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ABSTRACT
Maximum Independent Set (MIS) is an NP-hard optimization prob-

lem with wide-ranging applications in science and technology.

Recently, a super-linear speedup over classical simulated anneal-

ing in solving MIS was experimentally observed using a Rydberg

atom array (RAA) quantum computer. The extent of the observed

speedup depended on the graph instance and the circuit depth of

the quantum algorithm. Due to the limited availability of RAA,

it is beneficial to be able to efficiently predict the quantum opti-

mization performance on a given graph and circuit depth prior

to running it. In this work, we present a graph neural network

(GNN)-based performance predictor of the RAA-based MIS opti-

mizer. Our experimental results achieve accuracy with an average

root mean squared error (RMSE) of 0.03 out of the range [0, 1].

We open source the experimental data collected for this study at

https://github.com/UCLA-VAST/RAAMIS.
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1 INTRODUCTION
A major goal in quantum information science has been to show

quantum advantage on a problem with useful practical applications.

Combinatorial optimization problems, which seek to minimize a

cost function over bit strings, have wide-ranging applications in

science and technology. These problems also form the foundation of
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modern computer science and solving them exactly is NP-hard [18].

Quantum combinatorial optimization algorithms that can be im-

plemented on quantum devices in the near-term typically involve

adiabatic [9] or variationally parametrized [8] quantum evolution

optimized by closed-loop classical feedback [19, 38].

While these algorithms are guaranteed to solve the problem in

the limit of infinite circuit depth, less is known about their finite-

depth performance despite nearly two decades of research. Theoret-

ical studies are fundamentally limited to small system sizes [42] or

shallow circuits [10] due to the inherent intractability of classically

simulating quantum systems. Prior experimental studies also are

limited to small system sizes [14, 26] or lack significant quantum

coherence beyond shallow circuit depths [12, 15, 32], and as a re-

sult, offer only limited insights into the algorithms’ performances

at large system sizes and high circuit depths, the regime believed

to be necessary for quantum advantage [4, 7].

Ebadi et al. [6] addresses this problem by experimentally imple-

menting quantum algorithms for solving Maximum Independent

Set (MIS), a paradigmatic NP-hard optimization problem [18], using

a Rydberg atom array (RAA) quantum computer (a similar RAA

is now commercially available [29, 40]). The goal of MIS is to find

the maximum independent set of a graph, i.e., the largest subset of

nodes where no pair of nodes are connected by an edge. By utilizing

a hardware-efficient encoding associatedwith the Rydberg blockade

mechanism, this work reached system sizes of hundreds of qubits

at relatively high circuit depths of ∼ 32. Ebadi et al. experimentally

observed a super-linear quantum speedup over classical simulated

annealing (SA) in solving MIS on the hardest graph instances for SA.

The extent of the quantum speedup, however, depended on both the

graph instance and the circuit depth of the quantum algorithm [3].

Motivated by this work, we present a graph neural network

(GNN)-based performance predictor, MIS-GNN, for the RAA-based

MIS optimizer. We take a data-driven approach by training neural

networks to predict quantum performance because of the difficulty

in simulating quantum systems exactly. We choose GNN since it can

directly take the graph instance as the input. Additionally, GNNs
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have been shown to be effective in predicting complex performance

metrics in electronic design automation, e.g., [2, 13, 20, 31, 34].

Specifically, we build a bi-directional graph for each instance and

define appropriate attributes for both the nodes and edges to help

the model better learn the graph features (i.e., embeddings). The

nodes take the geographical locations and the circuit depth as the

attributes while the edges are divided into eight types to identify

the whereabouts of the neighbors. The graph is passed through five

layers of TransformerConv [33], a state-of-the-art GNN encod-

ing approach for the node embeddings. The final node embeddings

are chosen by exploiting a jumping knowledge network architec-

ture [41] to dynamically adjust the ranges of the neighborhood

for each node. Then, we concatenate the aggregated results of the

node embeddings, which create a graph-level embedding, with the

circuit depth value and pass them through multi-layer perceptron

(MLP) networks to predict our final objectives: 𝑃 |MIS | (MIS proba-

bility) and 𝑅 (approximation ratio). 𝑃 |MIS | is the probability of the

quantum algorithm finding an MIS of the graph. 𝑅 is the expecta-

tion value of the size of the independent set found by the quantum

algorithm divided by |MIS|, the true size of MIS of the graph.

The organization of the paper is as follows: in Sec. 2, we cover

the background on optimizing MIS with RAA, the hardness of

predicting quantumMIS performance, and the principles of GNN; in

Sec. 3, we detail the encoding and architecture of the GNNmodel; in

Sec. 4, we present evaluations on the accuracy of the GNN predictor;

in Sec. 5, we conclude the paper and discuss future directions.

2 BACKGROUND
2.1 Unit-Disk MIS on Rydberg Atom Arrays
Rydberg atom arrays can solve a wide variety of combinatorial

optimization problems using hardware-efficient encodings [25].

Motivated by recent experiments [6], we focus on MIS. RAA natu-

rally encodes MIS on certain unit-disk graphs, where the nodes are

on a 2D grid, and an edge connects each pair of nodes if and only

if this pair is located within a unit radius, as shown in Fig. 1a.

To solve MIS on such a unit-disk graph𝐺 = (𝑉 , 𝐸) using RAA [6,

28], we can associate each node with a single atom and make use

of two atomic states: the ground state, |0⟩, and a highly excited

state, |1⟩ called a Rydberg state. We can arrange the atoms in a

configuration induced by𝐺 and initialize them to |0⟩, as illustrated
in Fig. 1a. Then, by applying a quantum adiabatic algorithm [9] we

can minimize the energy:

𝐻
Ryd

= −𝛿
∑︁
𝑢∈𝑉

𝑛𝑢 + 1

2

∑︁
𝑢,𝑣∈𝑉 ,𝑢≠𝑣

𝑉𝑢𝑣𝑛𝑢𝑛𝑣, (1)

where 𝑛𝑢 = 0 if atom 𝑢 is in |0⟩ and 𝑛𝑢 = 1 if the atom is in

|1⟩, 𝑉𝑢𝑣 ∝ |®𝑥𝑢 − ®𝑥𝑣 |−6 is the interaction energy depending on the

distance between 𝑢 and 𝑣 , and 𝛿 is a tunable parameter.

The interaction energy models the Rydberg blockade mecha-

nism [23]: when both 𝑢 and 𝑣 are excited and the distance between

them is small, 𝑉𝑢𝑣𝑛𝑢𝑛𝑣 increases rapidly, which is energetically

unfavorable. The maximal distance when 𝑉𝑢𝑣 is still significant is

the Rydberg blockade radius, 𝑅𝑏 , which we choose to be the unit

length. Because 𝐺 is a unit-disk graph, minimizing the quadratic

term in 𝐻
Ryd

,

∑
𝑉𝑢𝑣𝑛𝑢𝑛𝑣 , means that the adjacent atoms (within

𝑅𝑏 apart), are not simultaneously excited. Thus, the set of excited
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Figure 1: (a) Atoms are initially arranged in a configuration
encoding a unit-disk graph, such that two nodes are con-
nected by an edge if and only if they are within the Rydberg
blockade radius 𝑅𝑏 . All atoms are initialized in |0⟩, corre-
sponding to no nodes in the independent set. (b) After an
evolution under the quantum adiabatic algorithm, excited
atoms in |1⟩ constitute the MIS solution by the quantum al-
gorithm (red vertices).

atoms, A, is an independent set. Moreover, as the cardinality of A,∑
𝑛𝑢 in 𝐻

Ryd
, is maximized, the algorithm optimizes A towards a

maximum independent set, as exhibited in Fig. 1b.

We use the setting from Ebadi et al. [6] where the grid separation
is 𝑅𝑏/

√
2 (see Fig. 1a) so that the nearest and next-nearest neighbors

have significant interaction energy. Solving MIS on this particular

class of unit-disk graphs is NP-hard and thus general enough to

solve any problem in NP [6].

2.2 Hardness of Estimating RAA-Based
Quantum Optimizer Performance

Currently, the availability of quantum computers that can run the

adiabatic algorithm is still limited. Thus, it is valuable to estimate

the performance of the algorithm before actually spending the effort

of implementing it on a RAA.

From the principles of the quantum adiabatic algorithm, Ebadi

et al. [6] reasoned that the probability of such algorithm finding an

MIS is 𝑃 |MIS | ≃ 1−𝑒−𝑐′ 𝑑QAA/𝑔QAA , where𝑑QAA is the quantum depth
and 𝑔QAA is the minimum spectral gap between the ground and

first excited multi-atom state during the evolution. The quantum

depth is simply the total runtime of the quantum algorithm divided

by certain unit time (the time to flip a single atom state). However,

in the worst case, exactly computing 𝑔QAA take exponential time in

the system size [1, 21]. Thus, it is of interest to find other efficient

methods to estimate 𝑃 |MIS | .
Even if 𝑃 |MIS | is small, the quantum algorithm may still be able

to generate solutions that are close to the optimum. Thus, another

relevant performance metric is the approximation ratio, 𝑅, which

is defined as the observed independent set size generated by the

algorithm, divided by the size of the largest independent set, i.e.,

|MIS|. 𝑅 = 1 if the algorithm outputs the ideal solution. Thus, 𝑅

describes the ability of an algorithm to find approximate solutions to

MIS. Computing 𝑅 exactly also involves understanding the spectral

gaps during the quantum evolution, so this computation is hard for

classical computers.
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2.3 Graph Neural Networks
Nowadays, graphs are among the core data structures used in data

centers. Graph neural networks (GNNs) [39] are developed to ex-

tract low-dimensional structured information from graphs, which

by nature are unstructured. In other words, GNNs learn to assign

representative features (also called embeddings) to the nodes and

edges of the graphs that can be helpful in better analyzing them,

and, they have been proven to be powerful in many domains rang-

ing from social network analysis [36] to electronic design automa-

tion [13, 34]. Because of the efficiency and demonstrated capability

of GNNs, we leverage them to approximately estimate the perfor-

mance of RAA-based MIS optimization.

GNNs, in essence, rely on multiple layers of ‘message passing’

which updates the embeddings of each node by gathering the in-

formation from its neighboring nodes/edges. Layer 𝑙 of a GNN can

be formulated as:

𝒉𝑙𝑖 = 𝜎 ( TF( AGG( {𝒉𝑙−1𝑗 , 𝑗 ∈ N (𝑖)} ) ) ) (2)

where 𝒉𝑙
𝑖
∈ R𝐹𝑙 and 𝒉𝑙−1

𝑖
∈ R𝐹𝑙−1 denote the updated and initial

node embeddings of node 𝑖 in layer 𝑙 , respectively. AGG and TF

represent the aggregation and transformation functionwhich
gathers the embeddings of the neighbors and applies a learnable

weight to the aggregated results of each node, respectively. Different
GNNs may differ by their choice of these functions [17, 33]. 𝜎

is an activation function that is used to include non-linearity in

the model. After the node embeddings are updated by passing

through a few GNN layers, a readout (also known as pooling) layer

may be used to merge the node embeddings into a single graph-

level embedding. This embedding will be a vector summarizing the

distinctive features of the whole graph.

3 MIS-GNN METHODOLOGY
As mentioned in Sec. 1, our task is to build a GNN model that is

faster at predicting the performance of the quantum MIS optimizer.

More formally, we define our problem as follows. Let C be an RAA

configuration like Fig. 1a. Let O be either a quantum optimizer that

can identify the MIS of C. Let 𝑑 be a depth value which corresponds

to the runtime ofO that would affect 𝑃 |MIS | and 𝑅. More specifically,

O(C, 𝑑) :=
(
𝑃 |MIS | (C, 𝑑), 𝑅(C, 𝑑)

)
(3)

We seek to find a prediction function (F) that approximates 𝑃 |MIS |
and 𝑅 for any C and 𝑑 without actually running O:

min

F

(
avg

C,𝑑
( L ( O(C, 𝑑), F(C, 𝑑) ) )

)
(4)

We define the loss function, L, by taking the root mean squared

error (RMSE) of the prediction over the ground-truth value.

To solve this problem, one can analyze the different configura-

tions to detect key features (e.g., grid size, the atom filling ratio,

etc.) that result in a difference in the final objectives. Then, a fully-

connected network can be employed to learn to predict the final

objectives with those features. However, this approach relies on

costly and error-prone feature detection. Alternatively, one can

treat each of the configurations as an image and apply convolu-

tional neural networks (CNNs) on them. Then, one of this CNN’s

tasks would be learning to detect the adjacency of the atoms in

the configuration. This can be alleviated if we directly input the

graph that induced the configuration to the machine learningmodel.

Therefore, exploiting GNNs for building the predictive model is a

natural fit for this application. This also helps with reducing the

computation intensity of the model. Sec. 3.1 describes our graph

representation and Sec. 3.2 explains the architecture of our GNN.

3.1 Graph Representation
As introduced in Sec. 2.1, the unit-disk graph 𝐺 is specified by the

location of its atoms in the corresponding configuration. Specifi-

cally, each node is adjacent in 𝐺 to its 4 nearest neighbors and the

4 next-nearest neighbors if there are indeed atoms at these grid

points. For example, in Fig. 1a, the blue node at (3,1) is adjacent to

its 3 nearest neighbors (2,1), (3,0), and (4,1), and its 3 next-nearest

neighbors (2,2), (4,0), and (4,2).

We choose to build a slightly different graph𝐺 ′
in GNN to benefit

the training. Each node in𝐺 ′
keeps their geographical information

(𝑋 and 𝑌 coordinates) as attributes. Edges are directed and have

an attribute named FlowID to store their type which is one of the

eight different directions, as illustrated in Fig. 2a. Considering the

example in Fig. 1a, there is an edge from (2,2) to (3,1) with FlowID 7,

and also an edge from (3,1) to (2,2) with FlowID 0. From this point

forward, when we mention ‘graph’ or ‘𝐺 ’, we are referring to this

bi-directional graph.

3.2 Predictive Model
To helpMIS-GNN learn better features, we build initial features (em-

beddings) for each of the nodes and edges based on the attributes

we defined in Sec. 3.1. More specifically, the initial node embeddings

would include the 𝑋 and 𝑌 coordinates of their respective node as

shown in Fig. 2a. Since the depth value has a significant impact on

the final objectives, we add it to all the node embeddings of a graph.

This enables us to differentiate the MIS instances that have the

same configuration but were tested under different depths. As all

these features are categorical integer data, we encode them using a

one-hot scheme. This is a popular approach for making the machine

learning model improve its predictions for such features [34]. The

initial node embedding of node 𝑖 , 𝒉0
𝑖
∈ R𝐹0 , is created by concate-

nating the one-hot encoding of its 𝑋 coordinate, 𝑌 coordinate, and

the depth, as depicted in Fig. 2a. Similarly, the edge embedding of

the edge from node 𝑖 to 𝑗 , 𝒆𝑖, 𝑗 ∈ R8, is the one-hot encoding of the

FlowID as shown in Fig. 2a.

The first task of the predictive model is to transform the features

we defined above based on the graph topology to summarize all

the information as a vector 𝒉𝐺 ∈ R𝐹𝐺 . TransformerConv [33] is

a state-of-the-art GNN layer that has proven to be highly effective

when edges have attributes as well [34]. This is because, in contrast

to traditional GNN layers such as GCN [17] where the embeddings

of the neighboring nodes are gathered based on predefined weights

(e.g., degree of the nodes), TransformerConv learns to identify the

importance of a neighboring node. In doing so, it builds an attention

coefficient, 𝛼𝑖, 𝑗 , for each connection based on the edge embeddings

in addition to the source and destination node embeddings. These

attention coefficients determine the significance of each neighbor

in the aggregation phase. As such, we use TransformerConv as

the building block of our GNN encoder as exhibited in Fig. 2b.



ICCAD ’24, October 27–31, 2024, New York, NY, USA A. Sohrabizadeh, W.-H. Lin, D. B. Tan, M. Cain, S.-T. Wang, M. D. Lukin, and J. Cong

X coordinate Y coordinate Depth

Initial node attribute:

Edge attribute:

Flow ID

0 1 2

3 4
5 6 7

Edge types starting from the center node

(a)

𝑀𝐿𝑃1 

𝑑𝑒𝑝𝑡ℎ

𝐺𝑟𝑎𝑝ℎ 𝐺 R

P|MIS|𝑀𝐿𝑃2 
𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝐺, 𝑑𝑒𝑝𝑡ℎ)

𝐺𝑁𝑁 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

T
C

o
n
v

T
C

o
n
v

T
C

o
n
v

T
C

o
n
v

JK
N

P
o
o

l 
(a

d
d
)

ℎ𝐺

T
C

o
n
v

(b)

Figure 2: MIS-GNN (a) Initial features of nodes and edges. (b) High-level view of the predictive model.

One known problem with GNNs is over-smoothing, which oc-

curs when the different node embeddings become indistinguishable

after a few GNN layers [13]. To alleviate this problem, we exploit

a jumping knowledge network (JKN) [41] architecture after the

GNN layers as depicted in Fig. 2b, where each node can dynamically

determine which layer’s output must be used as its final embedding.

This can also help the network calibrate a different range of neigh-

borhoods for each of the nodes based on the graph structure. After

finalizing the node embeddings, we add them together to create the

graph-level embedding, 𝒉𝐺 .
Once the GNN encoder outputs 𝒉𝐺 , we have the features of the

graph that we are seeking. This brings the network to its second

task, which is to predict our final objectives based on these features.

To do this transformation, we exploit a multi-layer perceptron

(MLP) network as shown in Fig. 2b. As mentioned in Sec. 1, the

depth has a high impact on the final result. Therefore, in addition to

including it in the initial node features passed to the GNN encoder,

we directly pass it to the MLPs as well to amplify its effect on output.

For each of the objectives, we define a separate MLP, but they still

share the same GNN encoder. This has been shown to increase the

accuracy when the objectives are correlated [34].

3.3 Data Augmentation
We employ a data augmentation approach that leverages various

transformations of the unit-disk graph, including rotations, mir-

roring, and diagonal flips. By rotating the graph by 90, 180, and

270 degrees, and reflecting it across vertical, horizontal, and di-

agonal axes, we generate multiple variants of the original graphs.

This process increases the diversity of the dataset, enhancing the

robustness of models trained on these augmented samples. The

transformations preserve the original graph topology while intro-

ducing variations that can help the model generalize better across

different spatial configurations.

4 EXPERIMENTAL RESULTS
4.1 Setup and Data Collection
For training and validating our GNN, we collect data with a com-

mercially available RAA, Aquila [29, 40], and also use data from

the Harvard study by Ebadi et al. [6]. The Harvard data is for both

the random instances in Fig. 3 of Ref. [6] and the hard instances for

SA considered in Fig 4. However, for consistency we do not include

data for the individually optimized instances in Fig. 4, and instead

use data for those same graph instances using the same adiabatic

algorithm applied to the instances in Fig. 3. The Harvard dataset

Table 1: The statistics of our target dataset. 𝑅 stands for ap-
proximation ratio and 𝑃 |MIS | denotes the probability of find-
ing an MIS.

source data min max mean std

Harvard

depth 1.41 32.0 10.98 10.27

𝑅 0.795 0.995 0.917 0.043

𝑃 |MIS | 0.0 0.947 0.173 0.230

#nodes 20 289 99 81

#edges 82 1746 559 485

avg. degree 4.1 6.04 5.42 0.35

Aquila

depth 26.4 26.4 26.4 0.0

𝑅 0.787 0.946 0.854 0.023

𝑃 |MIS | 0.0 0.271 0.003 0.02

#nodes 38 205 125 50

#edges 75 607 335 145

avg. degree 4.5 6.09 5.63 0.22

consists of 130 distinct graphs that include 654 different pairs of

depth and graph (𝑑 and C in Eq. 3).

The Aquila dataset consists of another 422 distinct graphs with

the same quantum depth. The independent set (IS) results are col-

lected on QuEra Aquila [29, 40] with 1000 shots. We generate atom

configurations to realize the unit disk graph by locating the atoms

in a grid with spacing of 4um and 𝑅𝑏=6um. We apply the time-

dependent Hamiltonian as described in [22] to the system charac-

terizing a graph for solving MIS. Table 1 summarizes the statistics

of these graphs and their MIS objectives. We divided the graphs in

both datasets into 70%, 15%, and 15% for the training, validation,

and testing sets, respectively. The graphs in the testing set are not

included in the training set, ensuring they represent unseen data.

The model is deployed and trained using PyTorch [27] with

Adam optimizer [16] and a learning rate of 0.005. The final model

is picked based on the loss on the validation set and the reported

performance numbers are based on the test set. The initial embed-

dings have 54 features for the annealing/quantum dataset. We use

5 TransformerConv layers with 54 features in the GNN encoder

and 4 layers in the MLP decoder. Each GNN layer (except for the

last one) is followed by an exponential linear unit (ELU) [5] activa-

tion function since it can enable faster training over the traditional

rectified linear unit (ReLU) [24] activation function.

4.2 Post-Processing of Experimental Data
The measurement results from Aquila consist of two parts: the

pre_sequence marks the sites where atom preparation failed, and
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Figure 3: Post-processing of experimental data. (a) After the
evolution under the quantum adiabatic algorithm, atoms
in the Rydberg state are marked by red dots. The measure-
ment result may not be a valid IS, e.g., atoms at (2,4) and (3,4)
are adjacent vertices, so the post-processing is performed
to extract a valid IS. (b) The IS after the first phase of the
post-processing by removing invalid vertices. (c) The IS after
the second phase of the post-processing by including vertices
that do not violate the IS constraint.

the post_sequence gives the measurement results for the atom

state (0 for the Rydberg state, and 1 for the ground state). Then, the

IS found by Aquila can be inferred from the measurement outputs

by collecting the qubits in the Rydberg state. The raw measurement

outputs necessitated postprocessing to ensure the validity of the

IS. For example, Figure 3(a) shows raw measure results, where the

atoms in the Rydberg stages are marked in red. Those atoms do

not constitute a valid IS, since atoms at (2, 4) and (3, 4) cannot be

included into the set simultaneously. To transform themeasurement

outcome to a valid IS, we adopt a two-phase greedy algorithm as

described in the paper [6]. In the initial phase, we scan row by

row to remove vertices violating the independent set condition. For

instance, as shown in Figure 3(b), we begin with checking the atoms

with the order: (0, 0), (3, 0), (0, 2), . . . , (3, 4). If the atom does not

share an edge with any atoms in the current IS, we include it to the

IS set. In the second phase, the algorithm examines the remaining

vertices to reintroduce eligible vertices. According to the row and

column order, we iteratively add vertices that can be included in to

the IS without violating the constraints. Figure 3(c) demonstrates

the final IS after the post-processing. Based on the IS illustrated

in Figure 3(b), we follow the order (1, 0), (2, 0), (0, 1), . . . , (4, 4) to
check if a vertex can be added into the IS.

4.3 Model Accuracy Evaluation
As Table 1 shows, the data has a low range. Our experiments show

that normalizing the data by a factor of 200 helps the model better

distinguish between the objectives, and we can reduce the loss.

Table 2 summarizes the loss in the prediction of either of our ob-

jectives in their original range. The loss is reported with three

different metrics, root mean squared error (RMSE), mean absolute

error (MAE), and maximum error. Note that as a lot of 𝑃 |MIS | val-
ues are very close to zero, mean absolute percentage error (MAPE)

would take extreme values, making it inapplicable here. To verify

the effectiveness of our optimizations to the model architecture, we

compare it to a baseline model that 1) utilizes GCN [17] instead of

the TransformerConv, 2) does not include the edge attributes, 3)

no jumping knowledge network is used, 4) misses the direct path

of the depth value to the input to MLP, 5) employs ReLU activation

function instead of ELU, 6) no data augmentation. As the results

Figure 4: Comparison of the prediction of our model to a
perfect model for quantum experiment.

Table 2: Themodel loss in predicting the objectives compared
to a baseline model where our optimizations to the network
architecture are disabled. Lower is better. MAPE is not appli-
cable since 𝑃 |MIS | has many values close to zero.

model data RMSE MAE max error

baseline

𝑅 0.079 0.057 0.315

𝑃 |MIS | 0.134 0.074 0.611

ours 𝑅 0.033 0.024 0.135

𝑃 |MIS | 0.121 0.065 0.505

demonstrate, our model, due to the optimizations we applied, can

get to a lower loss. Compared to the baseline, it can reduce the

RMSE by 2.39×, MAE by 2.38×, and max error by 2.3× for predict-

ing approximation ratio. For 𝑃 |MIS | , we reduce the RMSE by 1.11×,
MAE by 1.14×, and max error by 1.21×. The improvement on pre-

dicting 𝑃 |MIS | is less significant. Since 𝑃 |MIS | is biased toward 0 in

our dataset, we have limited capability to have accurate prediction

for data point with larger 𝑃 |MIS | .
To better make sense of the model’s prediction, we plot their

performance against a perfect model. Fig. 4 depicts the results on

our dataset. In each plot, we are showing the prediction vs. the

ground-truth value. The green points represent a perfect model in

which the prediction matches the actual data. The red points depict

our model’s behavior. Therefore, the closer the red points are to

the green points, the better the model’s prediction. We can also see

that where the density of data is larger (see Table 1), the model can

perform better as it has more data to learn from. In consistent with

the loss, the model is less accurate when predicting large 𝑃 |MIS | ,
since the dataset is unbalance.

5 CONCLUSION & FUTUREWORK
In this paper, we propose a GNN-based predictor, MIS-GNN, for

RAA-based quantum MIS optimizer. We convert each graph con-

figuration to a bi-directional graph that encodes the geographical

locations of atoms and circuit depth as initial features. We carefully

designed a GNN-based model to predict the final objectives by ex-

tracting a graph embedding based on the graph topology and the

defined features. The experimental results demonstrate that our

model can match the ground-truth values with an average RMSE

of 0.03 out of the range [0, 1]. Our model is better at predicting the

approximation ratio (R) than the success probability in obtaining a

MIS (𝑃 |MIS | ) by the quantum processors. This study is one of the
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first few attempts (together with [11, 37]) to use machine learning

models running on classical computers to predict the performance

on quantum processors The error may come from the limited exper-

imental data (e.g. in the GNN-based circuit performance predictor

published in [35], over 40,000 circuit configurations were used in

training the GNN model), or somehow relate to the quantum un-

certainty principle.

We make a large set of RAA experimental data publicly avail-

able. These data, along with future data generated by even larger

quantum MIS optimizers on the roadmap [30], can contribute to

further improvements of the GNN predictor. Furthermore, based on

the GNN model presented, it is conceivable to develop generative

GNNs that produce instances where quantum advantage emerges,

which would help researchers further understand the possibility of

quantum advantage in MIS. In doing so, more work is needed to

test MIS-GNN on harder instances.
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