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Abstract
FPGAs (field-programmable gate arrays) can be flexi-
bly reconfigured to accelerate many computation ker-
nels with orders-of-magnitude performance/watt im-
provement, making FPGA-based heterogeneous systems
a promising approach to driving continuous performance
and energy improvement in today’s datacenters. How-
ever, the significant gains on computation kernels are of-
ten considerably offset by the extra data transfer over-
head, resulting in considerably reduced system-wide
speedup, or even slowdown. In this paper we propose a
fully pipelined data transfer stack that achieves efficient
JVM-FPGA communication through extensive pipelin-
ing. Also, we introduce a programming framework that
automatically generates most of the pipeline code, free-
ing users from the bothersome details of FPGA manage-
ment. Furthermore, we address the issue of multi-stage
pipeline throughput optimization by formulating it into
an integer linear programming problem and applying its
solution for generating the optimal pipeline implementa-
tion. Experiments show that the proposed pipeline stack
achieves 4.9× speedup for various computation kernels.

1 Introduction
The adoption of FPGAs in modern datacenters has at-
tracted great attention in an attempt to drive continued
performance and energy improvement. Leading datacen-
ter operators including Microsoft and Baidu have used
FPGAs to accelerate large-scale production workloads,
e.g., search engines [17, 7] and neural networks [13, 14].
The Amazon Elastic Compute Cloud (EC2) also intro-
duces the F1 instance [4] which is equipped with one or
more FPGA boards. Intel, with its $16.7B acquisition of
Altera, announces the Heterogeneous Architecture Re-
search Platform (HARP) [3] where a Xeon CPU and an
FPGA are connected and encapsulated in a single semi-
conductor package. It also predicts that 30% of data-
center servers will have FPGAs embedded by 2020 [5],
indicating that FPGAs will become a major computing
device in future datacenter systems.

The primary reason for the trend of FPGA adoption
is that many studies from the FPGA design commu-
nity have demonstrated that FPGA-based accelerators
can achieve orders-of-magnitude performance/watt gains
for a broad class of computation kernels [17]. How-
ever, when it comes to the integration of FPGA acceler-
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Figure 1: JVM-FPGA Data Communication Routine

ators into the conventional software systems—especially
the JVM-based big-data programming frameworks like
Apache Hadoop [19] and Spark [20]—the significant im-
provement on the computation kernel is often consider-
ably offset by the overhead of JVM-FPGA data commu-
nication; this results in moderate system-wide speedup
or even slowdown [8, 12, 16]. This issue motivates us
to develop an efficient JVM-FPGA data communication
stack that will truly fulfill the orders-of-magnitude per-
formance and energy gains on computation kernels.

Looking inside the JVM-FPGA data communication
routine, we observe two impediments that result in the
large overhead: 1) the overall routine is fairly complex
and involves many steps of data movement, and 2) these
steps are performed sequentially. Fig. 1 illustrates the
entire JVM-FPGA data movement process of the con-
ventional PCIe-based CPU-FPGA platform. In the be-
ginning, the accelerator input data, in the form of Java
objects, are packed together to be transferred out of JVM
( 1 ). As discussed in [8], this batch-processing approach
is critical for improving the data communication band-
width. The accelerator host program that directly manip-
ulates the FPGA accelerator then receives the data from
JVM ( 2 ), and initiates a PCIe-based direct memory ac-
cess (DMA) to send the data to the FPGA off-chip mem-
ory ( 4 ). This DMA transfer is often coupled with a host-
side memory copy ( 3 ) from the pageable space to the
pinned space [9]. The data sent into the off-chip memory
has to be loaded to the FPGA on-chip registers and block
RAM (BRAM) ( 5 ), and finally be seen by the acceler-
ator compute logic ( 6 ). Moreover, the generated output
will go through all the above steps in the reverse direc-
tion to reach JVM ( 7 - 11 ), contributing the other half of
the communication overhead.

The fact that these steps are performed sequentially
further worsens the overall communication throughput.



Our experiments show that the throughput of the over-
all JVM-FPGA communication routine is only a few
tens to hundreds of MB/s, or even less if the payload
of each transfer is small. Meanwhile, FPGA acceler-
ators, compared to CPUs, work at a much lower fre-
quency and utilize deep pipelining and extensive paral-
lelism to achieve high performance, which in turn de-
mands high-throughput data transfer to achieve large
speedup. As a consequence, the low JVM-FPGA com-
munication throughput serves as a key issue limiting
the fulfillment of the orders-of-magnitude improvement
achieved by FPGA acceleration on computation kernels.

This paper proposes a high-bandwidth JVM-FPGA
communication stack to address this issue. Specifically,
we propose a fully pipelined JVM-FPGA communica-
tion stack that allows different jobs to be transferred
and processed simultaneously, i.e., overlapping differ-
ent data movement steps and the computation step. As
a result, the JVM-FPGA communication throughput is
greatly improved to several GB/s. Furthermore, to free
users from implementing the pipeline stack that involves
1) concurrent programming in Java, C and hardware de-
scription languages, 2) FPGA runtime management, and
even 3) circuit design, we propose a programming frame-
work to automatically generate most of the pipeline code,
leaving only a simple Java interface to users.

One key feature of our proposed pipeline stack is
that different pipeline stages can be configured with dif-
ferent data transfer granularities, i.e., different payload
sizes, to achieve the optimal throughput because the pay-
load size of a data transfer stage generally determines
its data transfer throughput. While it is nontrivial for
programmers to manually identify the best configuration
of payload sizes, we formulate the problem of pipeline
throughput optimization into an integer linear program-
ming (ILP) problem and apply its solution to pipeline
code generation to achieve the optimal throughput.

While implemented for generic Java programs, the
proposed pipeline stack could be particularly beneficial
for cloud computing frameworks, e.g., Apache Hadoop
and Spark that feature a massive degree of data-level par-
allelism. We discuss as future work the potential inte-
gration of the pipeline stack into these frameworks. In
summary, this paper makes the following contributions:

• A JVM-FPGA communication pipeline that overlaps
multiple communication and computation steps.

• A programming framework to automatically generate
most of the pipeline code, freeing users from the both-
ersome concurrent and hardware intricacies.

• An ILP formulation of the pipeline optimization prob-
lem and automation of the optimization process.

Our experiments show that our approach achieves
4.9× speedup for a variety of computation kernels.
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2 Pipelined Communication Stack
In this section we present our fully pipelined JVM-FPGA
communication stack. Section 2.1 describes its overall
architecture and major components; Section 2.2 intro-
duces our user programming model.

2.1 System Overview
In a nutshell, the proposed approach aims to form dif-
ferent JVM-FPGA data movement steps and the compu-
tation step into a multistage pipeline, so the overall sys-
tem performance could be determined only by the stage
with the longest latency, instead of the latency of the
entire JVM-FPGA routine. Fig. 2 illustrates the over-
all architecture of the proposed 7-stage fully pipelined
JVM-FPGA communication stack. The pipeline accepts
a series of Java objects that contain the input data of
the FPGA accelerator, transfers the data through three
pipeline stages to the FPGA fabric, performs the compu-
tation, and finally transfers the output data back to JVM
through another three pipeline stages. Each stage corre-
sponds to one or two data movement steps illustrated in
Fig. 1. Every two adjacent stages are glued by a con-
current queue structure which may be implemented as
software lock-free queues or hardware FIFO channels.
Since the last three stages are symmetric to the first three
stages, we only describe the detailed functionalities of
the first four stages in the remainder of this section.

Pack. The pack stage performs data reorganization.
It corresponds to 1 in Fig. 1. Specifically, it retrieves
the necessary input data from Java objects and puts them
into a Java byte array—so it happens completely inside
JVM. The byte array is then pushed into the send queue,
a fixed-size, lock-free Java queue structure, and finally
moved to the FPGA accelerator for computation. One
objective of the pack stage is to achieve batch processing,
i.e., batching the input of many jobs together to form a
large payload to improve the data transfer throughput.

Send. The send stage accepts byte arrays from the
head of the send queue, and sends them to the FPGA
accelerator management program via socket. Since the
host Java program, e.g., a Hadoop or Spark program,
may have multiple threads using the FPGA accelerator
simultaneously, we use our FPGA-as-a-service (FaaS)



framework [8, 12] to realize such resource sharing. The
accelerator manager in FaaS collects the data from dif-
ferent threads and pushes them into the gather queue
that is a fixed-size, lock-free C++ queue structure stor-
ing OpenCL memory objects. These OpenCL memory
objects are managed by the Xilinx SDAccel runtime en-
vironment [6], and stored in the pinned memory space to
be transferred to the FPGA memory via PCIe. The entire
stage corresponds to 2 3 in Fig. 1.

DMALoad. The DMALoad stage accepts OpenCL
memory objects from the gather queue and performs two
data transfers. First, an OpenCL object is sent to the
FPGA off-chip memory via the PCIe interface. Next,
it is loaded streamingly from the off-chip memory to the
load queue that resides in the FPGA on-chip block RAM
(BRAM). The entire stage corresponds to 4 5 in Fig. 1.
The load queue is a hardware FIFO channel that connects
the off-chip memory to the on-chip BRAM.

Compute. The compute stage performs the actual
computation of the FPGA accelerator. It loads input data
from the off-chip memory via the load queue, and stores
output data back to the off-chip memory via the store
queue that is symmetric to the load queue. The output
data are then transferred through the DMAStore, Recv
and Unpack stages back to JVM, which completes the
JVM-FPGA routine.

In summary, the proposed JVM-FPGA communica-
tion stack pipelines the computation and the data trans-
fers crossing a variety of layers, including JVM, host
native memory space, FPGA off-chip memory space
and on-chip BRAM. While significantly improving the
JVM-FPGA communication efficiency, this heteroge-
neous pipeline is not easy to be manually implemented.
The following section presents our programming model
for the system to significantly simplify user efforts.

2.2 Programming Model
Our programming model only requires programmers to
implement an application-specific interface for the Pack
and Unpack stages. For example, the interface of the
Pack stage outputs an iterator with a series of byte ar-
rays, as shown in Code 1. In this example, we as-
sume an Advanced Encryption Standard (AES) accelera-
tor (see Section 4) with two arguments: key and value.
The two arguments correspond to a user-defined class
StringWithKey (line 1-4), where value is object-
specific and key is shared by all StringWithKey ob-
jects. As can be seen in Code 1, the programmer only
needs to implement a PackIterator with two meth-
ods. In particular, the nextmethod (lines 13-29) returns
one byte array at a time, where the first byte specifies
which accelerator argument the byte array corresponds
to. The Pack stage will invoke UserPacker iteratively
and pack byte arrays with a certain size and push them

to the send queue. Note that to avoid sending the shared
data (i.e., key) redundantly, our interface provides a field
isFirstObject to indicate whether the shared data
have been sent out before.

Code 1: Programming Model with AES Example
1 class StringWithKey {
2 String key = ...;
3 String value = ...;
4 }
5 class UserPacker implements PackIterator {
6 int ptr = 0;
7 StringWithKey data;
8
9 public UserPacker(StringWithKey data) {

10 this.data = data;
11 }
12 public boolean hasNext() { return (ptr < 2); }
13 public Byte[] next() {
14 if (ptr == 0 && !this.isFirstObject)
15 return // Convert key to byte array
16 else if (ptr == 1)
17 return // Convert value to byte array
18 ptr++;
19 return null;
20 }}

By using our programming interface to specify how to
pack/unpack Java objects and byte arrays, the remain-
der of the pipeline stack will be automatically gener-
ated. The remaining issue in pipeline generation is to
determine the data transfer granularity, i.e., payload size,
which determines the throughput of its corresponding
pipeline stage. Since it is nontrivial for users to find the
best payload size for each stage, we hide the payload size
tuning from users and present our approach for automat-
ically identifying the best configuration of payload sizes
to maximize the pipeline throughput in the next section.

3 Pipeline Throughput Optimization
In this section we focus on the optimization of the over-
all pipeline throughput, i.e., the identification of the best
payload sizes for all the pipeline stages. Section 3.1
first analyzes the impact of the payload size on pipeline
throughput. According to the analysis, we formulate the
problem to an integer linear programming (ILP) in Sec-
tion 3.2 to find the best payload sizes.

3.1 Analysis of Data Transfer Throughput
In general, the latency of transferring a certain size of
payload can be decoupled into two parts: 1) a constant
time setup overhead, and 2) the payload movement time
that is proportionate to the size of the payload. Because
of the setup overhead, the data transfer throughput grows
rapidly with respect to the payload size when it is small,
and gradually reaches a stable value since the impact of
the setup overhead is amortized. Some of the pipeline
stages, e.g., the DMALoad stage, follow this rule very
well, as is demonstrated in Fig. 3 (a). In this case, a
larger payload size is always favored.

Not all the pipeline stages, however, deliver a perfect
linear relation. Fig. 3 (b) shows the changes of latency
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Figure 3: Latency-Size Curve for Different Stages

with respect to the payload size for the Send stage. The
payload size ranges from 0 to 32 MBs. We can see that
the linear trend is not overall applicable, but still per-
sists when the payload size is below a few megabytes,
as shown in Fig. 3 (c). One possible reason is that the
last-level cache is not able to hold all the intermediate
data any more with the growing payload size, resulting
in the sharp performance degradation in Fig. 3 (b). In
this case, a larger payload size could lead to a subop-
timal throughput. Moreover, the throughput optimiza-
tion problem becomes even more complicated when the
memory constraint is taken into consideration. Even
though a larger payload often leads to a higher through-
put, it also consumes more memory. Consequently, the
payload size should be allocated wisely among different
stages for global optimality given certain memory con-
straints. The following section presents our ILP-based
approach to solve this problem mathematically.

3.2 Payload Size Tuning
In a nutshell, we attempt to formulate the problem of
tuning the payload size of each pipeline stage into an
ILP problem in which the solution can be obtained via
a standard ILP solver. We present our ILP formulation
for the single-core case, and will discuss the extension to
the multi-core case in Section 6.
Problem Formulation: Given a computation kernel K,
find a set of payload sizes S = {Spack, Ssend , ..., Sunpack}
so as to maximize the overall throughput TK . Since the
throughput of a pipeline is bounded by the stage that has
the minimal throughput, the overall throughput can be
modeled via Eq. 1:

TK = Min(Tpack , Tsend , ..., Tunpack) (1)

where Tpack, ..., Tunpack denote the throughputs of the
seven stages, respectively. Also, we know that the
throughput of a stage Tstage is inversely proportional to
its latency Lstage, which can be represented as a function
related to the payload size Sstage:

Tstage =
1

Lstage
=

1
fstage(Sstage)

(2)

Therefore, to solve the problem, we need to determine
each function fstage.
Integer Linear Programming Formulation: To form an
ILP, we model fstage for each stage to a linear function
while preserving the practicality and optimality.

First, the data transfer stages, i.e., Pack/Unpack,
Send/Recv and DMALoad/DMAStore, have linear rela-

tions between the payload size and the latency. For the
Send/Recv stage where the latency increases dramatically
after the payload size hits a certain threshold, these large
sizes can be filtered out since we can always find a bet-
ter (smaller) size with a similar or higher data transfer
throughput. Therefore, we are able to formulate function
fstage for these six stages as linear functions. Note that
the Pack/Unpack stages are application-specific, so we
profile the the application with a small dataset. The other
four stages, however, are platform-specific, so we only
need to profile the platform once to derive fstage, which
is then used for all applications running on this platform.

We then model the Compute stage. Depending on the
time complexity of the accelerator, the computation la-
tency may not have linear dependency to the input size.
To address this issue, we profile the compute time with a
set of factor-of-two input sizes, since factor-of-two data
sizes generally achieve high efficiency in circuit design.
Subsequently, the accelerator latency can be represented
by the following linear equation:

Lcompute = ∑
i

pi×LSi , where ∑
i

pi = 1, pi ∈ {0,1} (3)

where LSi denotes the latency of the i-th profiled perfor-
mance point; pi is a binary variable for each point and
only one of them will be 1, i.e., only one profiled perfor-
mance point with the best input size will be delivered.

Finally, we specify the memory constraint. It indicates
that the overall sizes of all the queue structures cannot
exceed a given memory capacity, as shown in Eq. 4:

∑SQstage = ∑
i
(Sstage×Dstage)≤ Scapacity (4)

where SQstage denotes the overall size of the queue struc-
tures for each stage and is determined by the size of each
entry (Sstage) as well as the queue depth (Dstage, fixed in
the proposed pipeline). Note that the software and hard-
ware queues occupy different memory space and thus are
evaluated separately.

In summary, all equations are linear manners, so the
payload sizes can be determined with an ILP solver.

4 Experiments
We perform the experiments based on the PCIe-based
CPU-FPGA platform that connects a Xeon CPU (E5-
2420) and an Xilinx FPGA board (Alpha Data ADM-
PCIE-7V3 [1]) via the PCIe interface (Gen3 x8). On
top of it, we use the Xilinx SDAccel runtime environ-
ment v2017.2 [6] to drive the FPGA acceleration. On
the host side, we use a set of computation kernels from
the MachSuite benchmark suite [18], as listed in Table 1,
to demonstrate the effectiveness of the pipeline stack
on variant types of kernels. Currently, we demonstrate
the effectiveness of the proposed pipeline by writing a
single-thread Java program for each kernel to continu-
ously invoke its FPGA acceleration routine, and discuss
the integration with large-scale applications in Section 6.

Fig. 4 compares the execution time between the pro-
posed pipeline stack and the conventional sequential



Table 1: Benchmark Description
Kernel Description
AES Advanced encryption standard.
FFT Fast Fourier transform.
KMP Knuth-Morris-Pratt string matching.
NW Needleman-Wunsch sequence alignment.
STENCIL Stencil computation.
VITERBI Viterbi algorithm.
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Figure 4: Throughput comparison between the pipeline and se-
quential JVM-FPGA communication stacks.
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Figure 5: Throughput comparison between the proposed ap-
proach and the ad hoc solutions.

stack with 512KB, 1MB and 2MB payload sizes. We
can see that the proposed pipeline stack achieves sig-
nificant performance improvement on all kernels (4.9×
on average), especially AES, KMP and STENCIL (5.7×
to 6.1×). This is because these computation kernels are
of linear time complexity, and the effective computation
time after the FPGA acceleration is smaller than any of
the data movement steps. The other kernels, i.e., FFT,
NW and VITERBI, have super-linear time complexity,
and the computation time still takes an important portion
of the overall routine. Therefore, the achieved speedup
(2.8× to 5.0×) is smaller, but still remarkable.

This trend is also exhibited in the throughput optimiza-
tion results. Fig. 5 illustrates the performance differ-
ence between our ILP-based approach and the ones us-
ing constant-size payloads (512KB, 1MB or 2MB). We
can see that the proposed approach is particularly ben-
eficial for AES, KMP and STENCIL (34% to 65% im-
provement), but has moderate impact on FFT, NW and
VITERBI (up to 7% improvement). This is because in
the former three kernels the Compute stage is fully over-
lapped by the communication stages, allowing us to do
more on throughput optimization via changing the pay-
load sizes. On the other hand, Compute is still the most
time-consuming stage in the latter three kernels, so hav-
ing payloads with a reasonable constant size is sufficient.

5 Related Work
Recently, FPGA vendors started to provide OpenCL-
based runtime environments, e.g., Xilinx SDAccel, for

CPU-FPGA communication. While utilizing OpenCL’s
unified communication abstraction to improve pro-
grammability, these environments leave end users with
the critical performance tuning issue. Also, they cannot
be directly used in Java-based applications. A few pre-
vious studies aim to enable the use of FPGAs or GPUs
in Java-based frameworks [11, 8, 12, 15, 10], and some
of them reveal the communication issue and attempt to
address it through batch processing [8, 12]. However,
these studies still leave the entire routine sequentially
performed. The CUDA streams technique [2] tries to
hide the PCIe latency for GPUs, but does not take the
whole communication routine into consideration. This
motivates the proposed pipeline stack that covers all the
layers of JVM-FPGA data transfer.

6 Lessons Learned and Open Discussion
This paper presents a fully pipelined communication
stack to improve the JVM-FPGA data transfer efficiency,
an automated programming framework for easy imple-
mentation, and an ILP-based approach for throughput
optimization, achieving 4.9× speedup for a variety of
computation kernels. We summarize the lessons learned
and discuss some open topics as follows.

1) Embracing other CPU-FPGA platforms. The trend
of adopting FPGAs in datacenters results in the release
of many different CPU-FPGA platforms. Some of them,
e.g., Intel HARP [3], provide a coherent, shared memory
model, bringing new opportunities to the JVM-FPGA
communication optimization. Also, the incorporation of
FPGAs in open clouds, e.g., Amazon F1 [4], virtualizes
FPGA resources to users. An extended pipeline stack
that addresses the shared-memory, coherency and virtu-
alization issues could be a challenging open topic.

2) Embracing Java-based big-data programming
frameworks. There is no substantial obstacle prevent-
ing the adoption of the proposed pipeline stack from
being used in Java-based domain-specific programming
frameworks like Hadoop [19] and Spark [20]. In fact,
their dataflow-oriented programming model could even
make our user programming interface more intuitive.
For example, in Spark applications we could automati-
cally split and transfer RDDs instead of requiring users
to manually implement iterators. The challenge comes
from the pipeline throughput optimization, since the ILP-
based formulation needs to be extended to cover various
thread contention handling strategies for multithreaded
programs. This remains as another open topic.
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