposes.
First, it helps justify the validity of our microbenchmarks
when testing the latency of different instructions. After gath-
ering the performance of kernels and kernel characteristics,
we can calculate the latency and compare it to the estimated
latency using results from our microbenchmarks. Second, it
helps programmers estimate the performance using different
communication methods. With estimated parallelism using
Equation 8 and latency from our microbenchmarks, CUDA
programmers can easily make trade-offs in advance before
taking efforts to implement a new kernel using shuffle
instructions.

V. EXPERIMENTAL RESULTS

In this section we first introduce the setup for experiments
and present the overall performance of our designs on
different platforms. Then we use the performance of the
designs to validate the microbenchmarks with the help of
the performance model. We discuss the trade-offs of using
shuffle instructions in the end.

A. Experiment Setup

The kernel performance is evaluated on two Nvidia
GPUs—Quadro K1200 and Titan X. Both K1200 and Titan
use the Maxwell architecture, while K1200 is a low-end
GPU with high energy efficiency, and Titan X is a high-
end GPU with high computation capability.

The algorithms of SW and PairHMM are extracted from
GATK 3.6. We use the genome sample of a human with
breast cancer (HCC1954) as the inputs of HaplotypeCaller
and dump out the data as input datasets for two kernels.

All of the GPU kernels are written in CUDA 7.5. The
Nvidia nvcc compiler is used to compile the code and get
kernel characteristics (e.g., reg and shared memory usage).
For the convenience of illustration, in the following sections
we will denote SW implementations using shared memory
or shuffle as SW1 and SW2, and PairHMM implementations
as PH1 and PH2.

B. Performance Overview

The DNA sequence is broken into regions to be analyzed
in order in HaplotypeCaller. For each region, Haplotype-
Caller will have two intermediate stages, generating several
pairs of sequences to align, using SW and PairHMM,
respectively. Each pair of sequences is denoted as a task.
We dump out the tasks for SW, and group them together as
batches for each region. The input datasets for PairHMM



Figure 9: Performance overview of GPU implementations:
a) SW, b) PairHMM.

a) b)

0.13
0.16

0.43

0.53

0.14
0.16

0.46

0.55

0.00

0.10

0.20

0.30

0.40

0.50

0.60

SW1 SW2 SW1(peak) SW2(peak)

G
C

U
P

s

K1200 Titan X

2.0
3.4 2.9

6.0
8.0

9.5

17.3

34.8

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

PH1 PH2 PH1(peak) PH2(peak)
G

C
U

P
s

k1200 Titan X

Figure 10: Impacts of re-batching on performance of SW
kernels: a) K1200, b) Titan X.

a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 200 400 600 800

G
U

P
s

Batch Size

SW1 SW1(peak) SW2 SW2(peak)

0.0

5.0

10.0

15.0

20.0

25.0

0 500 1000 1500 2000 2500 3000 3500

G
C

U
P

s

Batch Size

SW1 SW1(peak) SW2 SW2(peak)

b)

are generated in the same fashion. For each kernel, the
number of tasks in each batch varies depending on the DNA
clips being analyzed. In our datasets, the average number of
tasks per batch for SW is four, whereas the number is 189
for PairHMM. The insufficient tasks for SW will limit the
performance, as discussed later.

We measure the GCUPs performance for each batch and
take the average. For GPU implementations, each task is
assigned to one thread block, and all the tasks within the
same batch are launched together as a compute kernel. We
set BSIZE as 32 for both SW1 and SW2, which offer
the best performance from our experiments. We set 128
threads/threadBlock for PH1 because the maximal sequence
length is less than 128, and 32 threads/threadBlock for PH2.
Note that the GPU performance reported below includes the
data transfer time between the host and device.

Figure 9 shows the average and maximal performance
of all the kernels. Note that the performance for SW is
relatively low, because the GPU performance is severely
impacted by the batch size, as mentioned above. Therefore,
we break the boundary of regions and re-batch the tasks in
different regions together to evaluate SW kernels. Results
are shown in Figure 10.

As we can see, our SW kernels deliver significant per-
formance. On Titan X, design SW2 achieves the peak
performance of 19.6 GCUPs and an average performance
of 18.5 GCUPs when re-batching 3,200 tasks together.

Table II: Detailed information of kernels.

SW1 SW2 PH1 PH2
GCUPs 3.6 4.3 3.2 6.8
occupancy(%) 32.2 49.7 56.2 29.1
#reg/thread 54 56 56 94
#sharedMem/threadBlock 1868 1472 6764 2644
latency(cycle) 1203 1014 1528 379
reduction(cycle) 189 1149

Table III: Instruction breakdown and analysis for latency
reduction.

operation instruction #instruction
SW1 SW2 PH1 PH2

LOAD SMEM/(shfl,reg) 3 (2,1) 32 (6,25)
WRITE SMEM/reg 1 1 12 12
ROTATE SMEM/reg 2 2 24 24
SYNC 1 0 1 0

latency 183 22 1485 115
est. reduction 161(-14.8%) 1370(19.2%)

As for PairHMM, on Titan X design PH2 can achieve
the peak performance of 34.8 GUCPs and an average
performance of 6.0 GCUPs. For all the implementations,
using shuffle instructions delivers better performance than
those using shared memory instead.

C. Model Validation
In this section we will use our performance model to

validate the results from microbenchmarks. We select the
biggest batch among the original datasets (w/o re-batching)
as the inputs and K1200 as the target platform. This guar-
antees that the GPU is fully occupied by tasks so that
our analysis will not be affected by factors other than
computation itself. We conduct several repeated runs for
each kernel and take the average as the kernel performance.
This number doesn’t include the data transfer because our
focus is the computation part of the kernel.

Table II presents the kernel performance and statistics.
Using our performance model, we can compute the average
latency of each iteration for four kernels.

For SW, using shuffle can cut down the iteration latency
by 189 cycles. The reduction comes from: 1) data access
latency, and 2) synchronization. Table III shows the detailed
breakdown of the latency.

In the shared memory implementation shown in List-
ing 2a), there are three shared memory loads and one write
in each iteration. Two more accesses are required for rotating
three line buffers, and one syncthreads() at the end
of each iteration. Based on our microbenchmarks, shared
access takes around 21 cycles, and sycnthreads() takes
57 cycles. We can estimate the latency as 3 × 21 + 1 ×
21 + 2 × 21 + 1 × 57 = 183 cycles. In SW2, three loads
from neighbor cells are replaced by two shuffles and one
direct register access, as shown in Listing 2b). All the other
instructions can be replaced by direct register accesses; the
synchronization is eliminated. The estimated latency will be
2× 9 + 4× 1 = 22 cycles. Therefore, the estimated latency



reduction is 183 − 22 = 161 cycles. The relative error of
our analysis is -14.8%.

For PairHMM, in each iteration there are three matrices
to update (eight loads in total: three in match, three in
insertion, and two in deletion). Additionally, 128 threads
(4 warps) are used to update one anti-diagonal, which will
issue 8 × 4 = 32 shared memory instructions each time.
As for design PH2, each thread will compute 4 cells in to-
tal. Inter-thread communication happens between boundary
cells, which brings two shuffle instructions and one register
access for each matrix (only two shuffle for deletion). For
all the remaining cells inside, direct register access suffices.
There will be six shuffle instructions and 25 register accesses
in total. The analysis for other operations are similar to
SW. Based on our estimation, using shuffle instruction helps
reduce latency by 1370 cycles. The relative error is 19.2%.

The relative error for prediction for both designs is low,
which validates results of the microbenchmarks. This analy-
sis shows a normal flow for CUDA programmers to estimate
the performance gains when using shuffle instructions. We
can first estimate the new register and shared memory usage
when using shuffle instructions and compute the factor
parallelism. Then, we can calculate the latency based on
the computation breakdown and latency of instructions from
microbenchmarks. Finally, we can use our model to compute
the performance of shuffle designs.

D. Trade-Off Analysis

Using shuffle instructions helps improve performance over
designs using shared memory. As shown in Table II, using
shuffle instructions provides performance gains of 1.2× and
2.1× for SW and PairHMM, respectively.

For SW, using shuffle instructions helps save shared mem-
ory, and therefore increases the occupancy (parallelism).
Meanwhile, latency is reduced. Both factors contribute to
the performance improvement of SW2 over SW1.

As for PairHMM, we observe a drop of occupancy from
PH1 to PH2. The reason is that we assign more cells for
each thread to calculate, thus significantly increasing the
register usage for each thread. The register usage becomes
the limiter of occupancy and drags down the occupancy from
56.2% to 29.1%. Meanwhile, inter-thread communication in
PairHMM is more intensive than SW, as we will access
more data (three matrices vs. one matrix) with more threads
(128 threads/threadBlock vs. 32 threads/threadBlock). The
reduction of latency from using shuffle instructions is larger
than SW, which offsets the decrease of parallelism and
improves performance eventually.

Based on the analysis above, we conclude that the trade-
offs of using shuffle instructions are as follows:

• Using register shuffle can free up shared memory. How-
ever, the impact on occupancy varies among different
applications. It is possible that the increased number
of registers may become the new limiter of occupancy,
which will hurt the parallelism we can obtain.

• In terms of performance, both parallelism and
latency matter. For applications with intensive inter-
thread parallelism, the reduction of the latency using
shuffle instructions plays an important role in overall
performance, which could even offset the negative
impacts of using more registers and bring performance
gains in the end.

With the help of the performance model and the mi-
crobenchmarks for shuffle instructions, CUDA programmers
can easily handle such trade-offs and make design decisions
in advance. Note that the root cause of the first point lies
in the limitation of shuffle instructions since they can be
only used for threads within the same warp. Therefore, for
applications like PairHMM, we need to place more cells
to calculate for each thread, with more registers to use per
thread. This will significantly increase the register usage and
affect the occupancy eventually.

VI. RELATED WORK

The shuffle instruction offers a new alternative for inter-
thread communication. Previous works [5]–[7] leverage
shuffle instructions as a replacement for shared memory
operations, and have seen performance gains from such
optimization. However, there is no detailed analysis about
the root causes for such benefits. Our work extends the
shuffle instructions to a new application domain, sequence
alignment, and is the first work to conduct a systematic and
quantitative analysis of shuffle instructions.

In this paper we pick SW and PairHMM as two appli-
cation drivers which present dependency patterns of near-
neighbor communication. SW is a well-known sequence
alignment algorithm, and there are many GPU implemen-
tations for different variants of SW. Manavski et al. [11]
utilize the inter-task parallelism by assigning each GPU
thread one entire alignment task. The sequences need to be
sorted in advance so that the task for threads within the
same block can be as similar as possible. Liu et al. [10]
propose a combined solution which couples CPU and GPU
together to accelerate SW protein search. They use the
same programming model as Manavski et al. and further
utilize the SIMD instructions to improve parallelism. The
SW application we adopt in the paper is different from these
works in terms of both the algorithm and datasets.

PairHMM is a variant of SW which integrates HMM into
the algorithm. There have been several previous works [12],
[17] on CPU and FPGA that employ the intra-task par-
allelism along the anti-diagonals. Intel released Genomics
Kernel Library (GKL) [13] which uses AVX intrinsics to ac-
celerate the algorithm. Ito et al. [12] propose a systolic array
architecture on FPGA that uses the IBM CAPI interface and
delivers the performance of 1.7 GCUPs on the same genome
sample that we use in this paper. Our implementation in this
work outperforms all the previous works on PairHMM.



VII. CONCLUSION

Data movement is one of the critical limiting factors of
performance and energy efficiency. In this work we look into
the communication optimization methodology for applica-
tions with intensive inter-thread communication. The shuffle
instruction offers new alternatives in addition to conventional
methods for using shared memory and global memory, and
brings trade-offs to be considered at the same time. In
this work we conduct a quantitative analysis on shuffle
instructions, using two sequence alignment algorithms (SW
and PairHMM) as case studies.

A suite of microbenchmarks is developed for measuring
the latency of shuffle and several other instructions. We find
that the latency of shuffle is in-between that of register and
shared memory access, and it varies across different types of
shuffle instructions and architectures (Kepler vs. Maxwell).

We implement two algorithms using either shared memory
or register shuffle for inter-thread communication. Using
shuffle instructions instead of shared memory has brought
significant performance gains of 1.2× and 2.1× for SW and
PairHMM, respectively. This demonstrates the optimization
opportunities for deploying shuffle instructions for applica-
tions with intensive inter-thread communication.

We are proposing a performance model that takes kernel
characteristics and the instruction latency into consideration,
and helps analyze and estimate the design performance for
such algorithms. With the help of this performance model
and microbenchmarks, we conduct a detailed analysis on the
performance impacts of shuffle instructions.

This work provides valuable insights for CUDA program-
mers for making trade-offs when using shuffle instructions
in a wider class of applications.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Muhuan Huang and
Janice Martin-Wheeler for editing the paper. This work was
supported in part by C-FAR, one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA, NSF/Intel
Innovation Transition Grant (CCF-1436827) awarded to the
Center for Domain-Specific Computing, and contributions
from Fujitsu Laboratories.

REFERENCES

[1] W.-m. Hwu, “What is ahead for parallel computing,” Journal
of Parallel and Distributed Computing, vol. 74, no. 7, pp.
2574–2581, 2014.

[2] S. Xiao and W. c. Feng, “Inter-block gpu communication via
fast barrier synchronization,” in Parallel Distributed Process-
ing (IPDPS), 2010 IEEE International Symposium on, April
2010, pp. 1–12.

[3] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R.
Beard, and D. I. August, “Automatic cpu-gpu communication
management and optimization,” in Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, ser. PLDI ’11. New York, NY,
USA: ACM, 2011, pp. 142–151.

[4] Nvidia. (2016) Cuda c programming
guide. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/#axzz4NVazmUbb

[5] Y. Hanada, S. Kitaoka, and Y. Xinhua, “Optimizing particle
simulation for kepler gpu,” Procedia Engineering, vol. 61, pp.
376 – 380, 2013.

[6] D. Bakunas-Milanowski, V. Rego, J. Sang, and C. Yu, “A fast
parallel selection algorithm on gpus,” in 2015 International
Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 2015, pp. 609–614.

[7] H. Jiang and N. Ganesan, “Fine-grained acceleration of
hmmer 3.0 via architecture-aware optimization on massively
parallel processors,” in Parallel and Distributed Processing
Symposium Workshop (IPDPSW), 2015 IEEE International.
IEEE, 2015, pp. 375–383.

[8] B. Institute. (2016) Genome analysis toolkit. [Online].
Available: https://software.broadinstitute.org/gatk/

[9] N. Mark Harris, “Cuda pro tip: Do the kepler
shuffle,” 2014. [Online]. Available: https://devblogs.nvidia.
com/parallelforall/cuda-pro-tip-kepler-shuffle/

[10] G. Lu and J. Ni, “Highlighting computations in bioscience and
bioinformatics: review of the symposium of computations in
bioinformatics and bioscience (scbb07),” BMC Bioinformat-
ics, vol. 9, no. 6, p. S1, 2008.

[11] S. A. Manavski and G. Valle, “Cuda compatible gpu cards as
efficient hardware accelerators for smith-waterman sequence
alignment,” BMC Bioinformatics, vol. 9, no. 2, p. S10, 2008.

[12] M. Ito and M. Ohara, “A power-efficient fpga accelerator
systolic array with cache-coherent interface for pair-hmm
algorithm,” in 2016 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS XIX). IEEE, 2016, pp.
1–3.

[13] Intel. (2016) Genomics kernel library (gkl). [Online].
Available: https://github.com/Intel-HLS/GKL

[14] B. Institute, “Haplotypecaller,” 2016. [Online].
Available: https://software.broadinstitute.org/gatk/gatkdocs/
org broadinstitute gatk tools walkers haplotypecaller
HaplotypeCaller.php

[15] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of molecular biology, vol.
147, no. 1, pp. 195–197, 1981.

[16] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biolog-
ical sequence analysis: probabilistic models of proteins and
nucleic acids. Cambridge university press, 1998.

[17] S. Ren, V. M. Sima, and Z. Al-Ars, “Fpga acceleration of the
pair-hmms forward algorithm for dna sequence analysis,” in
Bioinformatics and Biomedicine (BIBM), 2015 IEEE Interna-
tional Conference on, Nov 2015, pp. 1465–1470.


