
HeteroRefactor: Refactoring for
Heterogeneous Computing with FPGA

Jason Lau*, Aishwarya Sivaraman*, Qian Zhang*,
Muhammad Ali Gulzar, Jason Cong, and Miryung Kim

University of California, Los Angeles
{lau, dcssiva, zhangqian, gulzar, cong, miryung}@cs.ucla.edu

*Equal co-first authors in alphabetical order

ABSTRACT

Heterogeneous computing with field-programmable gate-arrays
(FPGAs) has demonstrated orders of magnitude improvement in
computing efficiency for many applications. However, the use of
such platforms so far is limited to a small subset of programmers
with specialized hardware knowledge. High-level synthesis (HLS)
tools made significant progress in raising the level of programming
abstraction from hardware programming languages to C/C++, but
they usually cannot compile and generate accelerators for kernel
programs with pointers, memory management, and recursion, and
require manual refactoring to make them HLS-compatible. Besides,
experts also need to provide heavily handcrafted optimizations to
improve resource efficiency, which affects the maximum operating
frequency, parallelization, and power efficiency.

We propose a new dynamic invariant analysis and automated
refactoring technique, called HeteroRefactor. First, HeteroRefac-
tor monitors FPGA-specific dynamic invariants—the required bit-
width of integer and floating-point variables, and the size of re-
cursive data structures and stacks. Second, using this knowledge
of dynamic invariants, it refactors the kernel to make tradition-
ally HLS-incompatible programs synthesizable and to optimize
the accelerator’s resource usage and frequency further. Third, to
guarantee correctness, it selectively offloads the computation from
CPU to FPGA, only if an input falls within the dynamic invariant.
On average, for a recursive program of size 175 LOC, an expert
FPGA programmer would need to write 185 more LOC to imple-
ment an HLS compatible version, while HeteroRefactor automates
such transformation. Our results on Xilinx FPGA show that Het-
eroRefactor minimizes BRAM by 83% and increases frequency by
42% for recursive programs; reduces BRAM by 41% through integer
bitwidth reduction; and reduces DSP by 50% through floating-point
precision tuning.

KEYWORDS

heterogeneous computing, automated refactoring, FPGA, high-level
synthesis, dynamic analysis

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceed-
ings of 42nd International Conference on Software Engineering, May 23–29, 2020,
https://doi.org/10.1145/3377811.3380340.

ACM Reference format:

Jason Lau*, Aishwarya Sivaraman*, Qian Zhang*, Muhammad Ali Gulzar,
Jason Cong, Miryung Kim. 2020. HeteroRefactor: Refactoring for Heteroge-
neous Computingwith FPGA. In Proceedings of 42nd International Conference
on Software Engineering, Seoul, Republic of Korea, May 23–29, 2020 (ICSE ’20),
13 pages.
https://doi.org/10.1145/3377811.3380340

1 INTRODUCTION

In recent years, there has been a growing interest in architectures
that incorporate heterogeneity and specialization to improve perfor-
mance, e.g., [12, 14, 16, 22]. FPGAs are reprogrammable hardware
that often exceeds the performance of general-purpose CPUs by
several orders of magnitude [8, 33, 57] and offer lower cost across
a wide variety of domains [7, 9, 17]. To support the development of
such architectures, hardware vendors support CPU+FPGA multi-
chip packages (e.g., Intel Xeon [35, 58]) and cloud providers support
virtual machines with FPGA accelerators and application develop-
ment frameworks (e.g., Amazon F1 [3]).

Although FPGAs provide substantial benefits and are commer-
cially available to a broad user base, they are associated with a
high development cost [64]. Programming an FPGA is a difficult
task; hence, it is limited to a small subset of programmers with
specialized knowledge on FPGA architecture details. To address
this issue, there has been work on high-level synthesis (HLS) for
FPGAs [21]. HLS tools take a kernel written in C/C++ as input and
automatically generates an FPGA accelerator. However, to meet
the HLS synthesizability requirement, significant code rewriting is
needed. For example, developers must manually remove the use of
pointers, memory management, and recursion, since such code is
not compilable with HLS. To achieve high efficiency, the users must
heavily restructure the kernel to supply optimization information
manually at the synthesis time. Carefully handcrafted HLS opti-
mizations are non-trivial and out of reach for software engineers
who usually program with CPUs [13, 15].

Our observation is that software kernels are often over-engi-
neered in the sense that a program is generalized to handle more
inputs than what is necessary for common-case inputs. While this
approach has no or little impact on the program efficiency on a CPU,
in an FPGA accelerator, the design efficiency could be impacted
considerably by the compiled size that depends on actual ranges of
values held by program variables, the actual size of recursive data
structures observed at runtime, etc. For example, a programmer
may choose a 32-bit integer data type to represent a human age,
whose values range from 0 to 120 in most cases. Consider another
example, where in 99% of executions, the size of a linked list is

https://doi.org/10.1145/3377811.3380340
https://doi.org/10.1145/3377811.3380340

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lau*, Sivaraman*, Zhang*, Gulzar, Cong, & Kim

bounded by 2k; however, the programmer may manually flatten it
to an array with an overly-conservative size of 16k.

We propose a novel combination of dynamic invariant analysis,
automated refactoring, and selective offloading approach, called
HeteroRefactor to guide FPGA accelerator synthesis. This approach
guarantees correctness—behavior preservation, as it selectively of-
floads the computation from CPU to FPGA, only if the invariant is
met, but otherwise keeps the computation on CPU. It also does not
require having a representative data set for identifying dynamic in-
variants, as its benefit is to aggressively improve FPGA accelerator
efficiency for a common case input without sacrificing correctness.
In this approach, a programmer first implements her kernel code in
a high-level language like C/C++. Then she executes the kernel code
on existing tests or a subset of input data to identify FPGA-specific
dynamic invariants. HeteroRefactor automatically refactors the
kernel with pointers into a pointerless, non-recursive program to
make it HLS-compatible and to reduce resource usage by lowering
bitwidth for integers and floating-points, which in turn reduces
resource usages and increases the frequency at the FPGA level.

We evaluate HeteroRefactor on ten programs, including five
handwritten recursive programs, three integer-intensive programs
from Rosetta benchmark [84], and two floating-point-intensive pro-
grams from OpenCV [6]. We generate kernels targeting to a Xilinx
Virtex UltraScale+ XCVU9P FPGA on a VCU1525 Reconfigurable
Acceleration Platform [80] and achieve the following results:

(1) For recursive programs that are traditionally unsynthesiz-
able, HeteroRefactor refactors pointers and recursion with
the accesses to a flattened, finite-size array, making them
HLS-compatible. On average, for a recursive program of
size 175 LOC, an expert FPGA programmer would need to
write 185 more LOC to implement an HLS-compatible ver-
sion, while HeteroRefactor requires no code change. Using
a tight bound for a recursive data structure depth, the result-
ing accelerator is also resource-efficient—an accelerator with
a common-case bound of 2k size can achieve 83% decrease
in BRAM and 42% increase in frequency compared to the
baseline accelerator with an overly conservative size of 16k.

(2) For integers, HeteroRefactor performs transparent optimiza-
tion and reduces the number of bits by 76%, which leads to
25% reduction in flip-flops (FF), 21% reduction in look-up
tables, 41% reduction in BRAM, and 52% decrease in DSP.

(3) For floating-points, HeteroRefactor automatically reduces
the bitwidth while providing a probabilistic guarantee for a
user-specific quality loss and confidence level. The optimized
accelerator can achieve up to 61% reduction in FF, 39% reduc-
tion in LUT, and 50% decrease in DSP when an acceptable
precision loss is specified as 10−4 at 95% confidence level.

In summary, this work makes the following contributions:
• Traditionally, automated refactoring has been used to im-
prove software maintainability. We adapt and expand au-
tomated refactoring to lower the barriers of creating cus-
tomized circuits using HLS and to improve the efficiency of
the generated FPGA accelerator.

• While both dynamic invariant analysis and automated refac-
toring have a rich literature in software engineering, we
design a novel combination of dynamic invariant analysis,

automated kernel refactoring, and selective offloading, for
transparent FPGA synthesis and optimization with correct-
ness guarantee, which is unique to the best of our knowledge.

• We demonstrate the benefits of FPGA-specific dynamic in-
variant and refactoring in three aspects: (1) conversion of
recursive data structures, (2) integer optimization, and (3)
floating-point tuning with a probabilistic guarantee.

HeteroRefactor’s source code and experimental artifacts are pub-
licly available at https://github.com/heterorefactor/heterorefactor.

2 BACKGROUND

This section overviews a developer workflow when using a high-
level synthesis (HLS) tool for FPGA and describes the types of
manual refactoring a developer must perform to make their kernel
synthesizable and efficient on FPGA.

2.1 Overview of FPGA Programming with HLS

Modern FPGAs include millions of look-up tables (LUTs), thou-
sands of embedded block memories (BRAMs), thousands of digital-
signal processing blocks (DSPs), and millions of flip-flop registers
(FFs) [78]. Each k-input LUT can implement any Boolean function
up to k inputs. An FPGAmust be programmedwith a specific binary
bitstream to specify all the LUT, BRAM, DSP, and programmable
switch configurations to achieve the desired behavior. Fortunately,
HLS has been developed in recent years to aid the translation of
algorithmic descriptions (e.g., kernel code in C/C++) to application-
specific bitstreams [21, 28, 50]. Specifically, HLS raises the abstrac-
tion of hardware development by automatically generating RTL
(Register-Transfer Level) descriptions from algorithms. Generation
of FPGA-specific bitstream consists of a frontend responsible for C
simulation and a backend responsible for hardware synthesis. In the
frontend, after analysis of C/C++ code, HLS schedules each opera-
tion from the source code to certain time slots (clock cycles). Next,
it allocates resources, i.e., the number and type of hardware units
used for implementing functionality, like LUTs, FFs, BRAMs, DSPs,
etc. Finally, the binding stage maps all operations to the allocated
hardware units. This frontend process generates an RTL, which
is sent to a backend to perform logic synthesis, placement, and
routing to generate FPGA bitstreams. Software simulation is fast;
however, hardware synthesis can take anywhere from a few hours
to a couple of days, depending on the complexity of the algorithm.
For example, even for tens of lines of code, hardware synthesis can
take hours for our subjects in Section 4.

Therefore, such long hardware synthesis time justifies the cost
of manual rewriting of kernels for optimized resource allocation,
frequency, and power utilization. In other words, this motivates
HeteroRefactor to invest time in a-priori dynamic analysis as op-
posed to just-in-time compilation to optimize FPGA, as frequent
iterations of hardware synthesis are prohibitively expensive.

2.2 Refactoring for High-Level Synthesis

HLS tools aim to narrow the gap between the software program
and its hardware implementation. While HLS tools take kernel code
in C or C++, a developer must perform a substantial amount of
manual refactoring to make it synthesizable and efficient on an
FPGA chip. Such refactoring is error-prone and time-consuming

HeteroRefactor: Refactoring for Heterogeneous Computing with FPGA ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Refactoring
for HLS

Synthesizability

Pointer Support

Memory Management

Recursion Function

Device & Host Interface*

Efficiency
Optimization

Parallelization*

Optimization for
Data Movement*

Reducing
Resource
Consumption

Bit-width

Precision

Array Size*in related work

Figure 1: Overview of refactoring for high-level synthesis.

since certain language constructs for readability and expressiveness
in C/C++ are not allowed in HLS [25]. A developer must have inter-
disciplinary expert knowledge in both hardware and software and
know obscure platform-dependent details [15]. Below, we catego-
rize manual refactorings for HLS into two kinds: (1) synthesizability
and (2) efficiency optimization. In this paper, we focus on improving
the Vivado HLS tool from Xilinx [21, 79], which is the most widely
used FPGA HLS in the community, although our techniques can be
easily generalized to other HLS tools, such as Intel HLS Compiler,
Catapult HLS from Mentor, and CyberWorkBench from NEC.

2.2.1 Synthesizability.
Pointer support. To transform kernel code into its equivalent

HLS synthesizable version, a developer must manually eliminate
pointer declarations and usages; there are only two types of pointers
that are natively supported in HLS—pointers to hardware interfaces
such as device memory or pointers to variables. Pointer reinter-
pretation is limited to primitive data types. Arrays of pointers or
recursive data structures are strictly forbidden in Vivado HLS.

Memory management and recursion. Because Vivado HLS
has no capability ofmemory management, function calls to memory
allocation such as malloc cannot be synthesized. Thus, develop-
ers must create an overly conservative, large-sized static array in
advance and manage data elements manually. Similarly, Vivado
HLS cannot synthesize recursions. Thus, developers must manually
convert recursions into iterations or create a large stack to store
program states and manage function calls manually.

Device and host interface. Vivado HLS requires a strict de-
scription of parameters of the top-level function that acts as the
device and host interface. The function is called from the host and is
offloaded into FPGA. A function parameter can be either a scalar
or pointer to the device memory with a data size in the power of 2
bytes, and a developer must write specific pragmas—e.g., #pragma
HLS interface m_axi port=input to use AXI4 interconnect in-
terface for passing the parameter named input to the FPGA design.

2.2.2 Efficiency Optimization.
Parallelization. Reprogrammable hardware provides an inher-

ent potential to implement parallelization. Such parallelization can
be done through pipelining of different computation stages and
by duplicating processing elements or data paths to achieve an
effect similar to multi-threading. To guide such parallelization, a
developer must manually write HLS pragmas such as #pragma HLS
pipeline and #pragma HLS unroll for suitable loops or must ex-
pose parallelization opportunities through polyhedral model-based
loop transformations [5, 23, 56, 85].

HETEROREFACTOR Workflow

HETEROREFACTOR

Recursive
Data

Structure
Support and
Optimization

Dynamic Analysis and Software Refactoring

Invariant-
based

Char/Integer
Bit Width

Optimization

Probabilistic
Sampling-

based
Floating Point
Optimization

C/C++ Program Input Data
double Det(double **a, int n) {
 m = malloc(…); m[i] = …;
 det += Det(m, n-1) * …;} </>

C/C++
Program

Traditional Workflow

Rewrite
by expert

Synthesizable
FPGA Code

Resource Efficient FPGA Code

Understand
Algorithm

Se
ve

ra
l p

er
‐

so
n-

m
on

th

Rewrite
Code

Input Data
</>

</>

</>

 Resource Efficient FPGA a
flopoco<22,8> Det(
 flopoco<22,8> **a,
 ap_uint<9> n) { while(…){
 m=elemAlloc(…);array[m+i]=…;
 push(Det, m, n-1);
 continue; restoreHere:
 det += pop(Det) * …; } }

</>

Selective Offloading to FPGA .
bool deviceFail = false;
if (hostCheck(…))
 hostKernel(…);
else
 FPGAKernel(…, &deviceFail);
if (deviceFail)
 hostKernel(…);

</>

ROSE & Kvasir-based
Invariants Detection

ROSE-based
Automatic Refactoring

Figure 2: Approach overview of HeteroRefactor.

Optimization of data movement. Accessing of the device
memory can be more efficient by packing bits into the width of
DRAM access of 512 bits. To overlap communication with compu-
tation, a developer could explicitly implement a double buffering
technique [15]. To cache data, developers need to explicitly store
them on chip through data tiling, batching or reusing [10, 56, 65].

Reducing resource consumption. Provisioning more process-
ing elements or a larger cache will require using more on-chip
resources, limiting the potential of parallelization and data move-
ment optimizations by duplicating processing elements or adding
cache. A higher resource utilization ratio can lower the maximum
operating frequency and consume more power; thus, it degrades
the performance and efficiency. Besides, a resource-efficient design
is economical as it can to be implemented on a smaller FPGA chip.
Traditionally, developers allocate integers and floating-point vari-
ables with a fixed size bitwidth large enough for all possible input
values, or create a static array for the largest-possible size. Such
a practice may cause wasting on-chip resources. In particular, in
modern applications such as big data analytics and ML applications
where on-chip resource usage is input-dependent, FPGA resource
optimization becomes increasingly difficult.

Figure 1 illustrates our new contributions, highlighted with bold
and red, relative to the prior HLS literature. There exists many
automated approaches for generating device and host interfaces
[20, 61, 83], exploring parallelization opportunities [24, 34, 46, 83],

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lau*, Sivaraman*, Zhang*, Gulzar, Cong, & Kim

IntegerRecursive Data Structure Floating Points

C
ol

le
ct

In

va
ria

nt
s

Tr
an

sf
or

m
at

io
n

G
ua

rd

C
he

ck
in

g

Source C/C++ Program

Refactoring-based instrumentation Kvasir-based instrumentation

Rewrite
Memory

Management

Monitor
malloc Failure

Input Check
on Host

Selective Offloading Program to FPGA

Data
Structure Shape

Recursion
Depth

Transformed Device Program

</>

</>

Modify
Pointer
Access

Convert
Recursion

Modify
Type

Modify
Operator

Assess
FP Error

Pre-transformed Programs
with Different Precisions

Precision Loss from
Differential Execution

</>

Monitor
Stack Overflow

Intermediate
Check on Device

</>

Probabilistic Verification

Offloading to FPGA</>

Value Range Unique Elements

Modify Integer Type

Figure 3: HeteroRefactor incorporates three techniques—dynamic invariant detection, kernel refactoring, and selective of-

floading with guard checking. Its profiling concerns three aspects: (1) the length of recursive data structures, (2) required

integer bitwidth, and (3) required floating-point bitwidth to meet a specified precision loss.

and optimizing data movement [10, 20, 24, 46, 55, 56]. But gen-
eral methods for reducing resource consumption, pointer support,
memory management and recursion support remain as open re-
search questions and no automated kernel refactoring exists yet.
HeteroRefactor addresses three important scopes of such refactor-
ing transformations: (1) converting a program with pointers and
recursion to a pointerless and non-recursive program by rewriting
memory management and function calls, (2) reducing on-chip re-
source consumption of integer bitwidth, and (3) reducing on-chip
resource consumption by tuning floating-point precision.

3 APPROACH

HeteroRefactor, as shown in Figure 2, is a novel end-to-end solution
that combines dynamic invariant analysis, automated refactoring,
and selective offloading for FPGA. It addresses three kinds of HLS
refactorings: rewriting a recursive data structure to an array of
finite size (Section 3.1); reducing integer bitwidth (Section 3.2); and
tuning variable-width floating-point operations (Section 3.3). All
three refactorings are based on the insight that a-priori dynamic
analysis improves FPGA synthesizability and resource efficiency
and that dynamic, input-dependent offloading can guarantee cor-
rectness. Figure 3 details the three components that work in concert:
(A) instrumentation for FPGA-specific dynamic invariant analysis,
(B) source-to-source transformation using dynamic invariants, and
(C) selective offloading that checks the guard condition when of-
floading from CPU to FPGA. The first two kinds of refactorings
follow similar implementation for selective offloading using a guard
condition check, described in Section 3.4. For floating-point opera-
tions, our dynamic analysis provides a probabilistic guarantee that
the precision loss is within a given bound.

3.1 Recursive Data Structure

Many applications use recursive data structures built on malloc,
free, and recursive function calls. As mentioned in Section 2.2,
HLS tools have strict restrictions on the types of pointers allowed
and do not support memory allocation and recursion. For example,

Vivaldo HLS throws the following error for Figure 4a: an unsynthe-
sizable type ’[10 x %struct.Node.0.1.2]*. This severely limits the type
of programs that can be automatically ported for heterogeneous
computing. Expert FPGA developers manually rewrite the recursive
data structure into a flattened array to be HLS-compliant; however,
as they may not know the common maximum size required for the
application, they often over-provision and declare an unnecessarily
large size. They also have to manually convert recursion into loop
iterations and over-provision the stack required for keeping track
of program state involved in recursive calls.

HeteroRefactor uses a source to source compiler framework,
ROSE [59] to instrument code for identifying the size of recursive
data structures and the corresponding stack depth and performs
source-to-source transformation based on the size.

3.1.1 Refactoring-based Instrumentation. HeteroRefactor in-
struments memory allocation and de-allocation function calls (e.g.,
allocation of a linked list node), and adds tracing points at the
entry and exit of recursive functions to monitor a stack depth. Het-
eroRefactor then determines the number of elements allocated
for each data structure based on the collected sizes. In Figure 4a,
HeteroRefactor sets a tracing point at line 3 to record the number
of allocated nodes and another tracing point at line 16 to record the
released count. To monitor the recursion depth, HeteroRefactor
inserts tracing points call at the function entry point and ret at
the function exit point of each recursive function. In Figure 4a, call
is inserted before line 6, and ret is inserted at line 6 and after line
9. HeteroRefactor then maintains a variable stack_size for each
function, which is incremented every time the program reaches
call and decremented when it reaches ret. The highest value at-
tained by stack_size during execution is reported and used as the
bound for a flattened array and the corresponding stack.

3.1.2 Refactoring. HeteroRefactor is implemented based on
ROSE [59] to rewrite recursive data structures. It takes C/C++ ker-
nel code and the array sizes and recursion depths found via dynamic
analysis, and outputs anHLS-compatible versionwith on-chipmem-
ory allocation, removes all pointers except for those with native

HeteroRefactor: Refactoring for Heterogeneous Computing with FPGA ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

1 struct Node { Node *left, *right; int val; };
2 void init(Node **root) {
3 *root = (Node *)malloc(sizeof(Node)); }
4 void insert(Node **root, int n, int *arr);
5 void traverse(Node *curr) {
6 if (curr == NULL) return;
7 visit(curr->val);
8 traverse(curr->left);
9 traverse(curr->right); }
10 void top(int n, int *output_if) {
11 #pragma HLS interface m_axi port=output_if
12 Node *root; init(&root); // ...
13 int values[3] = {5, 4, 3};
14 insert(&root, 3, values);
15 int *curr = output_if; traverse(root); // ...
16 free(root); }

(a) Original kernel code using pointers and memory allocation.

1 bool guard_error = false;
2 struct Node { Node_ptr left, right; int val; };
3 struct Node Node_arr[NODE_SIZE];
4 typedef unsigned int Node_ptr;
5 Node_ptr Node_malloc(size_t size);
6 void Node_free(Node_ptr); // buddy allocation
7 void init(Node_ptr *root) {
8 *root = (Node_ptr)Node_malloc(sizeof(Node));
9 if (!root) guard_error = true; }
10 void insert(Node_ptr *root, int n, int *arr);
11 void traverse(Node_ptr curr) {
12 stack<context> s(TRAVERSE_STACK_SIZE, {curr:curr,loc:0});
13 while (!s.empty()) { context c = s.pop(); goto L{c.loc};
14 L0:if (c.curr == NULL) continue;
15 visit(Node_arr[c.curr-1]._data.val);
16 if (s.full()) { guard_error=true; return; }
17 c.loc = 1; s.push(c); s.push({curr: Node_arr[
18 c.curr-1]._data.left, loc: 0}); continue; // traverse(left)
19 L1:// traverse(right) ...
20 L2:; } }
21 void top(int n, int *output_if, bool *fail) {
22 #pragma HLS interface m_axi port=output_if
23 Node_ptr root; init(&root); // ...
24 int values[3] = {5, 4, 3};
25 insert(&root, 3, values);
26 int *curr=output_if; traverse(root); // ...
27 Node_free(root); *fail = guard_error; }

(b) Refactored kernel code (schematic).

Figure 4: Example of recursive data structures: binary tree.

HLS support (to be explained further under Rule 2), and rewrites
recursive functions. The transformation is semantics-preserving
and consists of the following transformation rules:
Rule 1: RewriteMemoryManagement. To replace calls to malloc
and free, for each data type, we pre-allocate an array whose size
is guided by instrumentation (line 3 in Figure 4b). The per-type
allocation strategy with an array is based on two reasons—HLS only
supports pointer reinterpretation on primitive data types, and it can
optimize array accesses if the size of one element is known. For each
node allocation and de-allocation, we implement a buddy memory
system [54] and allocate from the array. The buddy memory system
requires less overhead and has little external fragmentation [77],
making it suitable for FPGA design. We identify all calls to malloc
and free, the requested types and element counts, and transform
them into calls to our library function Node_malloc (line 8 in Fig-
ure 4b) which returns an available index from the array. Section 4.1
details performance benefits in terms of increased frequency and
reduced resource utilization using an array size guided by dynamic
analysis rather than declaring an overly conservative size.
Rule 2: Modify Pointer Access to Array Access. There are only
two types of pointers natively supported in HLS, and we do not need
to convert them into array access. One is a pointer of interfaces,

which we can identify by looking up pragmas in the code (line 22 in
Figure 4b). Second is a pointer to variables, which can be detected
by finding all address-of operators or array references in the code.
Before modifying pointer access to array access, we identify these
natively supported pointers using a breadth-first search on the data
flow graph and exclude them from our transformation.

We transform the pointers to an unsigned integer type that takes
value less than the size of the pre-allocated array from dynamic
analysis. This integer represents the offset of the pointed element
in the pre-allocated array. There are three locations where this
type of transformation is applied: (1) variable declarations (line 23
Figure 4b), typecasting (line 8 Figure 4b), and function parameters
(line 10 Figure 4b) and the return value in both declarations and
the definition. We perform a breadth-first search on the data flow
graph to propagate the type changes. Since we use an array offset
to reference allocated elements, we need to change all pointer deref-
erences into array accesses with the relative index. We transform
indirection operator (*ptr) and structure dereference operators
(ptr->, ptr->*) into array accesses with pointer integer as the
array index. Similarly, the subscript operators (ptr[]) are trans-
formed into array accesses with the pointer integer added with the
given offset as the array index. For example, we modify pointer
access (line 7 in Figure 4a) to array access (line 15 in Figure 4b).
Rule 3: Convert Recursion to Iteration. To transform recursive
functions into non-recursive ones, we create a stack (line 12 Fig-
ure 4b) for each function with all local variables. The depth of the
allocated stack is determined through the dynamic analysis step.
All references to local variables are transformed into references to
elements on the top of the stack (line 14 Figure 4b). To simulate the
saved context of the program counter and return value in a CPU
call stack, we reserve two member variables in our stack to store
the location indicating which line of code we need to restore to,
and the return value of the called function.

With a stack, we can implement function calls like in CPU. En-
tering a function pushes the current context and new parameters
to the top of the stack (line 17 Figure 4b), then continue to the first
line of the function (line 18 Figure 4b). A function return writes
the return value to the stack, pops the top item from the stack, and
returns to the saved context (lines 13 Figure 4b).

3.2 Integer

3.2.1 Kvasir-based Instrumentation. Daikon is a dynamic in-
variant detection tool [27] that reports likely program invariants
during a program’s execution. It consists of two parts: (a) a language-
specific front-end and (b) a language-independent inference engine.
A front end instruments the program and extracts the program
state information by running the program. FPGA kernels are pro-
grammed in C/C++ for HLS; hence, we use Kvasir [27], a C/C++
front-end for Daikon, to instrument the target program’s binary.

3.2.2 FPGA-Specific Invariants. Daikon is often used for gen-
eral program comprehension and testing, and therefore it outputs
invariants such as an array size or binary comparison, e.g., i>0,
i<0, size(array)=0, size(array)>0. However, such general
invariants must be adapted for the purpose of FPGA synthesis. For
example, reducing a variable bitwidth leads to resource reduction
in FPGA directly [45].

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lau*, Sivaraman*, Zhang*, Gulzar, Cong, & Kim

1 int weakClassifier(int stddev, int coord[12], int haarC, int w_id);
2 int cascadeClassifier(int SUM1_data[IMG_HEIGHT][IMG_WIDTH],
3 int SQSUM1_data[IMG_HEIGHT][IMG_WIDTH], MyPoint pt) { // ...
4 int stddev = int_sqrt(stddev); // ..
5 }

(a) Original kernel code using int.

1 bool guard_error = false;
2 void guard_check(ap_int<65> value, int size, int sign) {
3 #pragma HLS inline off
4 if (sign==1) { if (value<0) {
5 if (value < -(1LL<<(size-1)) guard_error = true;
6 } else { /*...*/ } } else { /*...*/ } }
7 int weakClassifier(ap_uint<9> stddev, ap_uint<23> coord[12], ap_uint<7>

haarC, ap_uint<8> w_id);
8 int cascadeClassifier(ap_uint<18> SUM1_data[HEIGHT][WIDTH],
9 ap_uint<18> SQSUM1_data[HEIGHT][WIDTH], MyPoint pt) { //...
10 ap_uint<18> stddev = int_sqrt(stddev);
11 guard_check(ap_int<65>(int_sqrt(stddev)),18,0); // ...
12 }

(b) Refactored kernel code using ap_(u)int.

Figure 5: Example of integers: face detection.

Therefore, to optimize FPGA synthesis, we design three types
of FPGA-specific invariants: (1) the minimum and maximum value
of a variable based on a range analysis, (2) the number and type
of unique elements in an array, and (3) the size of an array. For
example, first consider Figure 5a. A programmer may over-engineer
and use a 32-bit integer by default, which is a higher bitwidth than
what is actually necessary. While the instruction set architecture
(ISA) for CPU defines integer arithmetics at 32 bits by default, in
FPGA, individual bitwidths could be programmed.

3.2.3 Refactoring. Rule Modify Variable Type. To convert an
integer to an arbitrary precision integer, we leverage ap_uint<k>
or ap_int<k> provided by Vivado HLS, which defines an arbitrary
precision integer of k bits. As an example, the input haar_counter
to method weakClassifier in Figure 5a is declared as a 32-bit
integer by the programmer. However, suppose that HeteroRefac-
tor finds that it has a min value of 0 and a max value of 83—it then
only needs 7 bits instead of 32 bits. It parses the program’s AST us-
ing ROSE [59], identifies the variable declaration node for stddev,
coord, haarC, and w_id, and then modifies the corresponding type
as shown in Figure 5b.

3.3 Floating Point

Unlike the reduction of integer bitwidth in Section 3.2, reducing the
bitwidth for floating-point (FP) variables can lead to FP precision
loss. Estimating the error caused by lowering a FP bitwidth can be
done reliably only through differential execution, because existing
static analysis tends to over-approximate FP errors. Therefore, we
design a new probabilistic, differential execution-based FP tuning
approach, which consists of four steps: (1) source-to-source trans-
formation for generating program variants with different biwidths,
(2) estimation of the required number of input data samples based
on Hoeffding’s inequality [37], (3) test generation and differential
execution, and (4) probabilistic verification for FP errors.

Prior work on reducing FP precision in CPU [62, 63] used dy-
namic analysis; however, since they use a golden test set, they do
not provide any guarantee on running the reduced precision pro-
gram on unseen inputs. The key insight behind HeteroRefactor’s

1 float l2norm(float query[], float data[], int dim) {
2 float dist = 0.0;
3 for (int j = 0; j < dim; j++)
4 dist += ((query[j] - data[j]) * (query[j] - data[j]));
5 return sqrt(dist); }

(a) Original kernel code using float.

1 using namespace thls; typedef policy_flopoco<16,5>::value_t LOWBIT;
2 float low_l2norm(float query[], float data[], int dim) {
3 LOWBIT dist = 0.0;
4 for (int j = 0; j < dim; j++) {
5 LOWBIT fp_query_j = to<LOWBIT, policy>(query[j]);
6 LOWBIT fp_data_j = to<LOWBIT, policy>(data[j]);
7 LOWBIT fp_neg_1 = neg(fp_data);
8 dist += (fp_query + fp_neg_1) * (fp_query + fp_neg_1); }
9 return sqrt(to<float>(dist)); }
10 int main() {
11 for (...) { // ...
12 float highValue = l2norm(args[]);
13 float lowValue = low_l2norm(args[]);
14 float error = highValue - lowValue;
15 if (fabs(error) > acceptableError) Failed++; else Passed++; }
16 if (double(Passed) / Samples > requiredProbability) {
17 /* Passed verification */ } else { /* Failed verification */ } }

(b) Refactored kernel code that performs differential execution and

probabilistic verification (schematic).

Figure 6: Example of FP numbers: l2norm from KNN.

probabilistic verification approach is that we can draw program
input samples to empirically assess whether the relative error be-
tween a low precision program and a high precision program is
within a given acceptable precision loss e with probability p. Given
a program with high-precision FP operations, hp, we construct a
lower precision copy of the program, lp, by changing the corre-
sponding type of all FP variables, constants and operations. For
each input i ∈ I , we compute the actual error between the high
and the low bitwidth variants, hp(i) − lp(i). We then check whether
this FP error is within the acceptable precision loss e , indicated by
a predicate ci = (hp(i) − lp(i) < e) which forms a distribution B.
When the empirical measurement ci of the given input samples is
higher than the target probability p, the verification is passed.

HeteroRefactor takes as inputs: (1) a program, (2) a set of sam-
pled inputs I or a statistical distribution, (3) an acceptable loss
(error) e , (4) a required probability p, (5) a required confidence level
(1 − α) and (6) deviation ϵ . We use Hoeffding’s inequality [37] to
compute the minimum number of samples required to satisfy the
given confidence level (1 - α) and deviation ϵ . Equation 1 shows the
probability that the empirical measurement ci of the distribution B
deviates from its actual expectation E[ci] by ϵ , which should be less
than α to achieve our target. Similar to Sampson et al.’s probablistic
assertion [66], we use Hoeffding’s inequality since it provides a
conservative, general bound for expectations of any arbitrary dis-
tribution and relies only on probability and deviation. Therefore,
it is suitable for our situation where we have no prior knowledge
about the FP loss distribution, incurred by reducing the bitwidth.
Equation 2 calculates the minimum number of samples required to
verify whether the error is within the acceptable loss.

P[|ci − E[ci]| ≥ ϵ] ≤ 2e−2nϵ
2

(1)

n ≥ ln(2/α)/(2ϵ2) (2)

HeteroRefactor: Refactoring for Heterogeneous Computing with FPGA ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

For example, when a user wants the actual FP error between the
original version (Figure 6a) and the low precision variant (Figure 6b)
to be less than 10−4 with 95% probability, 95% confidence level and
0.03 deviation, the minimum number of samples required is 2049.

During differential testing with respect to input I , if the propor-
tion ci of passing samples to |I | is greater thanp, we probabilistically
guarantee that it is safe to lower the FP precision to the given lower
bitwidth. The following transformation rules are applied to identify
a lower precision configuration for FP variables.
Rule 1. Duplicate Method and Modify Type. To create multiple
copies of method l2norm in Figure 6a, HeteroRefactor traverses its
AST and redefines the type of variable query, data, and dim origi-
nally declared as float using thls::fp_flopoco<E, F>, whose
library is based on Thomas’ work on templatized soft floating-point
type for HLS [75]. E is the number of exponent bits and F is the
number of fractional bits (excluding 1 implicit bit). For example,
thls::fp_flopoco<8,23> is 32 bit float type, and thls::fp_-
flopoco<5,16> uses 22 bits in total (5 for exponent, 16 for fraction
and 1 for implicit bit) instead.
Rule 2: Modify Arithmetic Operators. While addition, multi-
plication, and division operators are implemented by thls::fp_-
flopoco<E,F>, subtraction is not supported [75]. Hence, we con-
vert subtraction in l2norm (line 4 in Figure 6a) to corresponding
neg and add, i.e., subtract(a,b) = add(a,neд(b)) using a variable
fp_neg_1 to store the intermediate result (lines 7-8 in Figure 6b).
Rule 3: Assess FP Error for Differential Execution. We define
a skeleton method that computes the relative error and probabilis-
tically verifies if the error is within the user given acceptable loss
(lines 11-17 Figure 6b). This involves adding code to invoke the
original and generated low precision variants of the function.

3.4 Selective Offloading with Guard Check

To selectively offload the computation that fits the reduced size,
we insert guard conditions in the host (function sending data from
CPU to FPGA) and the kernel (algorithm) to be mapped to FPGA.

For recursive programs, as illustrated at line 9 and line 16 in Fig-
ure 4b, we insert a guard condition at Node_malloc. The condition
sets a global variable guard_error to true, if the array is full and
more allocation is required. Similarly, the global variable is set to
true, if the stack size grows beyond the reduced size. For integer-
intensive programs, as shown at line 11 in Figure 5b, we add a guard
condition in the kernel and host program. We guard the use of each
input, output, and intermediate value in the kernel to proactively
prevent overflow (lines 4-6 in Figure 5b). For this, we first identify
all expressions containing the reduced bitwidth variables, and if
the expression contains binary operations, we insert a guard.

4 EVALUATION

Our evaluation seeks to answer the following research questions:
RQ1 Does HeteroRefactor effectively enlarge the scope of HLS

synthesizability for recursive data structures?
RQ2 How much manual effort can HeteroRefactor save by auto-

matically creating an HLS-compatible program?
RQ3 How much resource reduction does HeteroRefactor pro-

vide for recursive data structures, integer optimization, and
floating-point optimization?

Benchmarks. We choose ten programs, listed in Table 1 as
benchmarks for our main evaluation. For recursive data struc-
tures, we use the following five kernels: (R1) Aho-Corasick [2] is
a string pattern searching algorithm that uses breadth-first search
with a dynamic queue, a recursive Trie tree [26] and a finite state
machine. (R2) DFS is depth-first search implemented with recur-
sion. (R3) Linked List is insertion, removal, and sorting on a
linked list. (R4) Merge Sort is performed on a linked list. (R5)
Strassen’s [40] is a recursive algorithm for matrix multiplica-
tion. For integer optimization, we use face detection and 3D
rendering from Rosetta [69, 84] (I6 and I7). We also write (I8)
bubble sort. For FP bitwidth reduction, we modify two programs—
(F9) KNN-l2norm and (F10) RGB2YUV from OpenCV examples [6].

These subject programs demonstrate HeteroRefactor’s capabil-
ity on improving synthesizablity and resource efficiency. For recur-
sive data structures, the original programs are not synthesizable
and cannot run on FPGA prior to our work. Thus, we compare our
results against manually ported code in terms of human effort and
resource utilization. The hand-optimized programs are written by
experienced graduate students from an FPGA research group at
UCLA. Original programs for integer and floating-point can already
run on FPGA. For integers, we compare resource utilization to both
original (unoptimized) and manually optimized programs, which
are directly from Rosetta [69, 84]. For floating-point, there is no
comparison with hand-optimized versions, because a manual op-
timization attempt will be similar to the verification procedure of
HeteroRefactor.

Though the code size of subject programs looks small, these
programs are rather sizable compared against well-known FPGA
HLS benchmarks [36, 60]. Similar to creating a new instruction type
in the CPU instruction set architecture, the role of FPGA is to create
high performance, custom operators at the hardware circuit level. In
fact, in a usual FPGA development workflow, developers instrument
software on CPU, find out its hotspot corresponding to tens of lines
of code, and extract it as a separate kernel for FPGA synthesis.
Therefore, our work cannot be judged under the same scalability
standard used for pure software refactoring (e.g., handling GitHub
projects with millions of lines of code).

Experimental Environment. All experiments are conducted
on a machine with Intel(R) Core(TM) i7-8750H 2.20GHz CPU and 16
GB of RAM running Ubuntu 16.04. The dynamic invariant analysis
is based on instrumentation using Daikon version 5.7.2 with Kvasir
as front-end. The automated refactoring is implemented based on
ROSE compiler’s version 0.9.11.0. The refactored programs are
synthesized to RTL to estimate the resource utilization by Vivado
Design Suite 2018.03. The generated kernels are targeted to a Xilinx
Virtex UltraScale+ XCVU9P FPGA on a VCU1525 Reconfigurable
Acceleration Platform.

4.1 Recursive Data Structure

To answer RQ1, we assess how many recursive data structure pro-
grams are now synthesizable using HeteroRefactor that fail compi-
lation with Vivado HLS. For RQ2, we measure manual porting effort
as LOC and characters in the code. For RQ3, we assess reduction in
resource utilization and increase in frequency of the resulting FPGA

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lau*, Sivaraman*, Zhang*, Gulzar, Cong, & Kim

Table 1: Resource utilization for HeteroRefactor

ID/Program #LUT #FF BRAM DSP
R1/ Orig Not Synthesizable
Aho- Manual 3287 4666 1939 7
Corasick HR-8K 5492 5085 678 10

HR-2K 5234 5006 206 10
R2/ Orig Not Synthesizable
DFS Manual 1471 1961 221 0

HR-8K 2634 2901 254 0
HR-2K 2563 2881 69 0

R3/ Orig Not Synthesizable
Linked Manual 2993 3732 534 0
List HR-8K 3771 4044 318 0

HR-2K 3655 3936 83 0
R4/ Orig Not Synthesizable
Merge Manual 2755 2878 519 0
Sort HR-8K 2751 2958 367 0

HR-2K 2603 2951 105 0
R5/ Orig Not Synthesizable
Strassen’s Manual 21631 13722 919 12

HR-8K 20303 14899 223 12
HR-2K 19591 14654 68 12

I6/ Orig 11325 5784 49 39
Face Manual 10158 4800 49 37
Detection HR 10298 4770 47 28
I7/ Orig 3828 2033 123 36
3D Manual 2239 1357 67 12
Rendering HR 1907 878 39 9
I8/ Orig 313 125 2 0
Bubble Manual 306 125 1 0
Sort HR 302 125 1 0
F9/ Orig 88843 18591 30 32
KNN- p e = 10−2
l2norm 0.95 80163 15257 30 16

0.99 82228 15626 30 16
0.999 82228 15626 30 16
p e = 10−4

0.95 88952 17102 30 32
0.99 88952 17102 30 32
0.999 88952 17855 30 32
p e = 10−6

0.95 88843 18591 30 32
0.99 88843 18591 30 32
0.999 88843 18591 30 32

F10/ Orig 398444 73437 30 288
RGB2YUV p e = 10−4

0.95 243516 28379 30 144
0.99 250044 28827 30 144
0.999 250044 28827 30 144
p e = 10−5

0.95 304956 49468 30 144
0.99 304956 49468 30 144
0.999 311532 49964 30 144
p e = 10−6

0.95 372236 66381 30 288
0.99 398444 73437 30 288
0.999 398444 73437 30 288

Table 2: Recursive data structure kernels, no extra code with

HeteroRefactor v.s. effort for manual refactoring

ID/Program
Orig.
LOC

Manual
LOC

∆
LOC

Orig.
Chars

Manual
Chars

∆
Chars

R1/A.-C. 190 291 33% 5673 8776 35%
R2/DFS 86 198 57% 2236 5699 61%
R3/L. List 131 235 44% 3061 6686 54%
R4/M. Sort 128 342 63% 3267 9124 64%
R5/Strassen’s 342 735 53% 10026 40971 76%
Geomean 49% 56%

design code, compared to the FPGA design based on a manually
written kernel with a conservative size.

Table 2 shows how many lines of code (Manual LOC) and char-
acters (Manual Chars) we need to write in total, if we manually
refactor a synthesizable version in Vivado HLS. These manual ver-
sions have only a naïve allocator that returns the first unallocated
element in the array. If we add a buddy memory system to the
manually refactored code to achieve the same functionality as in
HeteroRefactor, about 100 additional lines of code are required,
and thus manual refactoring effort would be even greater.

To evaluate reduction in resource utilization, we instrument
the programs using randomly generated input data with typical
size of 1k, 2k, 4k or 8k. The profiled information is then passed
to HeteroRefactor, which automatically generates Vivado HLS-
compilable variants of the original program. As mentioned in Sec-
tion 3.1, FPGA programmers manually transform pointer to non-
pointer programs with an overly conservative estimate for the size
of the data structure. To compare traditional code rewriting to Het-
eroRefactor, we manually convert and optimize the programs in
Table 2 for a conservative data structure size of 16k.

Rows R1-R5 in Table 1 summarize reduction in pre-allocated ar-
ray size and resource utilization for each of these variants. Manual
shows resource usage numbers for the hand-optimized program
with a conservative size of 16k, and HR-8k and HR-2k show re-
source usage of HeteroRefactor with 8k and 2k typical data size. If
the typical input data size is 2k, there is 83% reduction on average
in BRAM, compared to the manually refactored program with a
conservative array size. This decrease is significant because Vivado
HLS stores most of the large array in BRAM. On the other hand,
there is an increase of 302 units in LUT and 494 units in FF on aver-
age compared to the hand-optimized version. This small overhead
is caused by the fixed-sized buddy memory system which does not
increase, as the user design scales.

We implement FPGA accelerator on-board with a target fre-
quency of 300 MHz. Figure 7 reports the maximum operating fre-
quency after placement and routing by Xilinx Vivado for each
typical input data size. The frequency is calculated statically by
using the worst negative slack (WNS) in the report file: Fmax =

1/(1/300MHz +WNS). If the input recursive data structure size is
2k, on average, there is 42% increase in frequency compared to the
hand-written code with a conservative size of 16k. The frequency
improvement comes from reducing communication time among
distributed storage resources. When the array is large, the required
storage is more distributed, and thus the routing paths are longer,
which harms timing.

HeteroRefactor: Refactoring for Heterogeneous Computing with FPGA ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Manual HR-8K HR-4K HR-2K HR-1K
100

200

300

400

Program (Manually / HeteroRefactor-optimized)

Fr
eq
ue
nc
y
(M

H
z)

Aho-Corasick
DFS

Linked List
Merge Sort
Strassen’s

Figure 7: Operating frequency of a hand-optimized version

with a conservative size, and HeteroRefactor-optimized

versions with different sizes.

If an expert FPGA programmer were to use an overly conserva-
tive size of 32k, two kernels Merge Sort and Strassen’swill even
fail to generate any bitstream, as they require too many resources,
justifying the needs of dynamic analysis in creating a custom circuit.

Summary 1

By identifying an empirical bound for the recursive data
structure size, HeteroRefactor makes programs HLS-
synthesizable. The accelerators optimized for common-
case inputs are 83%morememory-efficient with 42% higher
frequency than hand-written code with a conservative size.

4.2 Integer

We assess the hypothesis that reducing bitwidth based on dynamic
invariants leads to reduction in resource utilization for integers. We
measure resource utilization for each program using Vivado HLS
2018.03 targeting a Xilinx XCVU9P FPGA.

For integer bitwidth reduction, HeteroRefactor takes as input
(1) the kernel under analysis and (2) input data. We use dynamic
invariants (Table 3) to create a bitwidth optimized program (e.g., Fig-
ure 5b). Table 3 reports the FPGA-specific dynamic invariants for in-
teger variables. In terms of input data, we either generate synthetic
data of a fixed size or use an existing test set. For Face Detection
we use hex images generated from [69] and resize them to the di-
mension of 16x16. The program uses pre-trained weights declared
as an integer array.HeteroRefactor identifies that one of the weight
arrays requires only unsigned 14 bits based on the max and min
value and has only two unique values. For 3D Rendering, we use
the test input available in the benchmark [84] and split it into sub-
sets of 100 for each instrumented run. HeteroRefactor identifies
that the input model has a range of (38,150) and size of 100. For

Table 3: FPGA’s specific invariants for integer optimization

Program Variable FPGA-specific Invariants
Min Max Unique Size

I6/F. D. Weights Array 1 8192 12288 2 2913
I6/F. D. Stddev Variable 305 369 N/A N/A
I6/F. D. Coord 0 6746969 21 12
I7/3D R. Triangle 3D (x0) 38 255 49 100
I8/B.Sort Input Array 0 10 11 400

Bubble Sort, we generate 400 integers based on Chi Square distri-
bution [47]. The invariants identified by HeteroRefactor reconcile
with the distribution parameters and fixed size of the input set.

Rows I6-I8 in Table 1 summarize the bitwidth reduction and
resource utilization. For each resource type, we report the numbers
for (1) an original, unoptimized program in row Orig, (2) a manu-
ally optimized program in row Manual, and (3) a HeteroRefactor
optimized version in row HR. On average, HeteroRefactor leads to
25% reduction in FF, 21% reduction in LUT, 41% reduction in BRAM,
and 52% decrease in DSP compared to an unoptimized program.
Compared to carefully hand-crafted programs by experts, it leads
to 12% reduction in FF, 5% reduction in LUTs, 15% reduction in
BRAM, and 16% decrease in DSP. Due to the area reduction, more
processing elements can be synthesized in one single chip.

We then implement these FPGA accelerators on-board with a
target frequency of 300 MHz. All of the refactored programs can
meet this target; however, the original version of 3D Rendering
fails the timing constraints and can only workwith a final frequency
of 240.6 MHz. This validates that the frequency improvement can
be achieved by HeteroRefactor.

Summary 2

HeteroRefactor reduces the manual refactoring effort by
automatically finding the optimized bit width for integers.
It reduces 25% FF, 21% LUTs, 41% BRAM, and 52% DSP in
resource utilization, which are better than hand-optimized
kernels written by experts.

4.3 Floating Point

We evaluate the effectiveness of HeteroRefactor in providing a
probabilistic guarantee while lowering a bitwidth, and reducing
resource utilization compared to original programs.

We begin with the given float (32-bit) precision and generate
program variants with a reduced operand bitwidth. Reducing man-
tissa bits leads to precision loss, whereas reducing exponent leads
to a smaller dynamic range. Hence, in our experiments, we incre-
mentally reduce mantissa and verify if the loss is within a user
given loss, e , with probability p. As described in Section 3.3, we
use Hoeffdings inequality to determine the number of input data
samples for given (1 − α) and ϵ . In our experiments, we fix ϵ to
be 0.03, vary p to be 0.95, 0.99, and 0.999, and keep the confidence
level the same as p, i.e., (1 − α) = p, which require at least 2049,
2943 and 4222 samples, respectively. We also consider the input
features of FPGA kernels to determine the final number of samples.
For example, RGB2YUV requires that the inputs must be multiples of
16, so the final number of samples is 2064 rather than 2049 when
p is 0.95. In our evaluation, we draw random test inputs within 0
to 255. The bitwidth reduction is verified by HeteroRefactor with
an acceptable loss (e) (10−2, 10−4, or 10−6) for KNN-l2norm and an
acceptable loss (e) (10−4, 10−5, or 10−6) for RGB2YUV.

Table 4 summarizes the probabilistic verification results for dif-
ferent e and p configurations. For each configuration, we report
verification results for 8 and 16 bits floating-point, where N indi-
cates a verification failure, and the column HR reports the smallest
verified bitwidth. As expected, a higher precision and confidence
requirement leads to a higher FP bitwidth. The results show that a

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lau*, Sivaraman*, Zhang*, Gulzar, Cong, & Kim

Table 4: Probabilistic floating-point verification

Program p e = 10−2 10−4 10−6
8 16 HR 8 16 HR 8 16 HR

F9/KNN 0.95 N N 24 N N 29 N N 32
0.99 N N 25 N N 29 N N 32
0.999 N N 25 N N 30 N N 32
p e = 10−4 10−5 10−6

F10/R2Y 0.95 N N 21 N N 25 N N 30
0.99 N N 22 N N 25 N N 32
0.999 N N 22 N N 26 N N 32

32 bit floating-point variable could be reduced to using 21 bits with
an acceptable loss of 10−4 at 95% confidence level.

We then synthesize the refactored program using Vivado HLS
2018.03 targeting a Xilinx XCVU9P FPGA. Rows F9-F10 in Table 1
summarize the resource utilization for each subject program. The
Orig row indicates the original program with 32-bit float type and
p represents the probability and the confidence level (1 − α). Then
we report the resource utilization of FF, LUT, and DSP for each
combination of p and accuracy loss e . HeteroRefactor can achieve
up to 61% reduction in FF, 39% reduction in LUT, and 50% decrease
in DSP. As existing HLS flow does not support arbitrary floating-
point type, so we could not find any hand-optimized kernels, and
thus we can only compare against the default high bitwidth version.

Summary 3

HeteroRefactor reduces the floating-point bitwidth while
providing a probabilistic guarantee for a user-specified
quality loss, probability and confidence level. It can achieve
up to 61% reduction in FF, 39% in LUT, and 50% in DSP.

4.4 Overhead and Performance

Table 5 summarizes the instrumentation overhead and refactor-
ing overhead for R1-I8 compared against the synthesis time of the
original programs. For recursive data structures, both the instru-
mentation and refactoring overhead are less than 1%. For integers,
HeteroRefactor induces less than 1% refactoring overhead, and its
instrumentation overhead comes from Kvasir. For floating-point
programs F9-F10, Table 6 summarizes the differential execution
overhead compared against the synthesis time of the original pro-
grams with a specific quality loss e and probability p, because there
is no instrumentation required. HeteroRefactor induces less than
2% overhead on floating-point bitwidth tuning.

We compare the execution performance of the refactored kernel
against running the original program on CPU. For floating-point
programs, our experiment shows a significant speedup up to 7×
and 19× in KNN-l2norm and RGB2YUV. This is because these FP pro-
grams can benefit from inherent parallel computation. For recursive
programs, our refactored kernels are slower than CPU, because Het-
eroRefactor uses a sequential memory allocation, these kernels are
memory-bound, and the frequency of FPGA is lower than that of
CPU. For integer intensive programs, the end-to-end performance
depends on whether data parallelism could be easily utilized for
integer-type data processing. The kernels we selected are slightly

Table 5: Runtime overhead for recursions and integers

Instrumentation Refactoring
Program time (min) ratio time (sec) ratio
R1/Aho-Corasick 0.10 0.26% 5.1 0.26%
R2/DFS 0.06 0.26% 4.7 0.34%
R3/Linked List 0.12 0.49% 4.5 0.31%
R4/Merge Sort 0.05 0.20% 4.5 0.29%
R5/Strassen’s 0.09 0.20% 10 0.38%
I6/Face Detection 0.15 0.62% 10 0.69%
I7/3D Rendering 13.66 64.76% 10 0.79%
I8/Bubble Sort 10−3 ∼ 0 10−3 ∼ 0

Table 6: Differential execution overhead for FP (sec / %)

Program p e = 10−2 10−4 10−6
F9/KNN 0.95 60.8 / 0.3% 29.4 / 0.2% 11.7 / 0.1%

0.99 58.2 / 0.3% 30.4 / 0.2% 11.7 / 0.1%
0.999 60.8 / 0.3% 25.9 / 0.1% 12.8 / 0.1%
p e = 10−4 10−5 10−6

F10/R2Y 0.95 83.5 / 1.8% 59.3 / 1.3% 26.8 / 0.6%
0.99 81.5 / 1.7% 58.5 / 1.2% 12.9 / 0.3%
0.999 82.3 / 1.7% 54.5 / 1.2% 13.7 / 0.3%

slower than running on CPU because I6 and I7 in Rosetta are de-
signed to achieve higher energy efficiency but not higher processing
throughput compared to CPU [84]. HeteroRefactor aims to reduce
resource usage, while prior work [19, 24] achieves higher perfor-
mance than CPU by leveraging more on-chip resources to achieve
parallelism. HeteroRefactor could be used jointly with other tools
to produce fast and resource-efficient FPGA accelerators.

5 RELATEDWORK

Automated Refactoring. Since pioneering work on automated
refactoring in the early 90s [32, 49, 53], recent studies find that real-
world refactorings are generally not semantics-preserving [43, 44],
are done manually [76], are error-prone [42, 51], and are beyond the
scope and capability of existing refactoring engines. A recent study
with professional developers finds that almost 12% of refactorings
are initiated by developers’ motivation to improve performance [44].
HeteroRefactor builds on this foundation [49] but repurposes it to
improve performance in the new era of heterogeneous computing
with re-programmable circuits. While HeteroRefactor’s refactoring
is not semantics-preserving, it guarantees semantics-preservation
by leveraging selective offloading from CPU to FPGA in tandem.

Dynamic Invariant. Determining program invariants has been
explored widely using both static and dynamic techniques. Het-
eroRefactor is inspired by Daikon [27], which generates invariants
of 22 kinds for C/C++/Java programs. Kataoka et al. [41] detect the
symptoms of a narrow interface by observing dynamic invariants
and refactors the corresponding API. Different from these, Het-
eroRefactor does not require having representative data a-priori, as
it leverages selective offloading to guarantee correctness. Therefore,
a developer may use systematic test generation tools [29, 30, 67]
or test minimization [38, 73] to infer FPGA-specific invariants, as
representative data is not required for correctness.

HeteroRefactor: Refactoring for Heterogeneous Computing with FPGA ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

HLS Optimization. Klimovic et al. [45] optimize FPGA acceler-
ators for common-case inputs by reducing bitwidths using both bit-
mask analysis and program profiling [31]. When inputs exceed the
common-case range, a software fallback function is automatically
triggered. Their simulation results estimate that an accelerator’s
area may be reduced by 28% on average. While their approach is
similar to HeteroRefactor, its scope is limited to monitoring in-
teger values, and they do not implement a systematic approach
to monitor bitwidth invariants and the size of a recursive data
structure at the kernel level, nor automatically assess the impact of
tuning variable-width floating-point precision with a given error
bound. While we present real hardware results on Xilinx Virtex
UltraScale+ XCVU9P FPGA, they only present estimated software
simulation results. To our knowledge, HeteroRefactor is the first
tool for heterogeneous computing with FPGA that incorporates
dynamic invariant analysis, automated kernel refactoring, selective
offloading, and synthesized FPGA.

Several approaches provide HLS libraries for implementing vari-
able-width floating-point computation units, but leave it to the
programmer to specify which parameters to use and to rewrite
their kernel code manually. For example, Thomas [75] presents an
HLS backend for generating a customized floating-point accelerator
using C++ template-based, parameterized types. This approach
requires the user to manually specify the bitwidths for an exponent
and fraction, which is automated in HeteroRefactor.

HeteroRefactor differs from static analysis methods which re-
sults in over-approximation. For example, Bitwise [71] propagates
bitwidth constraints to variables based on the flow graph of bits.
MiniBit [48] minimizes integer and fixed-point data signals with
a static method based on affine arithmetic. Cong et al. [18] uses
affine arithmetic, general interval arithmetic and symbolic arith-
metic methods to optimize for fixed-point data. In contrast to JIT
compilation techniques [4], HeteroRefactor uses an ahead-of-time
profiling phase, due to a long FPGA synthesis time.

Recursion in Heterogeneous Computing. Enabling recur-
sive data structures in FPGA has been a long challenge because
the address space for each array is separate in HLS/FPGA unlike
traditional CPU architectures. SynADT [82] is an HLS library for
representing linked lists, binary trees, hash tables, and vectors from
pointers, and it internally uses arrays and a shared system-wide
memory allocator [81]. However, SynADT supports only a lim-
ited set of data structures and requires developers to manually
refactor. In contrast, HeteroRefactor automatically monitors an
appropriate size of a recursive data structure and performs fully
automated kernel transformation to convert pointer usage to op-
erations on a finite-sized array and implements a guard-condition
based offloading. Thomas et al. [74] use C++ templates to create a
domain-specific language to support recursion in HLS. However, it
requires extensive rewriting of control statements using lambdas.

Similar limitation existed on GPU with CUDA [52] and OpenCL
[72]. For example, dynamic memory management on device global
memory using malloc was not supported until CUDA 3.2 [52], and
there is no implementation of malloc on shared on-chip memory.

However, one may write their own universal allocator for arbitrary
types as a replacement for malloc on any memory [1, 39, 70] be-
cause GPU allows a single address space with regular access widths,
similar to CPU, while FPGA does not. Such approaches [1, 39, 52, 70]
still require manually specifying a heap size. HeteroRefactor au-
tomatically detects the required size of FPGA on-chip memory for
recursive data structures using dynamic invariant detection, and
fallbacks to CPU computation when the size invariants are violated.

Tuning Floating-point Precision. FPTuner [11] uses static
analysis for automatic precision-tuning [68] of real valued expres-
sions. It supports a single, double, or quadruple precision rather
than an arbitrary-width FP type. Precimonious [63] is a floating-
point precision tuning tool that uses dynamic analysis and delta-
debugging to identify lower precision instruction that satisfies the
user-specified acceptable precision loss constraint. HeteroRefac-
tor’s FP tuning is inspired by the success of Precimonious. However,
HeteroRefactor extends this idea by adding a probabilistic verifica-
tion logic to provide statistical guarantee on precision loss. While
Pecimonious is a software-only analysis tool for FP tuning, Het-
eroRefactor is an end-to-end approach that integrates dynamic
invariant analysis, automated refactoring, and FPGA synthesis.

6 CONCLUSION

Traditionally, automated refactoring has been used to improve soft-
ware maintainability. To meet the increasing demand for develop-
ing new hardware accelerators and to enable software engineers to
leverage heterogeneous computing environments, we adapt and ex-
pand the scope of automated refactoring. HeteroRefactor provides
a novel, end-to-end solution that combines (1) dynamic analysis for
identifying common-case sizes, (2) kernel refactoring to enhance
HLS synthesizability and to reduce on-chip resource usage on FPGA,
and (3) selective offloading with guard checking to guarantee cor-
rectness. For the transformed recursive programs, HeteroRefactor
reduces BRAM by 83% and increases frequency by 42%. For integer
optimization, it reduces the number of bits for integers by 76%,
leading to 41% decrease in BRAM. For floating-point optimization,
it reduces DSP usage by 50%, while guaranteeing a user-specified
precision loss of 0.01 with 99.9% confidence.

7 ACKNOWLEDGEMENT

We would like to thank Guy Van den Broeck, Brett Chalabian, Todd
Millstein, Peng Wei, Cody Hao Yu and anonymous reviewers for
their valuable feedback. We thank Janice Wheeler for proofread-
ing the draft. This work is in part supported by NSF grants CCF-
1764077, CCF-1527923, CCF-1723773, ONR grant N00014-18-1-2037,
Intel CAPA grant, and Samsung grant. This work is also partially
supported by CRISP, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program and the contributions from
the member companies under the Center for Domain-Specific Com-
puting (CDSC) Industrial Partnership Program, including Xilinx
and VMWare. Jason Lau is supported by UCLA Computer Science
Departmental Fellowship and Muhammad Gulzar is supported by
Google PhD Fellowship.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lau*, Sivaraman*, Zhang*, Gulzar, Cong, & Kim

REFERENCES

[1] Andrew V Adinetz and Dirk Pleiter. 2014. Halloc: a high-throughput dynamic
memory allocator for GPGPU architectures. In GPU Technology Conference (GTC),
Vol. 152.

[2] Alfred V Aho and Margaret J Corasick. 1975. Efficient string matching: an aid to
bibliographic search. Commun. ACM 18, 6 (1975), 333–340.

[3] Amazon.com. 2019. Amazon EC2 F1 Instances: Run Custom FPGAs in the AWS
Cloud. https://aws.amazon.com/ec2/instance-types/f1. (2019).

[4] MatthewArnold, Stephen J Fink, David Grove,Michael Hind, and Peter F Sweeney.
2005. A survey of adaptive optimization in virtual machines. Proc. IEEE 93, 2
(2005), 449–466.

[5] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagannathan Ra-
manujam, Atanas Rountev, and Ponnuswamy Sadayappan. 2008. Automatic
transformations for communication-minimized parallelization and locality op-
timization in the polyhedral model. In International Conference on Compiler
Construction. Springer, 132–146.

[6] Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc.

[7] Jared Casper and Kunle Olukotun. 2014. Hardware acceleration of database
operations. In Proceedings of the 2014 ACM/SIGDA international symposium on
Field-programmable gate arrays. ACM, 151–160.

[8] AdrianMCaulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
et al. 2016. A cloud-scale acceleration architecture. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Press, 7.

[9] Zhe Chen, Hugh T Blair, and Jason Cong. 2019. LANMC: LSTM-Assisted Non-
Rigid Motion Correction on FPGA for Calcium Image Stabilization. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 104–109.

[10] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: stencil with
optimized dataflow architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[11] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamariundefined. 2017. Rigorous Floating-
Point Mixed-Precision Tuning. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL 2017). Association for
Computing Machinery, New York, NY, USA, 300–315.

[12] Andrew A Chien, Allan Snavely, and Mark Gahagan. 2011. 10x10: A general-
purpose architectural approach to heterogeneity and energy efficiency. Procedia
Computer Science 4 (2011), 1987–1996.

[13] Young-kyu Choi and Jason Cong. 2017. HLScope: High-Level performance
debugging for FPGA designs. In 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 125–128.

[14] Eric S Chung, Peter AMilder, James C Hoe, and KenMai. 2010. Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and GPGPUs?.
In 2010 43rd annual IEEE/ACM international symposium on microarchitecture.
IEEE, 225–236.

[15] Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu, Chen Zhang,
and Peipei Zhou. 2018. Best-Effort FPGA Programming: A Few Steps Can Go a
Long Way. arXiv preprint arXiv:1807.01340 (2018).

[16] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik
Gururaj, and Glenn Reinman. 2014. Accelerator-rich architectures: Opportunities
and progresses. In Proceedings of the 51st Annual Design Automation Conference.
ACM, 1–6.

[17] Jason Cong, Licheng Guo, Po-Tsang Huang, Peng Wei, and Tianhe Yu. 2018.
SMEM++: A Pipelined and Time-Multiplexed SMEM Seeding Accelerator for
Genome Sequencing. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL). 210–2104.

[18] Jason Cong, Karthik Gururaj, Bin Liu, Chunyue Liu, Zhiru Zhang, Sheng Zhou,
and Yi Zou. 2009. Evaluation of static analysis techniques for fixed-point preci-
sion optimization. In 2009 17th IEEE Symposium on Field Programmable Custom
Computing Machines. IEEE, 231–234.

[19] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. 2016.
Source-to-source optimization for HLS. In FPGAs for Software Programmers.
Springer, 137–163.

[20] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang. 2016. Soft-
ware infrastructure for enabling FPGA-based accelerations in data centers. In
Proceedings of the 2016 International Symposium on Low Power Electronics and
Design. ACM, 154–155.

[21] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-level synthesis for FPGAs: From prototyping to de-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (2011), 473–491.

[22] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. 2010. Customizable
domain-specific computing. IEEE Design & Test of Computers 28, 2 (2010), 6–15.

[23] Jason Cong and Jie Wang. 2018. PolySA: polyhedral-based systolic array auto-
compilation. In 2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 1–8.

[24] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. 2018. Automated ac-
celerator generation and optimization with composable, parallel and pipeline
architecture. In Proceedings of the 55th Annual Design Automation Conference
(DAC). IEEE, 1–6.

[25] Jeferson Santiago da Silva, François-Raymond Boyer, and JM Langlois. 2019.
Module-per-Object: a Human-Driven Methodology for C++-based High-Level
Synthesis Design. arXiv preprint arXiv:1903.06693 (2019).

[26] Rene De La Briandais. 1959. File searching using variable length keys. In Papers
presented at the the March 3-5, 1959, Western Joint Computer Conference. ACM,
295–298.

[27] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[28] Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. 2012. High—Level
Synthesis: Introduction to Chip and System Design. Springer Science & Business
Media.

[29] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[30] Patrice Godefroid, Michael Y. Levin, and David AMolnar. 2008. AutomatedWhite-
box Fuzz Testing. In Network Distributed Security Symposium (NDSS). Internet
Society. http://www.truststc.org/pubs/499.html

[31] Marcel Gort and Jason H Anderson. 2013. Range and bitmask analysis for
hardware optimization in high-level synthesis. In 2013 18th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 773–779.

[32] William G. Griswold. 1991. Program Restructuring as an Aid to Software Mainte-
nance. Ph.D. Dissertation. University of Washington.

[33] Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. 2019. Hard-
ware acceleration of long read pairwise overlapping in genome sequencing: A
race between fpga and gpu. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 127–135.

[34] Licheng Guo, Jason Lau, Jie Wang, Cody Hao Yu, Yuze Chi, Zhe Chen, Zhiru
Zhang, and Jason Cong. 2020. Analysis and Optimization of the Implicit Broad-
casts in FPGA HLS to Improve Maximum Frequency. In Proceedings of the 28th
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).
ACM.

[35] Prabhat Gupta. 2019. Xeon+FPGA Platform for the Data Center. https://www.
archive.ece.cmu.edu/~calcm/carl/lib/\exe/fetch.php?media=carl15-gupta.pdf.
(2019).

[36] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii. 2008. Chstone: A benchmark program suite for practical c-based high-level
synthesis. In 2008 IEEE International Symposium on Circuits and Systems. IEEE,
1192–1195.

[37] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random
variables. In The Collected Works of Wassily Hoeffding. Springer, 409–426.

[38] Hwa-You Hsu and Alessandro Orso. 2009. MINTS: A General Framework and
Tool for Supporting Test-suite Minimization. In Proceedings of the 31st Interna-
tional Conference on Software Engineering (ICSE ’09). IEEE Computer Society,
Washington, DC, USA, 419–429. https://doi.org/10.1109/ICSE.2009.5070541

[39] Xiaohuang Huang, Christopher I Rodrigues, Stephen Jones, Ian Buck, and Wen-
mei Hwu. 2010. Xmalloc: A scalable lock-free dynamic memory allocator for
many-core machines. In 2010 10th IEEE International Conference on Computer and
Information Technology. IEEE, 1134–1139.

[40] Steven Huss-Lederman, Elaine M Jacobson, Jeremy R Johnson, Anna Tsao, and
Thomas Turnbull. 1996. Implementation of Strassen’s algorithm for matrix mul-
tiplication. In Supercomputing’96: Proceedings of the 1996 ACM/IEEE Conference
on Supercomputing. IEEE, 32–32.

[41] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin. 2001.
Automated support for program refactoring using invariants. In ICSM 2001,
Proceedings of the International Conference on Software Maintenance. Florence,
Italy, 736–743.

[42] Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An Empirical Inves-
tigation into the Role of Refactorings during Software Evolution. In ICSE’ 11:
Proceedings of the 2011 ACM and IEEE 33rd International Conference on Software
Engineering.

[43] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A field
study of refactoring challenges and benefits. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). ACM, New York, NY, USA, Article 50, 11 pages. https://doi.org/10.1145/
2393596.2393655

[44] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An
Empirical Study of Refactoring Challenges and Benefits at Microsoft. IEEE
Transactions on Software Engineering 40, 7 (2014), 1–1. https://doi.org/10.1109/
TSE.2014.2318734

https://aws.amazon.com/ec2/instance-types/f1
https://doi.org/10.1145/1065010.1065036
http://www.truststc.org/pubs/499.html
https://www.archive.ece.cmu.edu/~calcm/carl/lib/\exe/fetch.php?media=carl15-gupta.pdf
https://www.archive.ece.cmu.edu/~calcm/carl/lib/\exe/fetch.php?media=carl15-gupta.pdf
https://doi.org/10.1109/ICSE.2009.5070541
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/TSE.2014.2318734

HeteroRefactor: Refactoring for Heterogeneous Computing with FPGA ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[45] Ana Klimovic and Jason H Anderson. 2013. Bitwidth-optimized hardware
accelerators with software fallback. In 2013 International Conference on Field-
Programmable Technology (FPT). IEEE, 136–143.

[46] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Christos
Kozyrakis, and Kunle Olukotun. 2016. Automatic generation of efficient acceler-
ators for reconfigurable hardware. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). Ieee, 115–127.

[47] Henry Oliver Lancaster and Eugene Seneta. 2005. Chi-square distribution. Ency-
clopedia of biostatistics 2 (2005).

[48] Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. 2005. MiniBit:
bit-width optimization via affine arithmetic. In Proceedings of the 42nd annual
Design Automation Conference. ACM, 837–840.

[49] Tom Mens and Tom Tourwe. 2004. A Survey of Software Refactoring. IEEE
Transactions on Software Engineering 30, 2 (2004), 126–139. https://doi.org/10.
1109/TSE.2004.1265817

[50] Giovanni De Micheli. 1994. Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education.

[51] EmersonMurphy-Hill, Chris Parnin, and Andrew P. Black. 2009. Howwe refactor,
and how we know it. In ICSE ’09: Proceedings of the 31st International Conference
on Software Engineering. IEEE Computer Society, Washington, DC, USA, 287–297.
https://doi.org/10.1109/ICSE.2009.5070529

[52] Nvidia. 2011. Nvidia CUDA C programming guide. Nvidia Corporation 120, 18
(2011), 8.

[53] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Disser-
tation. University of Illinois, Urbana-Champaign, IL, USA. citeseer.ist.psu.edu/
opdyke92refactoring.html

[54] James L Peterson and Theodore A Norman. 1977. Buddy systems. Commun.
ACM 20, 6 (1977), 421–431.

[55] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Mi Mi Aung Khin. 2015.
Exploiting loop-array dependencies to accelerate the design space exploration
with high level synthesis. In 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 157–162.

[56] Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong.
2013. Polyhedral-based data reuse optimization for configurable computing. In
Proceedings of the ACM/SIGDA international symposium on Field programmable
gate arrays. ACM, 29–38.

[57] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating large-scale
datacenter services. ACM SIGARCH Computer Architecture News 42, 3 (2014),
13–24.

[58] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank
Chang, and Jason Cong. 2018. High-throughput lossless compression on tightly
coupled CPU-FPGA platforms. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 37–44.

[59] Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source compiler
infrastructure. In Cetus users and compiler infrastructure workshop, in conjunction
with PACT, Vol. 2011. Citeseer, 1.

[60] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. Machsuite: Benchmarks for accelerator design and customized
architectures. In 2014 IEEE International Symposium onWorkload Characterization
(IISWC). IEEE, 110–119.

[61] Zhenyuan Ruan, Tong He, Bojie Li, Peipei Zhou, and Jason Cong. 2018. ST-Accel:
A high-level programming platform for streaming applications on FPGA. In
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 9–16.

[62] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik Sen, James
Demmel, William Kahan, Costin Iancu, Wim Lavrijsen, David H Bailey, and
David Hough. 2016. Floating-point precision tuning using blame analysis. In
Proceedings of the 38th International Conference on Software Engineering. ACM,
1074–1085.

[63] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning assistant for floating-point precision. In SC’13:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE, 1–12.

[64] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level
synthesis: Promises and challenges. In 2011 9th IEEE International Conference on
ASIC. IEEE, 1102–1105.

[65] Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Mazzocca, and Antonio GM
Strollo. 2003. An FPGA-based performance analysis of the unrolling, tiling,

and pipelining of the AES algorithm. In International Conference on Field Pro-
grammable Logic and Applications. Springer, 292–302.

[66] Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S. McKinley, Dan
Grossman, and Luis Ceze. 2014. Expressing and Verifying Probabilistic Assertions.
In PLDI.

[67] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,
263–272. https://doi.org/10.1145/1081706.1081750

[68] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir
Rakamarić, and Ganesh Gopalakrishnan. 2018. Rigorous estimation of floating-
point round-off errors with symbolic taylor expansions. ACM Transactions on
Programming Languages and Systems (TOPLAS) 41, 1 (2018), 1–39.

[69] Nitish Srivastava, Steve Dai, Rajit Manohar, and Zhiru Zhang. 2017. Acceler-
ating Face Detection on Programmable SoC Using C-Based Synthesis. In 25th

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
[70] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg.

2012. ScatterAlloc: Massively parallel dynamic memory allocation for the GPU.
In 2012 Innovative Parallel Computing (InPar). IEEE, 1–10.

[71] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. 2000. Bidwidth
Analysis with Application to Silicon Compilation. In Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Implementation
(PLDI ’00). ACM, New York, NY, USA, 108–120. https://doi.org/10.1145/349299.
349317

[72] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems. Computing in science
& engineering 12, 3 (2010), 66–73.

[73] Sriraman Tallam and Neelam Gupta. 2005. A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFTWorkshop on Program Analysis for Software Tools and Engineering (PASTE
’05). ACM, New York, NY, USA, 35–42. https://doi.org/10.1145/1108792.1108802

[74] David B Thomas. 2016. Synthesisable recursion for C++ HLS tools. In 2016 IEEE
27th International Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, 91–98.

[75] David B Thomas. 2019. Templatised Soft Floating-Point for High-Level Synthesis.
In 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE.

[76] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P.
Bailey, and Ralph E. Johnson. 2012. Use, disuse, and misuse of automated refac-
torings. In Software Engineering (ICSE), 2012 34th International Conference on. 233
–243. https://doi.org/10.1109/ICSE.2012.6227190

[77] Paul RWilson, Mark S Johnstone, Michael Neely, and David Boles. 1995. Dynamic
storage allocation: A survey and critical review. In International Workshop on
Memory Management. Springer, 1–116.

[78] Xilinx. 2019. UltraScale Architecture and Product Data Sheet: Overview.
https://www.xilinx.com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf. (2019).

[79] Xilinx. 2019. Vivado High-Level Synthesis. https://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html. (2019).

[80] Xilinx. 2019. Xilinx Virtex UltraScale+ FPGA VCU1525.
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html. (2019).

[81] Zeping Xue and David B Thomas. 2015. SysAlloc: A hardware manager for
dynamic memory allocation in heterogeneous systems. In 2015 25th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 1–7.

[82] Zeping Xue and David B Thomas. 2016. SynADT: Dynamic Data Structures
in High Level Synthesis. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 64–71.

[83] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason
Cong. 2018. S2FA: an accelerator automation framework for heterogeneous
computing in datacenters. In Proceedings of the 55th Annual Design Automation
Conference (DAC). ACM, 153.

[84] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin,
Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,Wenping
Wang, and Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Synthesis Bench-
mark Suite for Software-Programmable FPGAs. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA) (Feb 2018).

[85] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and Jason
Cong. 2013. Improving polyhedral code generation for high-level synthesis. In
2013 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 1–10.

https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/ICSE.2009.5070529
citeseer.ist.psu.edu/opdyke92refactoring.html
citeseer.ist.psu.edu/opdyke92refactoring.html
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/349299.349317
https://doi.org/10.1145/349299.349317
https://doi.org/10.1145/1108792.1108802
https://doi.org/10.1109/ICSE.2012.6227190
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html

