
RC-NVM: Enabling Symmetric Row and Column Memory
Accesses for In-Memory Databases

Peng Wang1, Shuo Li2, Guangyu Sun1, Xiaoyang Wang1, Yiran Chen3, Hai (Helen) Li3, Jason Cong4, Nong Xiao2,5, and Tao Zhang6

1Center for Energy-efficient Computing and Applications, Peking University, China
2State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, China

3Department of Electrical and Computer Engineering, Duke University, USA
4University of California, Los Angeles, USA

5School of Data and Computer Science, Sun Yat-sen University, China
6Pennsylvania State University, USA

{wang_peng, gsun, yaoer}@pku.edu.cn {lishuo12, nongxiao}@nudt.edu.cn
{yiran.chen, hai.li}@duke.edu cong@cs.ucla.edu tao.zhang.0924@gmail.com

ABSTRACT
Ever increasing DRAM capacity has fostered the develop-
ment of in-memory databases (IMDB). The massive perfor-
mance improvements provided by IMDBs have enabled trans-
actions and analytics on the same database. In other words,
the integration of OLTP (on-line transactional processing)
and OLAP (on-line analytical processing) systems is becom-
ing a general trend. However, conventional DRAM-based
main memory is optimized for row-oriented accesses gen-
erated by OLTP workloads in row-based databases. OLAP
queries scanning on specified columns cause so-called strided
accesses and result in poor memory performance. Since mem-
ory access latency dominates in IMDB processing time, it
can degrade overall performance significantly.

To overcome this problem, we propose a dual-addressable
memory architecture based on non-volatile memory, called
RC-NVM, to support both row-oriented and column-oriented
accesses. We first present circuit-level analysis to prove that
such a dual-addressable architecture is only practical with
RC-NVM rather than DRAM technology. Then, we rethink
the addressing schemes, data layouts, cache synonym, and
coherence issues of RC-NVM in architectural level to make
it applicable for IMDBs. Finally, we propose a group caching
technique that combines the IMDB knowledge with the mem-
ory architecture to further optimize the system. Experimental
results show that the memory access performance can be
improved up to 14.5X with only 15% area overhead.

1. INTRODUCTION
Relational database systems have been the backbone of

enterprise applications for more than 30 years. However,
traditional disk-based databases fail to satisfy the needs of
ultra-low latency service and real-time data analytics as a
consequence of high I/O access latency. For instance, high
frequency trading applications must issue orders in several
microseconds, which is impossible to achieve using disk-
based databases.

With increasing capacity and dropping price of DRAM
modules, memory systems capable of storing huge amounts
of data have become affordable. An in-memory database
(IMDB) is a database system that keeps a significant part,
if not the entirety, of data in main memory to achieve high
query performance. Compared with traditional disk-based

databases, which only buffer small portions of data in main
memory, an IMDB primarily relies on main memory for data
storage. Since an IMDB almost eliminates the I/O bottle-
neck between a fast RAM and a slow disk, a considerable
performance gain can be expected. In recent years, inter-
ests in IMDBs are booming in both academic and industrial
areas. Examples of well-known IMDB research projects in-
clude MonetDB [1], H-Store/VoltDB [2, 3], HyPer [4], and
Hyrise [5]. There are also many commercial systems pub-
lished by database vendors, such as Oracle TimesTen [6],
IBM SolidDB [7], Microsoft Hekaton [8], and SAP HANA [9].

Conventionally, database workloads are categorized into
OLTP (on-line transactional processing) and OLAP (on-line
analytical processing). OLTP workloads are characterized by
a mix of reads and writes to a few rows at a time, which is
often latency-critical. On the contrary, OLAP applications
are characterized by bulk sequential scans spanning a few
columns of the database, such as computing aggregate values
of specific columns. These two workloads are usually served
by two different types of database systems, i.e. transactional
processing and data warehouse systems. However, the ex-
plicit separation between OLTP and OLAP systems in IMDB
suffers from several drawbacks.

One major shortcoming of this approach is that at least
two copies of data are resident in memory. Despite several
TBs of memory capacity in modern high-end server, RAM
space is still a precious resource. Another serious limitation
is the synchronization between two versions of data leads to
the slow response time in analytics over real-time changing
data [4]. IMDBs with substantial performance improvement
have made it possible to process mixed OLTP and OLAP
workloads (referred to as OLXP [10]) in a single database.
In a nutshell, the integration of OLTP and OLAP database
systems by means of in-memory technology has become a
prevailing trend [4, 5, 6, 9, 11].

Unfortunately, the memory access efficiency is seriously
degraded with a mixed workloads from IMDB supporting
OLXP. The major reason is that OLTP and OLAP workloads
generate two types of data access patterns. The former one is
row-oriented access pattern that dominates in OLTP applica-
tions. The latter one is column-oriented access pattern, which
dominates in OLAP applications. Conventionally, data in
physical main memory is stored with a row-based layout that

is friendly to row-oriented access pattern in OLTP. However,
for OLAP with column-oriented access patterns, it results
in intensive so-called strided memory accesses that degrade
memory efficiency substantially due to poor DRAM row-
buffer and cache utilization [12]. Note that such a problem is
also present for OLTP in column-based data layout [13].

Without any doubt, performance of an IMDB is quite sen-
sitive to the efficiency of accessing data in main memory [14].
Thus, how to optimize memory architecture to facilitate both
row-oriented and column-oriented data accesses has become
a key instrument in improving its performance. Recently,
Seshadri et al. proposed a technique called GS-DRAM [12]
to accelerate stride data access pattern by leveraging paral-
lelism in DRAM chip level. However, this method has some
limitations. First, it only exploits data already loaded in row
buffers. It can not accelerate strided data access spanning
DRAM rows. Second, GS-DRAM is not flexible enough for
IMDB since only a specific set of access patterns (such as
power-of-2 strided access) can be supported. It did not ad-
dress the case of having different field width in the same tuple
of IMDB. Third, its efficiency decreased with the size of a
row in IMDB. If the tuple size of an IMDB is increased, there
is actually less data in a column loaded in the row buffers so
that the parallelism cannot be leveraged. Finally, the com-
plexity increases with the number of multiple tables because
multiple patterns may exist.

A theoretical solution is to design a memory architecture
that enables both row and column accesses in a physical
memory array like the transposable SRAM design [15, 16]
proposed for multimedia and image-processing applications.
Though it is possible to design such a DRAM module [17]
(called RC-DRAM), it is impractical for the scenario of
IMDB. The area overhead is even higher than database dupli-
cation due to asymmetric circuit layout of a DRAM device.
Fortunately, we find that crossbar-based non-volatile mem-
ory (NVM) technologies [18], such as 3D XPoint, RRAM
and PCM, are promising alternatives to support both row-
oriented and column-oriented accesses with much lower area
overhead. We design Row-Column-NVM (RC-NVM) that
leverages the layout symmetry of crossbar-based NVM to
enable flexible and efficient row and column accesses for
IMDBs.

Contributions of this work are summarized as follows:

• We first propose a novel memory architecture called RC-
NVM to support symmetric row and column accesses
for IMDBs. We also present circuit-level analysis to
prove that RC-NVM induces acceptable area overhead.

• We rethink the addressing schemes, data layouts, cache
synonym, and coherence issues of RC-NVM in archi-
tectural level to make it applicable for IMDBs.

• We propose a group caching technique that combines
the IMDB knowledge with the memory architecture to
further optimize the system.

Experimental results show that the memory access perfor-
mance can be improved up to 14.5X with only 15% area
overhead, compared to conventional NVM. In fact, with our
RC-NVM architecture, NVM not only provides several times

of capacity increase than DRAM, but also achieves even
better performance at the same time.

2. BACKGROUND
In this section, we first review the data layout of IMDBs

to address the difference between OLTP and OLAP access
patterns. Then, we present existing RC-DRAM design and
argue that it is impractical for IMDB applications. Finally,
we use crossbar-based RRAM as an example to introduce the
potential of RC-NVM design.

2.1 Data Layout Issue of IMDB
Relational databases represent data in a two-dimensional

table of columns and rows. However, main memory is orga-
nized in single dimension, providing a flat memory addresses
space that start at zero. The database storage layer must de-
cide how to map the two-dimensional table structures to the
linear memory address space.

The classical approach is a row-based layout (“row-store”).
In this case, all fields of a tuple are stored consecutively and
sequentially in memory. Two different access patterns for
row-oriented and column-oriented operations are illustrated
in Figure 1. The top half shows an OLTP query that selects a
full table row, while the bottom half demonstrates an OLAP
query that scans two columns. Note that the spatial locality
cannot be utilized in column-oriented access, and the size of
two fields is smaller than the cacheline size, which further
reduce the memory bandwidth utilization.

Table : Person

SELECT * FROM Person WHERE age = 50

Tuple 1

Tuple 2

Tuple 3

Tuple 4

salary age

Table : Person

SELECT AVG(salary) FROM Person WHERE age > 30

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Cache Line Cache Line

salary age

Figure 1: OLTP & OLAP accesses in row-store database.

Another layout, the columnar layout (“column-store”), is
especially effective for set-based reads. In other words, it is
useful for operations that work on many rows but only on
a much smaller subset of all columns, as the values of one
column can be read sequentially, e.g. when performing ag-
gregate calculations. However, when performing operations
on whole tuples, a row-based layout is beneficial. Currently,
row-based layouts are widely used for OLTP workloads while
column stores are widely utilized in OLAP scenarios like data
warehousing.

However, a table only exists in either a row-based or a
column-based layout, and both have their own weaknesses.
OLAP on row-based layout, or OLTP on column-based layout
will cause strided memory accesses and degrade the cache

2

line and DRAM row buffer utilization, which is harmful for
memory system performance. None of them can perfectly
support both OLTP and OLAP (i.e. OLXP) workloads.

2.2 RC-DRAM Design
RC-DRAM, a.k.a. Dual-addressing DRAM [17], has been

proposed to support both row-oriented and column-oriented
memory accesses for DRAM. In the RC-DRAM array design,
two transistors and one capacitor are employed to store one
bit data, in contrast with one transistor and one capacitor per
data bit in a conventional DRAM. Moreover, one extra word
line and one extra bit line are used to support the column-
oriented decoding.

In fact, a DRAM mat is the densest region in DRAM. Such
dense mats are located in a bank repeatedly. The modifi-
cation to DRAM mat in this design will lead to significant
area-overhead, which is larger than 200% bit-per-area. Fur-
thermore, some additional peripheral circuits, such as row
decoder, column decoder, sense amplifier, etc., are required.
Detailed area overhead results are shown in Figure 4. Such
large area penalty is unacceptable since the capacity of RC-
DRAM will be significantly reduced and not suitable for
IMDB applications.

2.3 Crossbar-based NVM
In this section, we use RRAM as an example to explain

why crossbar-based NVM is feasible for RC-memory design.
The similar design can be extended to other crossbar-based
technologies, such as PCM and 3D XPoint [19].

BL0 BL1 BL7 BL15 BL31

WL0

WL1

WL7

c 0,0 c 0,7 c 0,15 c 0,31

c 1,0 c 1,1 c 1,7 c 1,15 c 1,31

c 7,0 c 7,1 c 7,7 c 7,15 c 7,31

c 0,1

Figure 2: An 8×32 array of crossbar RRAM
An example of 8×32 crossbar array of RRAM is depicted

in Figure 2. Each RRAM cell lies at the cross-point of word
lines (WLs) and bit lines (BLs). Without introducing access
transistors, these cells are directly interconnected with WLs
and BLs via electrodes. Read and write operation can be
performed by activating WLs and BLs with corresponding
voltage. Note that RC-NVM is also feasible for an array with
specific selector (e.g. FAST selector for RRAM [20] or OTS
selector for PCM [21]) to control these cells.

To read out a row in the array, the target WL will be driven
to read voltage Vread . The rest of WLs voltage are set to
VR, which is the read reference voltage. By keeping voltage
of BLs being VR with a current sensing amplifier, voltage
across the unselected RRAM cells is equal to zero. Thus,
the measured sensing current on each BL will be exactly the
same as the one flowing through the access cell.

Since WLs and BLs are symmetric in such a crossbar array,
reading out a column can be realized by simply exchanging
behaviors of WLs and BLs. In Figure 2, we just need to
exchange the voltages on WLs and BLs accordingly. Then,
the current on each WL is sensed to read out the target cells
on the target column.

For write operation, it requires two steps to write a row.
First, the target WL and BLs will be tied to write voltage
Vwrite (Gnd) and Gnd (Vwrite) for a SET (RESET) operation,
respectively. Other WLs and BLs will be biased with half
of Vwrite. Second, the target WL and BLs are applied with
Gnd (Vwrite) and Vwrite (Gnd) for a RESET (SET) operation
of remaining cells in the target row. Therefore, the write volt-
age V is fully applied across the full-selected cell(s). Other
cells sharing the activated WL and BLs also bear partial volt-
age across them. Similar to a read operation, we just need
exchange the roles of BLs and WLs to write to a column.

An important observation from the discussion above is that
there is no change required to an NVM cell array to enable
both row and column accesses because of the symmetry of
the RRAM cell. Thus, compared to a RC-DRAM, we can
achieve significantly smaller area overhead in a RC-NVM
design.

3. RC-NVM CIRCUIT DESIGN
Figure 3 (a) shows the schematic view of a RC-NVM

logic bank. Leaving RRAM array itself unchanged, extra
peripheral circuitry is required to realize row and column
accesses in the same bank. Both WL and BL are connected
with dedicated decoder, sense amplifier (SA) and write driver
(WD). The connection is controlled by multiplexers (MUXs)
and control signals from the memory controller. In addition
to the existing row buffer, a column buffer should be deployed
for buffering column data.

As shown in Figure 3 (b), multiple mats in each bank is
grouped into a logic structure called subarray. A subarray
is the basic access unit of both row-oriented and column-
oriented accesses. Figure 3 (c) provides a logical abstraction
of a RC-NVM bank.

We take the row read operation as an example to explain
how addressing is done in RC-NVM. Column read operation
has the same flow with row and column. Given an access
address, the global row decoder does the partial decoding
to assert one global word line (GWL) and global block line
(GBL). Then, local row decoder eventually generates 1-hot
signal to assert the local WL (LWL). After that, column
decoder selects the local bit line (LBL) and the cells on
selected LBL are sensed out. Finally, SAs delivers the data
to the row buffer through data line (DL). Such hierarchical
decoding structure [22] can effectively reduce the decoding
delay and power when the RC-NVM scales up.

If both row and column buffer in the same bank are in
use, the data on the cross-point of the row and column are
duplicated. This data duplication can incur coherence issue
if the data is modified in one buffer while the other is not
informed. To address this issue, we apply a restriction in this
work: the row and column buffer cannot be active at the same
time. If a row-column operation switch occurs, RC-NVM
will close the active buffer and flush the data back, before it
activates the new buffer. In this way, RC-NVM eliminates
the data coherence problem with the overhead that bank must
be reopened. However, our experimental results show that
the design performs well and the overhead is marginal.

The comparison of area overhead between RC-DRAM and
RC-NVM are given in Figure 4. X-axis shows the number
of WLs and BLs in a single memory array, which represents

3

GWL

LWL

DL

LBL

Bank

Row address

Column
address

LWL

LBL

Mat

Su
b

ar
ra

y

: Row Buffer

: MUX
: Global Decoder

: Local Decoder

: MUX

: Write Driver

: Sense Amplifier

: Column Buffer

Row Buffer

C
o

lu
m

n
 B

u
ff

er

2
R

o
w

8 Bytes2ColumnBank

······ ···

···

···

(a) (b) (c)

2
R

o
w

Subarray 2Subarray 1

Subarray 3 Subarray 4

2Column

Figure 3: RC-NVM bank design.

different array sizes. Y-axis shows the area overhead of RC-
DRAM and RC-NVM over traditional DRAM and NVM,
respectively. The device level parameters of NVM are from
previous work [23]. We adopt a real DRAM module [24] and
scale it to the same technology node for fair comparison. The
total size of both memory chips are set to 4 GB.

0%
100%
200%
300%
400%
500%

16 32 64 128 256 512 1024

A
re

a
O

ve
rh

ea
d

WL & BL Numbers

RC-DRAM over DRAM RC-NVM over RRAM

Figure 4: Area overhead of RC-DRAM and RC-NVM.
Figure 4 shows that the RC-DRAM always induces signifi-

cant area overhead (more than 2X) over the original DRAM
design. The area overhead is proportional to the number of
WLs and BLs in an array. Therefore, RC-DRAM is not a
good candidate for IMDB applications. On the contrary, the
overhead of RC-NVM is significantly lower. Compared with
RRAM, the proposed RC-NVM only requires extra peripheral
circuitry while keeps the cell array intact. Thus, the overhead
decreases as the area of cell array increases. As shown in Fig-
ure 4, the overhead drops to less than 20% when the numbers
of WL and BLs are 512. Therefore, RC-NVM becomes more
and more attractive with larger memory capacity.

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200

R
C

-N
V

M
 L

at
en

cy

O
ve

rh
ea

d

WL & BL Numbers

Figure 5: Latency overhead of RC-NVM.

The increase in area also induces longer latency mainly
from wire routing overhead. Since more multiplexing tran-
sistors are added to the critical timing path, it also increases
the read and write latency. The timing overhead of multiplex-
ing, however, is trivial because the majority of latency comes

Memory
Controller

Bank

···

Memory bus
RC-NVM Chip

Rank

1/8
th

of
the
row buffer

1/8
th

of
the

column
buffer

One word
of data
output

Figure 6: Overall architecture of an RC-NVM module.

from the cell access and wiring delay. To quantify the timing
overhead, we run SPICE simulation and the results are shown
in Figure 5. The timing overhead for RC-NVM is moderate.
For example, when the numbers of WL and BLs are 512, the
timing overhead is just about 15%.

4. ARCHITECTURAL DESIGN OF RC-NVM
In this section, we first present the overall architecture of

RC-NVM memory systems. Then, we introduce the address-
ing scheme of RC-NVM to support both row- and column-
oriented accesses. Next, we describe the cache architecture
for RC-NVM. After that, the basic usage of RC-NVM and
data layout are discussed from the perspective of IMDB.

4.1 Overall Architecture
The overall architecture is illustrated in Figure 6. The

basic organization of RC-NVM main memory is similar to
a traditional RRAM or DRAM design. It is also organized
hierarchically as channel, rank, bank, etc.

In this example, there are two ranks on a DIMM device.
Each rank is composed of eight chips, which work together
to form a 64-bit memory bus. In each chip, multiple RC-
NVM memory mats are grouped as subarrays to support both
row- and column-oriented accesses. The granularity of row-
and column-oriented accesses is 8 byte. The most common
error correcting code (ECC), a single-error correction and
double-error detection (SECDED) Hamming code can be

4

easily deployed by adding one extra chip in each rank. Thus,
the memory bus becomes 72-bit like common DRAM with
ECC.

4.2 RC-NVM Addressing
In order to perform row- and column-oriented accesses

in an IMDB, three requirements should be satisfied. First,
we need to provide a dedicated addressing mode for each
type of accesses. Second, an IMDB should explicitly control
data layout on physical memory, which is similar to tradi-
tional databases using raw disks directly and enabling them
to manage how data is stored and cached. Third, two new
instructions are introduced to exploit the column-oriented
accesses.

4.2.1 Dual Addressing Modes
As shown in Figure 7, we compare two different addresses

for the same data in RC-NVM. Figure 7 (a) is a typical row-
oriented address for a 32-bit conventional main memory. Fig-
ure 7 (b) demonstrates the corresponding column-oriented
address. For the same data (location) in RC-NVM, the only
difference is the order of the row bits and column bits of the
total 32-bit address.

2 3 3 1 3

Column Row

Channel

Bank

Subarray IntraBus

3 3 1 10 10 3

Row Column

Channel

Bank

Subarray IntraBus

2

Rank

10 10

Rank

(b) Column-Oriented Address

(a) Row-Oriented Address

Figure 7: Address formats for (a) row-oriented and (b)
column-oriented accesses.

Such addressing methods not only simplify design com-
plexity of memory controller, but also make it easy to transfer
addresses between two accesses modes. It is easy to find that,
when the row-oriented address is increased, the column bit
is increased. It represents the case of scanning on a physical
row. Similarly, for a column-oriented address, increasing
the address represents the case of scanning a column. Thus,
it is simple to transfer a row-oriented address to a column-
oriented address and vice versa.

4.2.2 Explicit Data Layout Control
In order to explicitly control physical data layout on RC-

NVM, the IMDB can leverage the huge-page technique pro-
vided by mainstream operating systems [25], which has been
supported in modern processors. By using huge-page, the
memory page size is set to 1 GB. Within each huge page, the
lower 30 bits of a virtual address and the corresponding physi-
cal address are exactly the same. Increasing the memory page
size could also reduce the number of TLB misses and im-
prove the performance, which is already used in commercial
databases [26].

As discussed in Section 4.1, the basic access unit is a sub-
array for both row-oriented and column-oriented accesses.
Thus, given the address mapping design in Figure 7, an IMDB
can explicitly control the data to be accessed in each row-
/column-oriented access. Obviously, as long as the subarray
bits, which include row bits and column bits, are allocated

inside the lower 30-bit, an IMDB can always explicitly con-
trol the data to be accessed. This is practical because the size
of a subarray is normally less than 1 GB. Similarly, it also
works with the 64-bit memory address. In this work, we use
the 32-bit memory address to simplify discussion.

In a real case, when a computer system with RC-NVM
is powered on, the physical geometry information of the
equipped RC-NVM, such as the row and column size, is
reported to BIOS by the memory controller. An IMDB can
access these information with the help of OS so that the data
layout is carefully organized to facilitate the row-/column-
oriented accesses.

4.2.3 ISA Extension
In order to allow IMDB applications to utilize the column-

oriented access in RC-NVM, we add two instructions, called
cload and cstore. The details of these two instructions are
shown as follows:

cload reg, addr
cstore reg, addr

where reg is the destination register, addr is the data address.
Addresses in these two instructions are recognized by the
memory controller, and sent to RC-NVM modules with an
additional column-oriented signal. Similar to prior works,
this can be in implemented by leveraging DDR interface. For
example, DDR4 interfaces has two reserved address pins,
thereby one of them can be used to send this signal [27].
Since traditional row-oriented addressing is still adopted in
load and store instructions, other applications do not need to
change.

4.3 Cache Architecture for RC-NVM
In this subsection, we focus on modification of CPU cache

design to make it work with RC-NVM. First, we introduce
how to store data with two different addresses in caches.
Then, we discuss how to solve the data synonym problems in
single-core and multi-core scenarios.

4.3.1 Caching Data with Dual Addresses
As introduced in Section 4.2.1, data in RC-NVM can be

accessed with two different addresses, both of which can be
used for cache addressing with conventional decoding cir-
cuitry. In order to differentiate two addresses in the cache, one
extra status bit, called orientation bit, is added to each cache
line. When data are loaded into cache with row-oriented
addresses, the bit is set to ‘0’, otherwise it is set to ‘1’.

As shown in the example of Figure 8 (a), the 8-byte data
can be accessed with addresses 0x0036a5b0 (row-oriented)
and 0x0016cda8 (column-oriented). We have a cache with
following configuration: 1) cache size is 64 KB, 2) cache
block size is 64 byte, and 3) cache associativity is four. When
the data are accessed with the row-oriented address, they are
loaded into the cache together with other 56-byte data in the
same NVM row. As shown in Figure 8 (b), data are placed in
the corresponding cache entry and the orientation bit is set
to ‘0’. Similarly, when accessed with the column-oriented
address, they are loaded into cache together with other 56-
byte data in the same column. Data are placed in the cache
according to the column-oriented address with orientation bit
set to ‘1’.

5

(a)

Crossing Data

2 * 128 lines

2 * 128 lines

2 * 128 lines

10 101 01 0

(b)

Row-Oriented Cacheline

C
o

lu
m

n
-O

rien
te

d
 C

ache
lin

e

Dirty

1 0 1 0 1 0 1 00

0 0 0 0 0 1 0 01

…

…

Orientation
CrossingValid Tag Data

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 11 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0

Set 0x16

Set 0x36

 Subarray

Row-Oriented Address: 0x0036a5b0
Column-Oriented Address: 0x0016cda8

Row 437, Col 182

00 000 100

00 000 100

00 000 100

00 000 100

Figure 8: Illustration of cache architecture for RC-NVM.

4.3.2 Cache Synonym in a Single-core Processor
As shown in the previous example, same data may be

loaded into the cache twice with both row-oriented and column-
oriented addresses. It will result in the data synonym problem.
A previous work has solved such a problem by separating the
cache into two individual parts and employing a WURF cache
coherence policy [17]. In this work, instead of partitioning
the cache into two parts, we add one extra status bit for each
8-byte (i.e. granularity of data synonym) in the cache block.
Thus, for a 64-byte cache block, we need 8 extra status bits,
as shown in Figure 8 (b). These status bits are called crossing
bits to represent data synonym caused by the row-column
crossing blocks, shown in Figure 8 (a).

The basic idea of solving synonym is to keep duplicated
data updated at the same time. Extra operations are required
for data replacement, write, and write-back operations, which
are listed as follows,

• When a cache block is loaded into the cache, cache
controller needs to check all potential cache lines that
may cross with this one in the memory. For example, in
Figure 8 (a), a 64-byte row-oriented cache block may
be crossed with 8 column-oriented cache blocks in the
RC-NVM. Thus, when the row-oriented cache block
is loaded into the cache, 8 potential column-oriented
cache blocks are checked. If any of these 8 column-
oriented cache blocks exists in the cache, the crossed
region (i.e. 8-byte data) are copied from the column-
oriented cache block to the row-oriented cache block
so that duplicated data are kept same. At the same time,
the corresponding crossing bits are set to ‘1’. The status
of the cache in this example is shown in Figure 8 (a).

• When a cache block is written back due to eviction, the
crossing bits of its crossed cache blocks are reset to ‘0’.

• When a cache block is updated in a write operation, if
the crossing bit of modified 8-byte data is equal to ‘1’,
the corresponding duplicated data in the crossed cache
block are updated at the same time.

4.3.3 Solving Cache Synonym and Coherence Issues
In a multi-core processor, the cache synonym problem

also exists. At the same time, it will cause extra coherence
problems. These problems can be easily solved by handling

Tuple 1

Tuple 2

Tuple 3

Tuple 4

...

Tuple 15

Tuple 16

f1 f2 f3 f4

f1 f2 f3 f4

f1 f2 f3 f4

f1 f2 f3 f4

f1 f2 f3 f4

f1 f2 f3 f4

Row Buffer

Tuple 1 Tuple 2

Tuple 3 Tuple 4

Tuple 5 Tuple 6

Tuple 7 Tuple 8

Tuple 9 Tuple 10

Tuple 11 Tuple 12

Tuple 13 Tuple 14

Tuple 15 Tuple 16

C
o

lu
m

n
 B

uf
fe

r

f1 f2 f3 f4 f1 f2 f3 f4

f4

f4

f4

f4

f4

f4

f4

f4

Fields of each tuple

A table in IMDB

(a) (b)

Figure 9: An example of IMDB table and its layout in RC-NVM.

these two issues separately in a specific order. The basic
rule is: cache synonym is always solved first, then cache
coherence protocols are applied.

The idea of solving cache synonym problem in a multi-core
processor is similar to that in a single-core case. We need to
keep duplicated data updated at the same time. Note that the
crossing bits are still required. For example, these bits are
stored in the cache directory, if a directory based coherence
mechanism is employed. Thus, whenever a write operation
happens, the crossed cache blocks are updated accordingly.

After that, cache coherence protocols start to work to make
all updated blocks consistent in multiple cores or memory lev-
els. Note that the cache coherence operations only involve the
cache blocks in the same address space (either row-oriented
or column-oriented). They will not cause further cache syn-
onym problems. Note that there is no change to the existing
cache coherence protocols.

For both single-core and multi-core cases, there is no extra
overhead for a cache read operation. The overhead of a write
operation is moderate. Substantial extra overhead is induced
in data replacement. Since data replacement itself is a time-
consuming process, the overhead is acceptable. Evaluation
results of cache overhead are presented in Section 6.

4.4 Basic Usage of RC-NVM
In this section, we use a simplified scenario to demonstrate

how to leverage both row-oriented and column-oriented ac-
cesses in RC-NVM. Figure 9 (a) illustrates the table in an
IMDB used in this example. It is comprised of 16 tuples, each
of which consists of four fields. Note that, in order to differ-
entiate a physical row in the memory, we use the term “tuple”
to represent a row in the table of an IMDB. To simplify the
discussion, the sizes of four fields are all set to 8 bytes in this
example. We assume that this table is stored in a 512-byte
RC-NVM subarray in a row-oriented way, as illustrated in
Figure 9 (b). In this example, both the row buffer and the
column buffer of this RC-NVM memory bank are set to 64
bytes.

Having this table in RC-NVM, we use two SQL examples
to illustrate how row-oriented and column-oriented accesses
work. The first one is a typical OLTP query for the row-
oriented access, as shown in Figure 10. The SQL will fetch all
tuples that satisfy the condition (f3 < ‘1234’). Obviously,

6

 1 for (int i = 1; i <= 16; i++) {
 2 if (table->tuple[i].f3 < 1234)
 3 Print f1, f2, f3, f4 of tuple[i];

 4 }

SELECT * FROM table WHERE f3 < 1234

Figure 10: An OLTP SQL example: row-oriented access.

it is convenient to complete this SQL request with traditional
row-oriented access. For instance, the first memory request
loads both tuples, T1 and T2, into the row buffer. Then, the
field f3 in each tuple is read out and compared. Then, data
in T1 and T2 can be read out accordingly.

 1 int sum = 0;
 2 uint32_t col_addr_1, col_addr_2;
 3 col_addr_1 = Row2ColAddr(&(table->tuple[0].f4));
 4 col_addr_2 = Row2ColAddr(&(table->tuple[1].f4));
 5 for (int i = 1; i <= 8; i++) {
 6 uint64_t f4_1 = column_load(col_addr_1);
 7 if (f4_1 < 4321)
 8 sum += f4_1;
 9 col_addr_1 += 8;
10 }
11 for (int i = 1; i <= 8; i++) {
12 uint64_t f4_2 = column_load(col_addr_2);
13 if (f4_2 < 4321)
14 sum += f4_2;
15 col_addr_2 += 8;

16 }

SELECT SUM(f4) FROM table WHERE f4 < 4321

Figure 11: An OLAP SQL example: column-oriented access

The second example for column-oriented access is listed in
Figure 11. This typical OLAP query fetches out all f4 fields
in each tuple and adds them up. If we still use the traditional
row-oriented access, all eight memory rows will be loaded
into the row buffer sequentially to access fields in each tuple.
However, since we have enabled column-oriented access in
RC-NVM, this request is simplified significantly with only
two column-oriented memory accesses to read out all fields
required.

The third example that uses both row- and column-oriented
accesses is illustrated in Figure 12. This query displays cer-
tain rows that meet the condition. Only a few rows that meet
the restriction are selected. In RC-NVM, we can use column-
oriented access to scan the f10 column to check whether the
condition, f10 > x, is met. If a candidate is found, then
the IMDB can issue a row-oriented access to retrieve the
tuple. In this process, the data transmitted on memory bus
are all effective, thus the utilization of memory bandwidth is
improved.

4.5 Data Layout in RC-NVM
As we addressed in Section 4.2.2, we can explicitly control

physical data layout in RC-NVM to facilitate data accesses.
Thus, we can enable more flexible data placement in RC-
NVM than in conventional DRAM. The goal is to store those

 Access Field f10

f10 f10 f10

 Select a row Select another row

SELECT * FROM table-a WHERE f10 > x

table-atable-atable-a

Figure 12: An SQL example with both row- and column-
oriented accesses

T1 T2 T3 T4

T5 T6 T7 T8

Row-oriented
layout in chunk

T1 One tuple

T9

T10

T11

T12

T13

T14

T15

T16

T1

T2

T3

T4

T5

T6

T7

T8

Column-oriented
layout in chunk

Figure 13: Two types of data layouts: (a) row-oriented
layout and (b) column-oriented layout.

tables in IMDBs efficiently. In this subsection, we first intro-
duce how to slice a table of IMDB into small chunks. Then,
we discuss how to place these chunks in a RC-NVM.

4.5.1 Slicing a Table into Chunks
Since tables in IMDBs are normally very large, we need

to slice them into multiple data chunks before placement.
This is a common technique in database management to store
large tables [28]. In this work, a chunk is defined as the
rectangle unit of data placement in RC-NVM that can be
fit into a subarray of RC-NVM. In other words, a table is
sliced into chunks when its size is larger than a subarray of
RC-NVM (i.e. 8 MB in this work) or the length of its tuple
is longer than the row length in a subarray (i.e. 8 KB in this
work). Note that the second case is really rare in real IMDB
applications. After a table is sliced, we need to handle two
data layout issues: intra-chunk data layout and inter-chunk
data layout, which are introduced as follows.

4.5.2 Intra-Chunk Data Layout
We present two types of intra-chunk data layouts in a RC-

NVM, which are called row-oriented layout and column-
oriented layout in this work. They are friendly to row-oriented
accesses and column-oriented accesses, respectively. These
two types of data layouts are illustrated with two examples
as follows.

A straightforward row-oriented data layout is illustrated in
Figure 13 (a). The array represents a subarray of RC-NVM.
Apparently, with such a data layout, the tuples in a chunk are
continuous in a table. At the same time, their row-oriented
addresses are also continuous according to the addressing
method in Figure 7, which is similar to the data layout in
conventional DRAM based main memory. Consequently,

7

it is compatible to traditional IMDBs. In this layout, the
row-oriented access will achieve the maximum efficiency.

On the other hand, it is easy to understand such a row-
oriented data layout is inefficient for column-oriented data
accesses, since the column-oriented access will suffer from
frequent column-buffer switching unless we do not care the
accessing order within each column. To mitigate this problem,
we further propose another column-oriented data layout, as
shown in Figure 13 (b). Tuples are continuously placed in
the vertical direction in a subarray. Thus, it is convenient to
load the same field of multiple tuples with a single column-
oriented access.

In fact, using a column-oriented data layout also outper-
forms the row-oriented counterpart with OLXP applications.
The main reason is that a tuple is normally significantly
shorter than the row size of a RC-NVM. Thus, in a row-
oriented layout, the span of tuples in different memory rows
is too large, which makes column-oriented accesses in OLAP
quite inefficient. In addition, the access pattern of continu-
ously scanning all tuples in an IMDB table is rare. Most SQL
operations are composed of both row-oriented and column-
oriented accesses. In addition, we will propose a dedicated
data access optimization technique for column-oriented data
layout in Section 5 to further improve its efficiency for OLXP.

4.5.3 Inter-Chunk Data Layout
At the beginning, all these subarrays are empty. Then,

tables are created in run-time during IMDB operations. Since
all IMDB tables have been sliced into multiple chunks, we
need to figure out a run-time placement policies to fit these
chunks in subarrays of RC-NVM. Since both row-oriented
and column-oriented accesses are supported, each chunk can
be rotated before being placed into a subarray. This is a
typical problem of “two-dimensional online bin packing with
rotation”. Thus, we use the algorithm in Fujita’s work to solve
this problem [29]. The goal of this algorithm is to minimize
the number of subarrays that are used for at least one chunks.
Please refer to this reference for more details. Note that the
placement of IMDB is fully operated in software level (i.e.,
database memory allocator). It does not require any extra
hardware modification.

5. GROUP CACHING OPTIMIZATION
We observe that the efficiency of column-oriented access

is degraded when the data is required to be accessed with a
specific order. As introduced in Section 4.1, the data width
of a column-oriented access in RC-NVM is fixed (i.e., eight
bytes in this work). However, the width of field in an IMDB
table can vary. This fact may degrade efficiency of memory
access, especially when a field width is larger than the column
access width. Such a problem is called wide field access in
this study.

An example is given in Figure 14. We assume that all
data in field Email needs to be accessed. In this example,
the Email field spanning two columns of RC-NVM is an
indivisible whole. In column-oriented accesses shown in
Figure 14 (b), only half of field data are read, which is mean-
ingless for applications. Obviously, using column-oriented
operations can traverse the whole field efficiently only if the
access orders are not required. However, if the data access

T8

T1
T2

T9

T16

T10

c.com

bc.com

bc.com

c.com

first@ab

eighth@a

Email

(a) 3 column-buffer
replacements

sixteen@ abc.com

second@a

ninth@ab

···

···
tenth@ab c.com

···

···

···

···

···

···

···

···

···

···

···

···

T8

Email
T1
T2

T9

T16

first@ab c.com

second@a bc.com

eighth@a bc.com

ninth@ab c.com

sixteen@ abc.com

···

···
T10 tenth@ab c.com

(b) 1 column-buffer
replacements

···

···

···

···

···

···

···

···

···

···

···

···

SELECT Email FROM table Person

Figure 14: Wide field issue in column-oriented access

f3 f6 f10 f3 f6 f10

(a) 5 column-buffer replacements (b) 2 column-buffer replacements

SELECT f3, f6, f10 FROM table-a

table-a table-a

Figure 15: Access multiple fields with column-oriented access

order from IMDB is strictly required as in the Figure 14
(a), column-oriented operation is inefficient. The reason is
straightforward, each data access will generate a replacement
of column-buffer. For instance, two extra column-buffer re-
placements occur in Figure 14 (a).

Another example can be found in Figure 15, the corre-
sponding SQL is also listed. This query needs to read a few
nonadjacent fields of a tuple in a specific order. In this ex-
ample, the column-oriented access is also inefficient for the
similar reason. Basically, whenever such a Z-style access
order is required, the efficiency of column-oriented access
is degraded. Unfortunately, the row-oriented access is also
inefficient because only a small portion of data are hit in the
row-buffer.

In order to solve this problem, we propose a novel software-
based data caching technique called group caching. The basic
idea is to cache multiple columns of data as a group to CPU
cache with column-oriented accesses. Then we can access
the required data in any order with the help of the cache. We
first modify the query optimizer in IMDB that converts SQL
statements into memory access commands. When IMDB
needs to access a wide field, or several fields that must be
operated in row-order, it will generate corresponding group
caching requests in advance. After the data is loaded into
the CPU cache, IMDB can access the cached data using the
column-major addresses.

One potential design issue is the unexpected cacheline evic-
tion. It is possible that the cached group data of one thread
are replaced by data accessed from the other threads before
they are really accessed, especially in the multi-core environ-
ment. The solution for this cache thrashing problem is to use
a well-known technique called cache-pinning [30]. The basic
idea is to pin the data in the cache before they are accessed
so that it is not evicted due to cache conflicts. We still use the

8

wide field example mentioned above to demonstrate how this
technique works.

As shown in Figure 16, when IMDB query planner needs
to retrieve a wide field, it will generate a software column
group caching command to read each segment of the wide
field. Then the cachelines fetched will be pinned (Step 1 and
2). After the data are used by the IMDB in Step 3, these
cachelines will be unpinned to release the space. With the
help of group caching techniques, data in a rectangle region
can be accessed in either row-oriented or column-oriented
way. In terms of the shape of the region, query optimizer
in IMDB can select accessing method (row or column) to
minimize the number of memory accesses. If the width of the
requested rectangle region is much less than the memory row
length, which is a common case that fetches a few small-size
fields in SQL SELECT statement, the column-oriented access
will be the right choice.

(a) Step 1: Prefetch column 1 and
pin the data

Memory

Cache

(b) Step 2: Prefetch column 2 and
pin the data

c.com

bc.com

bc.com

c.com

abc.com

c.com

first@ab

eighth@a

ninth@ab

sixteen@

T8

Email
T1
T2

T9

T16

···

···
T10 Prefetch

···

···

···

···

···

···

···

···

···

···

···

···

c.com

bc.com

c.com

abc.com

first@ab

second@a

eighth@a

ninth@ab

sixteen@

tenth@ab

T8

Email
T1
T2

T9

T16

Prefetch
···

···
T10

···

···

···

···

···

···

···

···

···

···

···

···

first@ab

···

sixteen@

···

Cacheline1 Cacheline2

···

···

second@a

···

···

···

···

···

SELECT Email

 FROM table Person

first@ab

c.com

sixteen@

abc.com

Cacheline3 Cacheline4

···

···

second@a

bc.com

···

···

···

···

first@ab

c.com

sixteen@

abc.com

Cacheline3 Cacheline4

···

···

second@a

bc.com

···

···

···

···

Pinned cacheline

IMDB

(c) Step 3: Access the data in CPU
cache

Pinned cacheline

Figure 16: Illustration of group caching

Apparently, the efficiency of group caching is closely re-
lated to the caching size. It is easy to understand that the
caching size should not exceed the physical cache size. Due
to the fact that group caching will also affect the cache miss
rates of other data accesses, the optimized group caching
size is not only related to the cache size but also depends
on the data access pattern. We compare the performance of
executing the SQL in Figure 14 and Figure 15 under different
group caching sizes in Figure 23.

6. EVALUATION METHODOLOGY
In this section, we first introduce the experiment setup for

simulation. Then, we provide details of workloads used for
evaluation.

6.1 Experiment Setup
We use a cycle-accurate memory simulator, NVMain [31]

integrated with gem5 [32] as our system simulator. We simu-
late an directory based MESI cache coherence protocol with
Ruby in gem5. Based on the timing parameters of Panasonic’s
RRAM model [23], we modified NVMain to quantitatively
evaluate the performance of the proposed RC-NVM. We also
adopt Micron’s DRAM [24] as another reference.

Our main system configuration is shown in Table 1. In the
simulated RC-NVM system, we have 2 channels, 4 ranks per
channel, 8 banks per rank, and 8 subarrays per bank. Each
subarray comprises 1024 rows and 1024 columns, which
support both row-oriented and column-oriented memory ac-
cesses. The total capacity of our system is 4 GB. This con-
figuration is matched to the address mapping scheme shown

in Figure 7. The well-known FR-FCFS [33] is used as our
scheduling policy.

Table 1: Configuration of simulated systems
Processor 4 cores, x86, 2.0 GHz

L1 cache private, 64B cache line, 8-way associative, 32 KB

L2 cache private, 64B cache line, 8-way associative, 256 KB

L3 cache shared, 64B cache line, 8-way associative, 8 MB

Memory controller 32 entry request queues per controller, FR-FCFS
scheduler [33]

DRAM DDR3-1333, tCAS: 10, tRCD: 9, tRP: 9, tRAS: 24,
Channels: 2, Ranks: 2, Banks: 8, Rows: 65536,
Columns: 256, Row buffer size: 2048 B, Capacity:
4 GB, Access time: 14 ns,

RRAM LPDDR3-800, tCAS: 6, tRCD: 10, tRP: 1, tRAS:
0, Channels: 2, Ranks 4, Banks: 8, Rows: 8192,
Columns: 1024, Row buffer size: 8192 B, Capac-
ity: 4 GB, Read access time: 25 ns, Write pulse
width: 10 ns

RC-NVM LPDDR3-800, tCAS: 6, tRCD: 12, tRP: 1, tRAS:
0, Channels: 2, Ranks 4, Banks: 8, Rows: 8192,
Columns: 1024, Row buffer size: 8192 B, Col-
umn buffer size: 8192 byte, Capacity: 4 GB, Read
access time: 29 ns, Write pulse width: 15 ns, 4
512*512 mats in a subarray

6.2 Workloads
We first describe the benchmarks used in our evaluation.

As pointed out by prior work [34], there still lacks a stan-
dard OLXP benchmarks, we developed our own benchmark
that is composed of queries that are common in enterprise
workloads. 1 We first select a number of SQL queries to
evaluate performance of RC-NVM. They are typical queries
that perform small transactional operations (OLTP-style), as
well as more complex, read-intensive aggregates on larger
sets of data (OLAP-style). These queries composing our
workloads are shown in Table 2. Queries Q1 to Q3 and Q8
to Q13 can be categorized as typical OLTP queries, while
queries Q4 to Q7 can be categorized as OLAP-style queries.
Queries Q14 and Q15 are used to evaluate the effect of group
caching optimizations. The tuples of table-a and table-b have
16 and 20 fixed length (8-byte) fields respectively, while five
variant-length fields in the tuples of table-c.

7. EVALUATION RESULTS
In this section, we evaluate performance of RC-NVM and

compare it with conventional RRAM and DRAM counter-
parts with different workloads.

7.1 Micro-benchmark Evaluation
Figure 17 shows the performance results of RC-NVM,

RRAM, and DRAM with eight micro-benchmarks. The pur-
pose of these micro-benchmarks is to scan an IMDB table
with identical read/write operations. The table can be or-
ganized as row-oriented layout (labeled as L1) or column-
oriented layout (labeled as L2), as shown in Figure 13. And
there are two directions of scanning a table: row-oriented
(labeled as row-read/write) and column-oriented (labeled as
col-read/write). For conventional RRAM and DRAM de-
signs, only row-oriented access is used for both directions of
1We are trying to make it open-source for future standard bench-
marks. Code and workload description can be found anonymously
at https://github.com/RCNVMBenchmark/RCNVMTrace.

9

https://github.com/RCNVMBenchmark/RCNVMTrace

Table 2: Benchmark Queries
SQL Statement

Q1 SELECT f3, f4 FROM table-a WHERE f10 > x
Q2 SELECT * FROM table-b WHERE f10 > x (Most of f10 is NOT

greater than x)
Q3 SELECT * FROM table-b WHERE f10 > x (Most of f10 is greater

than x)
Q4 SELECT SUM(f9) FROM table-a WHERE f10 > x
Q5 SELECT SUM(f9) FROM table-b WHERE f10 > x
Q6 SELECT AVG(f1) FROM table-a WHERE f10 > x
Q7 SELECT AVG(f1) FROM table-b WHERE f10 > x
Q8 SELECT table-a.f3, table-b.f4 FROM table-a, table-b

WHERE table-a.f1 > table-b.f1 AND table-a.f9 = table-
b.f9

Q9 SELECT table-a.f3, table-b.f4 FROM table-a, table-b
WHERE table-a.f9 = table-b.f9

Q10 SELECT f3, f4 FROM table-a WHERE f1 > x AND f9 < y
Q11 SELECT f3, f4 FROM table-a WHERE f1 > x AND f2 < y
Q12 UPDATE table-b SET f3 = x, f4 = y WHERE f10 = z
Q13 UPDATE table-b SET f9 = x WHERE f10 = y
Q14 SELECT SUM(f2_wide) FROM table-c (An OLAP query to read

wide field f2_wide)
Q15 SELECT f3, f6, f10 FROM table-a

scanning. For RC-NVM, the row-oriented access and column-
oriented access are used accordingly for different scanning
directions.

0

100

200

300

400

500

600

700

row-read-L1 row-write-L1 row-read-L2 row-write-L2 col-read-L1 col-write-L1 col-read-L2 col-write-L2

Ex
e

cu
ti

o
n

 T
im

e
(1

0
6

cy
cl

es
)

RC-NVM RRAM DRAM

Figure 17: RC-NVM micro-benchmark results
From the row-oriented scanning, we can find that using

RRAM is 35% slower than using DRAM because RRAM
can only work in a lower operating frequency, as shown in
Table 1. And RC-NVM is 4% slower than RRAM for the
cache coherence overhead. However, RC-NVM outperforms
RRAM and DRAM when the IMDB table is scanned in a
column-oriented direction. The execution time is reduced
by 76% in row-oriented layout (L1) and 77% in column-
oriented layout (L2) compared to DRAM. It demonstrates the
advantage of column-oriented access provided by RC-NVM.
Since RC-NVM performs better with column-oriented layout,
we will apply the column-oriented layout as the default to
maximize the performance of RC-NVM in the following
experiments.

7.2 Queries Evaluation
Figure 18 presents the experimental data of the SQL-query

benchmark set consisting of queries Q1 to Q13. Compared
with original RRAM and DRAM, the execution time of these
benchmark queries on RC-NVM is reduced by 71% and
67% on average, respectively. All these results demonstrate
similar trends, i.e, the performance of RC-NVM is better
than DRAM, and DRAM is faster than RRAM. There is
only one exception for query Q3, since Q3 is translated into
sequential row-oriented memory access, whose pattern is
most suitable for DRAM. Compared to RRAM and DRAM,
the performance of IMDB can be improved up to 14.5X and
13.3X in the best case (Q6), respectively. We also compare
with results of using GS-DRAM [12]. Compared to GS-
DRAM, the performance is improved by 2.37x on average.

The reason of performance improvement with RC-NVM can
be explained by a combination of factors as follows.

0

30

60

90

120

150

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Ex
ec

u
ti

o
n

 T
im

e
(1

0
6

 c
yc

le
s)

RC-NVM RRAM GS-DRAM DRAM

Figure 18: SQL benchmark results

First, by using both row-oriented access and column-oriented
accesses, the total number of memory requests can be greatly
reduced. As shown in Figure 19, the total number of memory
accesses of RRAM and DRAM are the same since they can
only use one-direction memory access. However, memory
access numbers are greatly reduced in RC-NVM, even con-
sidering the effect of cache synonym and coherence. LLC
misses are less than a third of those of DRAM on average.
As a consequence, the total number of memory accesses to
retrieve the effective data in RC-NVM decreases, compared
with that in DRAM. In other words, IMDB using RC-NVM
have two alternative ways to access the data, and it can select
a best combination of access methods to fetch data at one
time to improve the memory bus utilization. For GS-DRAM,
memory accesses are only reduced when a specific set of ac-
cess patterns (power-of-2 strided access) happens. These are
cases for queries Q1, Q4, and Q6. For the cases like Q2, Q3,
Q5, GS-DRAM cannot work. Thus, it shows no improvement
over conventional DRAM.

0

1000

2000

3000

4000

5000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

LL
C

 M
is

se
s

(×
1

0
3
)

RC-NVM RRAM GS-DRAM DRAM

Figure 19: Number of memory accesses.
Second, the decrease of row-/column-buffer miss rates

also contributes to the performance improvement. In RC-
NVM, IMDB has greater possibility to avoid row-/column-
buffer misses caused by strided accesses. Figure 20 shows
RC-NVM achieves a 38% decline in total buffer miss rate.
Note that the misses of row-/column-buffer of RC-NVM are
combined together as the total buffer miss rate. Note that
the miss rate of column-buffer is not reduced after using GS-
DRAM. It only scatters data into multiple rows and active
them together.

0%

20%

40%

60%

80%

100%

120%

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

R
o

w
-/

C
o

lu
m

n
 B

u
ff

er

M
is

s
R

at
e

RC-NVM RRAM GS-DRAM DRAM

Figure 20: Comparison of row-/column-buffer miss rates.

Third, we can see that the extra overhead to solve the cache
synonym and coherence of RC-NVM lies in the range of 0.2%
to 3.4%. On average, the cache coherence overhead intro-
duced by RC-NVM is 1.06%, which is negligible. Note that

10

we do not count the extra coherence overhead for GS-DRAM
in experiments since the details are not clearly described in
the paper [12].

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

C
oh

er
en

ce
 O

ve
rh

ea
d

R
at

io

Figure 21: Cache synonym and coherence overhead.

0

100

200

300

400

500

600

 (12.5 ns, 5 ns) (25 ns, 10 ns) (50 ns, 20 ns) (100 ns, 40 ns) (200 ns, 80 ns)

Ex
ec
ut
io
n
Ti
m
e
(1
06

 c
yc
le
s)

(read access time, write pulse width) of RRAM/RC‐NVM cell

RC‐NVM RRAM DRAM

Figure 22: RC-NVM read latency sensitivity results
In previous experiments, we use the RRAM model from

Panasonic’s RRAM model [23]. In order to reflect the impact
of different RRAM technologies on efficiency of RC-NVM,
we perform a sensitivity analysis. As shown in Figure 22,
we scale the read and write latency to different values and
compare the average execution time results. We can find that
using RC-NVM can still outperform DRAM even when the
read and write latency are in the level of several hundreds of
cycles.

7.3 Effect of Group Caching
By applying group caching optimization, RC-NVM can

further achieve performance improvement with relatively
small last-level cache usage. The effects of this optimization
are shown in Figure 23. The numbers on the legend indicate
how many cache-lines are filled at one time. It is apparent
from this figure that larger group caching size achieves better
performance. For example, we can achieve a 15% perfor-
mance improvement when the group caching length is set to
128 cachelines for each column. The estimated cache space
we need for Q14 and Q15 are 32K and 24K, respectively.

0

5

10

Q14 Q15

Ex
ec

u
ti

o
n

 T
im

e
(1

0
6

cy
cl

es
)

w/o pref. 32 64 96 128

Figure 23: Impact of Group Caching optimization

8. RELATED WORK
We believe that this is the first work that shows the use of a

row-column-accessible RAM in in-memory database. In this
section, we discuss the prior works that aim to improve the
efficiency of OLTP and OLAP queries in IMDB, and enhance
the performance of the memory system.

In-Memory Database Optimizations. Various workload
characterization studies provide detailed analysis of the time

breakdown for databases running on a modern processor,
and reveal that databases suffer from high memory-related
processor stalls. This is caused by a huge amount of data
cache misses [35], which account for 50-70 percent for OLTP
workloads [36] to 90 percent for DSS workloads [37], of the
total memory-related stall.

Data layouts have a considerable influence on the memory
utilization and performance of in-memory databases. To uti-
lize the memory more efficiently, some work re-organizes the
records in a column store [38,39,40]. Columnar layout favors
OLAP workload such as scan-like queries, which typically
only needs a few columns of relational table. This layout can
achieve good cache locality [41, 42], and can achieve better
data compression [43], but has a negative impact for OLTP
queries that need to operate on the row level [5, 9, 38].

Some IMDBs try to support OLXP using software meth-
ods. There have been several attempts to build databases
by means of a hybrid of row and column layouts. For ex-
ample, PAX [44] stores data from multiple columns only
within a page, and uses a column-wise data representation
for those columns. SAP HANA [9, 45] supports both row-
and column-oriented physical representations of relational
tables, in order to optimize different query workloads. It
organizes data layout for both efficient OLAP and OLTP
with multilayer stores consisting of several delta row/column
stores and a main column store, which are merged period-
ically. Arulraj et al. propose a continuous reorganization
technique to shape table’s physical layout in either row-stores
or column-stores [34]. However, the row-column transforma-
tion involves significant data copying overhead and does not
work in fully interleaved OLXP workload. In addition, none
of them has direct support of memory hardware, which is not
enough for performance-critical applications using IMDB.

High Performance Memory Architectures. Many pre-
vious work introduce new DRAM architectures for either
achieving lower DRAM latency or higher parallelism. Re-
dundant Memory Mapping (RMM) [46] is a virtual address
translation mechanism that improves performance of access-
ing large memories. SALP [47] exploits the subarray-level
parallelism to mitigate the performance impact of bank con-
flicts in DRAM. Our mechanisms are orthogonal to these
works, and can be applied together with them to further in-
crease memory system performance.

Recently, there has been extensive research work about
using these NVMs as alternatives of DRAM or together with
DRAM as a hybrid architecture [48, 49, 50]. For example,
Intel has announced 3D XPoint based product that can be
used as RAM [51]. And one of its target killer applications
is IMDB because it can provide almost 10X capacity over
DRAM main memory. Prior work mainly focuses on NVM
advantages, such as non-volatility, high storage density, and
low standby power. Yet the layout symmetry of crossbar-
based NVM is not exploited.

Dual-addressing memory [17] (RC-DRAM) provides row-
major and column-major memory access patterns. GS-DRAM
improves the performance of the strided access by changing
the DIMM organization [12]. Compared to them, RC-NVM
facilitate IMDB to efficiently perform both row- and column-
oriented accesses with considerable flexibility and small over-
head.

11

9. CONCLUSION
In order to improve memory access efficiency of OLXP

workloads in IMDBs, we propose a novel architecture called
RC-NVM. The basic idea is to leverage the symmetric ar-
ray structure of cross-bar based NVM technologies, such as
PCM and RRAM, to enable both row-oriented and column-
oriented memory accesses with moderate density loss. With
a minor extension to the ISA and the help of huge-page
technique, IMDBs can explicitly issue proper direction of
memory accesses according to the data layout and database
request patterns. Thus, the memory performance for OLXP
workloads is significantly improved because both the number
of memory requests and the memory buffer miss rates can
be reduced substantially. We also propose a group caching
technique to solve the problem of ordered data accesses and
further improve performance at the same time. After using
RC-NVM architecture with IMDBs, we can achieve even bet-
ter performance than the DRAM counterpart, although NVM
device has a lower access speed. To this end, RC-NVM is
considered to be an attractive solution to provide both large
capacity and high performance for IMDBs.

10. ACKNOWLEDGMENTS
This work is supported by National Natural Science Foun-

dation of China (No.61572045, 61433019, U1435217).

11. REFERENCES
[1] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and

J. Teubner, “MonetDB/XQuery: A Fast XQuery Processor Powered by
a Relational Engine,” in Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’06,
(New York, NY, USA), pp. 479–490, ACM, 2006.

[2] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-store: A High-performance, Distributed Main
Memory Transaction Processing System,” Proc. VLDB Endow., vol. 1,
pp. 1496–1499, Aug. 2008.

[3] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory
DBMS.,” IEEE Data Eng. Bull., vol. 36, no. 2, pp. 21–27, 2013.

[4] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP amp;OLAP
main memory database system based on virtual memory snapshots,” in
2011 IEEE 27th International Conference on Data Engineering,
pp. 195–206, Apr. 2011.

[5] M. Grund, J. KrÃijger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden, “HYRISE: A Main Memory Hybrid Storage Engine,”
Proc. VLDB Endow., vol. 4, no. 2, pp. 105–116, 2010.

[6] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle TimesTen: An
In-Memory Database for Enterprise Applications.,” IEEE Data Eng.
Bull., vol. 36, no. 2, pp. 6–13, 2013.

[7] J. LindstrÃűm, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila, “IBM
solidDB: In-Memory Database Optimized for Extreme Speed and
Availability.,” IEEE Data Eng. Bull., vol. 36, no. 2, pp. 14–20, 2013.

[8] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling, “Hekaton: SQL Server’s
Memory-optimized OLTP Engine,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’13, (New York, NY, USA), pp. 1243–1254, ACM, 2013.

[9] V. Sikka, F. FÃd’rber, W. Lehner, S. K. Cha, T. Peh, and
C. BornhÃűvd, “Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth,” in Proceedings of the
2012 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’12, (New York, NY, USA), pp. 731–742, ACM,
2012.

[10] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. FÃd’rber,
F. Gropengiesser, C. Mathis, T. Bodner, and W. Lehner, “Towards

Scalable Real-time Analytics: An Architecture for Scale-out of OLxP
Workloads,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1716–1727, 2015.

[11] T. MÃijhlbauer, W. RÃűdiger, A. Reiser, A. Kemper, and T. Neumann,
“ScyPer: Elastic OLAP throughput on transactional data,” in
Proceedings of the Second Workshop on Data Analytics in the Cloud,
pp. 11–15, ACM, 2013.

[12] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-scatter DRAM: In-DRAM
Address Translation to Improve the Spatial Locality of Non-unit
Strided Accesses,” in Proceedings of the 48th International
Symposium on Microarchitecture, MICRO-48, (New York, NY, USA),
pp. 267–280, ACM, 2015.

[13] H. Plattner and A. Zeier, In-Memory Data Management: Technology
and Applications. Springer Science & Business Media, May 2012.
Google-Books-ID: HySCgzCApsEC.

[14] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the Memory
Wall in MonetDB,” Commun. ACM, vol. 51, pp. 77–85, Dec. 2008.

[15] J. s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha, and D. J.
Friedman, “A 45nm cmos neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons,” in 2011
IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4, Sept
2011.

[16] B. A. Chappell, Y.-C. Lien, and J. Y. Tang, “Transporsable memory
architecture,” July 1989. US Patent App. US4845669 A.

[17] Y. H. Chen and Y. Y. Liu, “Dual-addressing memory architecture for
two-dimensional memory access patterns,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2013, pp. 71–76, Mar. 2013.

[18] D. B. Strukov and R. S. Williams, “Four-dimensional address topology
for circuits with stacked multilayer crossbar arrays,” Proceedings of
the National Academy of Sciences, vol. 106, pp. 20155–20158, Jan.
2009.

[19] “3D XPoint Technology.”
https://www.micron.com/about/emerging-
technologies/3d-xpoint-technology.

[20] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian,
“3d-stackable crossbar resistive memory based on Field Assisted
Superlinear Threshold (FAST) selector,” in 2014 IEEE International
Electron Devices Meeting, pp. 6.7.1–6.7.4, 2014.

[21] S. R. Ovshinsky, “Reversible electrical switching phenomena in
disordered structures,” Phys. Rev. Lett., vol. 21, pp. 1450–1453, Nov
1968.

[22] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. USA: Addison-Wesley Publishing Company, 4th ed.,
2010.

[23] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe,
T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto,
Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. i. Origasa,
K. Shimakawa, T. Takagi, T. Mikawa, and K. Aono, “An 8mb
multi-layered cross-point ReRAM macro with 443mb/s write
throughput,” in 2012 IEEE International Solid-State Circuits
Conference, pp. 432–434, 2012.

[24] “DDR3 SDRAM.”
https://www.micron.com/~/media/documents/products/
data-sheet/dram/ddr3/4gb_ddr3_sdram.pdf.

[25] “Hugepages.” https://www.kernel.org/doc/Documentation/
vm/hugetlbpage.txt.

[26] “Configuring hugepages for oracle database.”
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_
config_hugepages.html.

[27] “DDR4 SDRAM STANDARD.” http:
//www.jedec.org/standards-documents/docs/jesd79-4a.

[28] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
Overview of the HDF5 Technology Suite and Its Applications,” in
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
AD ’11, (New York, NY, USA), pp. 36–47, ACM, 2011.

[29] S. Fujita and T. Hada, “Two-dimensional on-line bin packing problem
with rotatable items,” Theoretical Computer Science, vol. 289, no. 2,
pp. 939–952, 2002.

[30] F. Zyulkyarov, N. Hyuseinova, Q. Cai, B. Cuesta, S. Ozdemir, and

12

https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/4gb_ddr3_sdram.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/4gb_ddr3_sdram.pdf
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_config_hugepages.html
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_config_hugepages.html
http://www.jedec.org/standards-documents/docs/jesd79-4a
http://www.jedec.org/standards-documents/docs/jesd79-4a

M. Nicolaides, “Method for pinning data in large cache in multi-level
memory system,” Aug. 13 2015. US Patent App. 13/976,181.

[31] M. Poremba, T. Zhang, and Y. Xie, “NVMain 2.0: A User-Friendly
Memory Simulator to Model (Non-)Volatile Memory Systems,” IEEE
Computer Architecture Letters, vol. 14, pp. 140–143, July 2015.

[32] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and
others, “The gem5 simulator,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 2, pp. 1–7, 2011.

[33] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” SIGARCH Comput. Archit. News,
vol. 28, pp. 128–138, May 2000.

[34] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the Archipelago
Between Row-Stores and Column-Stores for Hybrid Workloads,” in
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, (New York, NY, USA), pp. 583–598, ACM,
2016.

[35] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy,
and S. S. Parekh, “An Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, ISCA ’98,
(Washington, DC, USA), pp. 39–50, IEEE Computer Society, 1998.

[36] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker,
“Performance Characterization of a Quad Pentium Pro SMP Using
OLTP Workloads,” in Proceedings of the 25th Annual International
Symposium on Computer Architecture, ISCA ’98, (Washington, DC,
USA), pp. 15–26, IEEE Computer Society, 1998.

[37] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a
Modern Processor: Where Does Time Go?,” in Proceedings of the
25th International Conference on Very Large Data Bases, VLDB ’99,
(San Francisco, CA, USA), pp. 266–277, Morgan Kaufmann
Publishers Inc., 1999.

[38] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs.
Row-stores: How Different Are They Really?,” in Proceedings of the
2008 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’08, (New York, NY, USA), pp. 967–980, ACM,
2008.

[39] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing Database
Architecture for the New Bottleneck: Memory Access,” The VLDB
Journal, vol. 9, no. 3, pp. 231–246, 2000.

[40] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
Database Systems,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1664–1665,
2009.

[41] H. Plattner, “A Common Database Approach for OLTP and OLAP
Using an In-memory Column Database,” in Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data,

SIGMOD ’09, (New York, NY, USA), pp. 1–2, ACM, 2009.

[42] M. Kaufmann and D. Kossmann, “Storing and Processing Temporal
Data in a Main Memory Column Store,” Proc. VLDB Endow., vol. 6,
no. 12, pp. 1444–1449, 2013.

[43] C. Lemke, K.-U. Sattler, F. Faerber, and A. Zeier, “Speeding Up
Queries in Column Stores: A Case for Compression,” in Proceedings
of the 12th International Conference on Data Warehousing and
Knowledge Discovery, DaWaK’10, (Berlin, Heidelberg), pp. 117–129,
Springer-Verlag, 2010.

[44] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
Relations for Cache Performance,” in Proceedings of the 27th
International Conference on Very Large Data Bases, VLDB ’01, (San
Francisco, CA, USA), pp. 169–180, Morgan Kaufmann Publishers
Inc., 2001.

[45] V. Sikka, F. FÃd’rber, A. Goel, and W. Lehner, “SAP HANA: The
Evolution from a Modern Main-memory Data Platform to an
Enterprise Application Platform,” Proc. VLDB Endow., vol. 6, no. 11,
pp. 1184–1185, 2013.

[46] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. ÃIJnsal, “Redundant
Memory Mappings for Fast Access to Large Memories,” in
Proceedings of the 42Nd Annual International Symposium on
Computer Architecture, ISCA ’15, (New York, NY, USA), pp. 66–78,
ACM, 2015.

[47] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for
Exploiting Subarray-level Parallelism (SALP) in DRAM,” in
Proceedings of the 39th Annual International Symposium on
Computer Architecture, ISCA ’12, (Washington, DC, USA),
pp. 368–379, IEEE Computer Society, 2012.

[48] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating
system support for nvm+dram hybrid main memory,” in Proceedings
of the 12th Conference on Hot Topics in Operating Systems, HotOS’09,
(Berkeley, CA, USA), pp. 14–14, USENIX Association, 2009.

[49] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-MontaÃśo,
“Improving read performance of phase change memories via write
cancellation and write pausing,” in HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer
Architecture, pp. 1–11, Jan 2010.

[50] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3d stacked mram l2 cache for cmps,” in 2009 IEEE 15th
International Symposium on High Performance Computer
Architecture, pp. 239–249, Feb 2009.

[51] “Intel Optane Memory FAQ.”
http://www.intel.com/content/www/us/en/architecture-

and-technology/optane-memory-faq.html.

13

http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory-faq.html
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory-faq.html

	Introduction
	Background
	Data Layout Issue of IMDB
	RC-DRAM Design
	Crossbar-based NVM

	RC-NVM Circuit Design
	Architectural Design of RC-NVM
	Overall Architecture
	RC-NVM Addressing
	Dual Addressing Modes
	Explicit Data Layout Control
	ISA Extension

	Cache Architecture for RC-NVM
	Caching Data with Dual Addresses
	Cache Synonym in a Single-core Processor
	Solving Cache Synonym and Coherence Issues

	Basic Usage of RC-NVM
	Data Layout in RC-NVM
	Slicing a Table into Chunks
	Intra-Chunk Data Layout
	Inter-Chunk Data Layout

	Group Caching Optimization
	Evaluation Methodology
	Experiment Setup
	Workloads

	Evaluation Results
	Micro-benchmark Evaluation
	Queries Evaluation
	Effect of Group Caching

	Related Work
	Conclusion
	Acknowledgments
	References

