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Abstract—Large-scale sorting is always an important yet
demanding task for data center applications. In addition to
powerful processing capability, high-performance sorting system
requires efficient utilization of the available bandwidth of various
levels in the memory hierarchy. Nowadays, with the explosive
data size, the frequent data transfers between the host and
the storage device are becoming increasingly a performance
bottleneck. Fortunately, the emergence of near-storage computing
devices gives us the opportunity to accelerate large-scale sorting
by avoiding the back and forth data transfer. Near-storage sorting
is promising for extra performance improvement and power
reduction. However, it is still an open question of how to achieve
the optimal sorting performance on the existing near-storage
computing device.

In this work, we first perform an in-depth analysis of the
sorting performance on the newly released Samsung SmartSSD
platform. Contrary to the previous belief, our analysis shows that
the end-to-end sorting performance is bound by not only the
bandwidth of the flash, but also the main memory bandwidth,
the configuration of the sorting kernel and the intermediate
sorting status. Based on our modeling, we propose FANS, an
FPGA accelerated near-storage sorting system which selects the
optimized design configuration and achieves the theoretically
maximum end-to-end performance when using a single Samsung
SmartSSD device. The experiments demonstrate more than 3×
performance speedup over the state-of-art FPGA-accelerated
flash storage.

I. INTRODUCTION

Sorting is one of the fundamental computational challenges
for data center applications. For example, many relational
database system operations such as order by, group by
and sort-merge join rely on high-performance sorting.
In the era of data explosion, large-scale sorting is becoming a
non-trivial performance bottleneck in data centers. As a result,
designing an efficient large-scale sorting solution is crucial for
the data center system architects.

Sorting large-scale data relies on external sorting [1], where
storage devices such as hard disks or flashes are used to
store the intermediate data and final results [2]. This is in
sharp contrast to the widely studied internal sorting problem
where the entire data can fit into the system main memory
(DRAM). One of the most common external sorting algorithms
is external merge sort [1]. This algorithm consists of two
phases: the sorting phase and the merging phase. In the sorting
phase, data are first sorted into intermediate chunks that can fit
into the processor’s main memory. In the following merging
phase, those sorted chunks are merged and written into the
external storage through one or multiple merging passes to
be the final result. The external merge sort algorithm is both

computationally intensive and data intensive. On one hand, the
sorting phase relies on a high-performance processor to sort
the data. On the other hand, the merging phase moves the data
frequently between the processor and the external storage.

The emerging near-storage computing devices bring new
opportunities to accelerate external merge sort. Instead of first
copying the data to the host side, the co-processor placed right
next to the storage could process the data in the drive directly,
thus it can perform the sorting tasks more efficiently. Specifi-
cally, we find that the newly released Samsung SmartSSD is a
suitable candidate for near-storage acceleration of large-scale
sorting. Samsung SmartSSD is a programmable computational
storage platform that integrates an FPGA into the same pack-
age as the flash. With Samsung SmartSSD, we can accelerate
the sorting phase using customized FPGA accelerators while
avoiding the expensive data transfer between the host and the
flash in the merging phase.

Although FPGAs have been widely used to accelerate
various sorting algorithms, most of the previous works only
target on-chip sorting [3], [4], [5], [6], [7] or DRAM-scale
sorting [8], [9], [10], [11], [12], [13]. While achieving compet-
itive performance when sorting small-scale data, these design
intuitions cannot be directly employed in the near-storage
computing scenarios, where the data are exchanged among
multiple levels in the memory hierarchy. Specifically, without
considering the low bandwidth of the storage and having an
efficient scheme to hide the storage access latency, a high-
performance DRAM sorter will be futile.

There are only a few previous studies on FPGA-accelerated
external merge sort that also involve the flash [14], [15].
For example, [14] builds an FPGA-accelerated flash storage
but only considers the bandwidth of the flash as the system
bottleneck. In comparison, we present a more comprehensive
analysis and show a variety of influencing factors such as
the FPGA size, the DRAM bandwidth and even the size of
the intermediate sorted chunks. Another work [15] presents a
scalable sorting solution that is able to sort data in a range
from megabytes to terabytes. When sorting terabyte data, the
solution in [15] is based on an ideal computational storage,
which has non-trivial discrepancy compared to the existing
near-storage devices, such as Samsung SmartSSD used in this
work. Section V-C will discuss the reason why their results
cannot be directly applied.

In this work, we propose FANS, an FPGA-accelerated near-
storage sorting solution that achieves remarkable end-to-end
sorting performance when targeting Samsung SmartSSD. First,



through a comprehensive analysis of the sorting system based
on the memory hierarchy of SmartSSD, we identify that in
addition to the flash bandwidth, there are multiple key factors
that determine the overall performance, including the merge
sort kernel configuration, the FPGA DRAM specification
and the sorted chunk size after the sorting phase. Based on
our analysis, we provide an optimized sorting solution for
Samsung SmartSSD. Our solution has a distinct sort phase
and merge phase, and each phase is configured separately to
maximize the entire sorting performance. Different phases can
be activated at runtime by reprogramming the FPGA. The
experiments demonstrate that our near-storage sorting system
achieves more than 3x performance speedup over the previous
state-of-the-art of FPGA-accelerated flash storage [14]. The
summary of the contributions of the paper is listed as follows:

• We propose a novel analytical framework to model the
overall performance of the FPGA-accelerated external
merge sort system and reveal that various factors could
be the bottlenecks of the end-to-end system performance.

• We implement a high-performance end-to-end sorting
system on Samsung SmartSSD, which contains a dis-
tinct sort phase and merge phase. Our system offers an
efficient FPGA-flash communication scheme to overlap
the FPGA sorting with the flash access and allows for
independent optimization of each phase through FPGA
reprogramming at runtime.

• Our sorting acceleration system with optimized design
configuration achieves more than 3x speedup over the
previous state-of-the-art.

• We provide valuable architectural insights based on our
analysis and experiments to help vendors further improve
their near-storage computing devices.

The rest of the paper is organized as follows: Section II
reviews the common elements of FPGA sorting systems and
introduces Samsung SmartSSD. Section III explains the sys-
tem architecture of FANS. Section IV discuss the performance
analysis and optimized system configuration for Samsung
SmartSSD. In Section V, we present the performance eval-
uation of FANS. The conclusion is in Section VI.

II. BACKGROUND

A. Sorting on FPGA

Sorting acceleration on FPGA has been a hot topic in recent
years. We briefly discuss the techniques that FANS adopts
from the previous researches here.

The compare-swap element is the basic building block for
hardware sorters. It compares two input values and swaps them
into the correct ordering [8]. A compare-swap element usually
contains a comparator and a 2-input multiplexer, which is
suitable to be implemented using the Look-Up Tables (LUTs)
on the FPGAs. With compare-swap elements, designers can
develop the more complex parallel merger and the merge tree,
which are described below.

1) Parallel Merger: This sorting unit takes two sorted
arrays of numbers as input and then merges them into one
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Fig. 1: An example of 4-input bitonic merger: each vertical
line that connects two dots is a compare-swap element and
the compare-swap elements in the same box are processed in
the same cycle. c0−3 will be the outputs.
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Fig. 2: The topology of a 4-input MMS merger.

final sorted array. The parallel merger can be built from a
pipeline of multiple compare-swap elements. For clarification,
in this work a k-input merger denotes the parallel merger that
merges two arrays of length k. The bitonic merger (Figure 1)
is one of the most widely used parallel mergers.

If the two sorted input sequences are longer than k, the k-
input merger has to be reused multiple times with extra control
signals to ensure the outputs are in order. For example, in
Figure 1, c4−7 represent the largest four elements of a0−3

and b0−3. In the next cycle, c4−7 need to be sent back to
the input of the same bitonic merger and merged with either
a4−7 or b4−7 to create the second 4-element sorted tuples. The
feedback paths from the output ports of the bitonic merger to
its input ports often cause severe routing congestion and limit
the scalability of the merger implementation on FPGAs [7].

To overcome the problem, [7] proposes a high-performance
parallel merger called MMS that uses two bitonic mergers, as
shown in Figure 2. The intuition is that the original feedback
path for c4−7 can be calculated through another unfolded
bitonic merger (L). In fact, the larger half outputs from the
bitonic merger (L) is exactly the c4−7 and they are fed to
another bitonic merger (S) with the next 4 elements from either
input sequence a or b. The proof of the functional correctness
can be found in [7]. In this work we use the same design
methodology of MMS to construct the mergers for FANS 1.

1The mergers in [6], [16] can be alternatives to MMS, here we omit the
comparison as this work focuses on implementing efficient end-to-end near-
storage sorting systems instead of optimizing the fundamental merger blocks
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Fig. 3: An example of a parallel merge tree: 1-M and 2-M
represent the 1-input merger and the 2-input merger. Different
input sequences are stored in the different input FIFOs. The
coupler is used to match the output rate of the lower-level
merger to the input rate of the merger at the next level.

TABLE I: Model parameters used in [15]

Symbol Definition

Input Param. N Number of records in array
r Record width in bytes

Hardware Param. βDRAM Bandwidth of the DRAM

Merge Tree Param.
f Design frequency
p Merge tree throughput
l Number of leaves

2) Merge Tree: Using several levels of multi-input mergers,
a parallel merge tree can be formed to merge multiple sorted
sequences simultaneously [4], [15]. Figure 3 shows a merge
tree that is able to process 8 sorted sequences. The root of the
merge tree is a 2-input merger, which means the merge tree
outputs 2 elements per cycle. Since we can uniquely identify
a merge tree by (p, l), where p refers to the root throughput
and l is the number of leaves [15], we denote the example in
Figure 3 as a merge tree (2, 8).

To construct a merge tree (p, l), one can start from level 0
(the root) and use a set of p/2t-input mergers for the t-th level.
Note that the output throughput of the mergers at level t+1 can
be half of the input width for mergers at level t. In this case,
we insert a coupler module in between the two levels, which
gathers the outputs from the low-level merger and matches
the throughput rate. If l is larger than p, the merge tree uses
1-input mergers from level log(p) to level log(l).

B. Performance Modeling on Merge Tree
The performance of a merge tree that targets DRAM-scale

data can be modeled based on the tree configuration (p, l) and
the characteristic (e.g., bandwidth) of the used DRAM [15].
[15] proposes a detailed performance model to analyze the
kernel performance of the merge tree, which we find of great
use and is adopted in our analysis of the merge tree kernel.
Table I lists the necessary parameters that used in [15] to
determine the DRAM-scale sorting time. Assume there are
N unsorted elements initially stored in the DRAM, the merge
tree kernel will recursively merge them in multiple passes until
the N elements are completely sorted.

During the first pass, the merge tree merges the original
unsorted input data from the DRAM and produces l-element
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Fig. 4: High-level diagram of Samsung SmartSSD.

sorted subsequences back into the DRAM. In the second pass,
the l-element sorted subsequences are fed into the merge
tree again and form l2-element sorted subsequences, et al. In
general, the total number of passes needed to sort N elements
is dlog`Ne. On the other hand, since the merge tree outputs p
r-byte elements per cycle to the DRAM, the effective merge
tree throughput is min{pfr, βDRAM}. Therefore, the total time
(i.e. the latency) to sort N elements in the DRAM is:

Latency =
Nr · dlog`Ne

min{pfr, βDRAM}
. (1)

C. Samsung SmartSSD

Samsung SmartSSD is the industry’s first programmable
computational storage, where a Xilinx KU15P FPGA is in-
tegrated with a 3.84 TB NAND flash into the same package
in the U.2 format [17]. With SmartSSD, many of the computa-
tional tasks can be offloaded from the host to the FPGA, which
is next to the flash. By reducing the data transfer between the
host and the flash, we could potentially save the host-drive
bandwidth and boost the kernel performance [18].

As seen in Figure 4, the datapath between the host and
the drive is through PCIe Gen3.0×4 [19]. The FPGA inside
SmartSSD is equipped with a 4 GB DRAM, which is exposed
to the FPGA kernels as its internal DRAM and to the host as
a common memory area (CMA). The CMA is exposed to the
host address space as a PCIe Base Address Register (BAR)
and can be mapped into an application address space using
buffer allocation. Once mapped, the host can initiate peer-to-
peer (P2P) transfers between the SSD and the FPGA DRAM.
Note that although the P2P transfer is initiated by the host,
the actual data transfer will directly go through the PCIe link
connecting the SSD controller and the FPGA DRAM without
host involvement.

III. SYSTEM ARCHITECTURE OF FANS

In this section, we present the system architecture of FANS.
First we show the internal architecture of the sorting kernel
that works with the FPGA DRAM. Then we illustrate how
we improve the end-to-end system performance that takes into
consideration the performance of the merge tree sorting kernel
and the flash drive access bandwidth.

We specifically split the entire merge sort process into two
phases: the sorting phase and the merging phase. In the sorting
phase, the data is sorted into DRAM-scale subsequences and
the merging phase assembles the subsequences into the final
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output. Note that in the merging phase, the size of the merged
output is usually larger than the FPGA DRAM capacity and we
have to write the partially merged sequences directly back onto
the flash when the DRAM capacity has been fully occupied.

A. Sorting Kernel

One of the key components in the FANS system is the
merge tree kernel implemented on the FPGA. We adopt the
merge tree design described in Section II-A2 and uses the
same definition of (p, l) to denote the tree configuration. A
detailed micro-architecture of our merge tree kernel is shown
in Figure 5.

To make full use of the DRAM bandwidth, we rely on
the burst mode in the AXI protocol to read data into each
leaf in the merge tree and write back the output from the
tree root. The burst sizes of the read and the write operations
are 1KB and 4KB respectively. Each AXI transaction is 512-
bit wide, which consists of multiple input data elements
depending on the element width. The decouple unit splits the
AXI transactions into individual records. Each leaf has its
own buffer to store the burst transactions. In order to hide
the DRAM access latency, the buffer size is set to be able to
accommodate at least 2 full AXI bursts. To make sure that
each leaf merger has equal priority in receiving data from
the DRAM, we check the available space of each leaf’s input
buffer in a round-robin fashion: whenever a leaf buffer has
enough space to accommodate another burst input, we will
dynamically initiate an additional AXI read burst request for
it.

Meanwhile, it would be beneficial that we start from some
sorted data chunks instead of the entirely unsorted data [12].
As a result, we place a pre-sorter after the data that the AXI
bus reads from the DRAM. The pre-sorter is implemented
using a bitonic sorting network that sorts the AXI read data
in order before distributing them into the leaf buffers. Since
the bitonic sorting network is fully pipelined, the pre-sorting
step will not affect the throughput of the overall design.
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B. Sorting Phase of FANS

Initially the original data are stored entirely in the flash
and we fetch them into the FPGA DRAM in batches. We use
the merge tree sorting kernel described in the previous sub-
section to sort the data in one or more passes. Assume the
configuration of the sorting kernel is (p1, l1) where p1 refers
to the merge tree throughput and l1 is the tree leaf number.
After each pass, the partially sorted chunks will grow by l1
in size correspondingly. Note that since the bandwidth of the
FPGA DRAM is higher than the flash and the FPGA DRAM
is closer to the kernel, a natural design choice is to sort the
data for multiple passes in the FPGA DRAM before we write
them back to the flash.

Since the end-to-end execution time of the sorting phase
includes both the sorting time and flash access time, we apply
the double buffering technique [20] to improve the overall
performance. As shown in Figure 6, the FPGA DRAM is split
into two sets and each set contains two buffers of equal size.
The merge tree kernel works with a single set each time: in
one pass, it reads the data from the read buffer 0 and write
to the write buffer 0; in the next pass, it reads the partially
sorted data from the write buffer 0 and write to the read buffer
0, etc. At the same time, the write buffer 1 sends the sorted
results of the previous batch back to the flash and the read
buffer 1 fetches the next batch of data to be sorted from the
flash. Please note that although the P2P transfer can stream
data directly between the FPGA DRAM and the flash, it still
relies on the host to issue the transfer commands. In FANS, we
use three threads on the host side to overlap the data transfer
and FPGA kernel execution.

C. Merging Phase of FANS

The merging phase requires the merge tree kernel to support
additional host-FPGA communication feature, which will be
explained below. As a result, we use another merge tree kernel
and assume the tree configuration is (p2, l2) in this case. Since
the size of the output data in this phase will exceed the capacity
of the FPGA DRAM, we explicitly reserve l2 input buffers in
the FPGA DRAM, each for a sorted chunk of data that is
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stored in the flash. There is also an output buffer to store the
merged output data, and the size of the output buffer is equal
to the sum of the input buffers. A detailed example is shown
in Figure 7. At the beginning of the merging phase, the first
batch of the sorted chunk 0 is fetched into the buffer 0 in the
FPGA DRAM and the first batch of the sorted chunk 1 is also
fetched into the buffer 1 in the FPGA DRAM, etc. After all
of the buffers are filled with data, the merge tree kernel starts
to merge these data into a larger sorted chunk and write it
back to the FPGA DRAM. If the data in a buffer have been
consumed by the kernel, then we will fetch another batch of
data from its corresponding sorted chunk in the flash to the
same buffer again. For example, in Figure 7 we will fetch the
second batch from the sorted chunk 0 to the buffer 0 after the
first batch is fully fed into the merge tree.

Depending on the relative order of different data batches,
some buffers will be emptied earlier than others. To make
the merging result correct, we have to suspend the merge tree
kernel, fetch the next batches for those empty buffers and then
resume the merge tree kernel again. To support this feature,
the merge tree kernel needs some modifications:

• All of the on-chip storage elements that store the inter-
mediate data and states (e.g., registers and FIFOs) should
not be reset unless specified after the kernel is resumed.

• The merge tree kernel should keep track of the amount of
data that have been sent into each leaf node. Whenever a
leaf node has consumed the same amount of data as the
FPGA DRAM buffer size, it means the corresponding
buffer in the FPGA DRAM is already empty and the
merge tree kernel should be suspended.

• The FPGA needs to message the host which buffers are
already empty when the kernel is suspended, so that
the host can issue the P2P transfer commands for the
corresponding buffers.

To hide the latency of the flash storage access and improve
the end-to-end performance, we utilize the same double buffer-
ing technique as the one in the sorting phase.

IV. PERFORMANCE MODELING OF FANS

In this section, we combine the external memory model and
extend the sorting kernel analysis from Section II-B to analyze
the performance of FANS. In addition to the parameters

summarized in Section II-B, we list a few more parameters
that we will take into consideration in Table II.

TABLE II: Extra parameters for FANS

Symbol Definition
n Number of elements the pre-sorter can sort
M Size of sorted chunk after the sorting phase

βread Read bandwidth of the flash
βwrite Write bandwidth of the flash
(p1, l1) Merge tree configuration of the sorting phase
(p2, l2) Merge tree configuration of the merging phase

We show that the bottlenecks of the two phases may come
from the FPGA DRAM bandwidth, the flash bandwidth and
even the choice of intermediate sorted chunk size M after the
sorting phase. Based on our analysis, we give an optimized
configuration for the current Samsung SmartSSD device. Our
analysis also serves as an in-depth case study that could help
the vendors improve their near-storage computing products.

A. Sorting Phase

In the sorting phase, the initial input data produced by the
pre-sorter is in a sorted chunk of size n and then we feed them
into the merge tree of (p1, l1) through multiple passes. We use
M to denote the size of the final sorted output after the sorting
phase. Thus the number of passes is dlogl1(M/n)e. Using the
equation 1 in Section II-B, the total time for sorting a batch
of M data can be expressed as:

tM =
Mr · dlogl1(M/n)e
min{pfr, βDRAM}

. (2)

Assume the available FPGA resources allow us to properly
scale the merge tree to saturate the DRAM bandwidth, then
the kernel performance βkernel is :

βkernel =
Mr

tM
=

βDRAM

dlogl1(M/n)e
(3)

In the sorting phase, since we overlap the flash read and
write with the kernel execution, the actual performance of
sorting the data is

βsort = min{βread, βkernel, βwrite}

Therefore, the total time for sorting the entire data of size
N would be:

t1 =
N

M
· M
βsort

=
N

min{βread, βkernel, βwrite}
(4)

B. Merging Phase

In this case, the data in the DRAM will go through the
merge tree by one pass and the throughput of the merge tree
kernel itself is min{pfr, βDRAM}. The end-to-end merging
performance is also dependent on the flash read and write
bandwidth, and since we use double buffering to hide the flash
access latency, the actual merging performance will be

βmerge = min{βread,min{pfr, βDRAM}, βwrite}

Since the read and write bandwidth of the flash are smaller
than those of the FPGA DRAM and one can easily implement



a merge tree that saturates the flash access bandwidth, the
merging performance can be simplified as:

βmerge = min{βread, βwrite} (5)

We use (p2, l2) to denote the configuration of the merge tree
in the merging phase. The merging phase starts with partially
sorted chunk of size M , so we need dlogl2(N/M)e more
passes to get the entire N size data to be sorted. As a result,
we derive the total time of the merging phase as follows:

t2 = dlogl2(N/M)e · N

min{βread, βwrite}
(6)

C. Optimized Configuration for Samsung SmartSSD

The above analysis on the two phases applies for any
external merge sort implementations when using FPGA as the
hardware accelerator. For Samsung SmartSSD we can get an
optimized sorting configuration based on its physical charac-
teristics. Inside SmartSSD, the SSD controller is connected
to the FPGA through the PCIe Gen3.0×4 links, which has a
theoretical 4 GB/s full-duplex bandwidth. Our profiling shows
that the actual bandwidths for continuous read and write are
both around 3 GB/s. Meanwhile, the FPGA is equipped with
a single DRAM, whose theoretical bandwidth is 16 GB/s and
the actual bandwidth is around 14 GB/s in half-duplex.

For the sorting phase, we notice that the kernel performance
is lower than the flash read or write bandwidth. There are three
reasons for the phenomenon. First, there is only one DRAM
bank connecting to the FPGA kernel and the effective DRAM
read and write bandwidth βDRAM is roughly 7 GB/s. Second,
sorting random data into DRAM-scale chunks (e.g. hundreds
megabytes) usually takes more than 2 passes, as constructing
a merge tree with a larger number of leaves will require more
FPGA resources than available. Finally, due to the limit of the
SmartSSD system, the data from the flash must be first written
to the FPGA DRAM and then be read into the sorting kernel,
which will further reduce the effective DRAM bandwidth for
the sorting kernel. As a result, the total time for the sorting
phase in Samsung SmartSSD is in equation 7

t1 =
N · dlogl1(M/n)e
βDRAM · (1− γ)

(7)

where γ represents the DRAM degradation factor and indicates
that P2P transfers also consume DRAM bandwidth.

The analysis of the merging phase for Samsung SmartSSD
stays the same and we use βread to denote the minimum
number of the flash read and write bandwidth. Then we derive
the total time of both phases in equation 8.

ttotal =
N · dlogl1(M/n)e
βDRAM · (1− γ)

+ dlogl2(N/M)e · N

βread
(8)

We can see that, for the current Samsung SmartSSD device,
both the communication bandwidth of the slow storage device
and the merge tree configuration on the FPGA could be
the bottlenecks to the end-to-end performance. Our model-
ing provides more comprehensive analysis compared to the
previous belief that only the flash bandwidth could be the

TABLE III: Detailed Configuration for Samsung SmartSSD.

Component LUT Flip Flop BRAM
Available 326679 668532 647
(p1 = 2, l1 = 64) 160543 243145 127
Utilization 49% 36% 20%
(p2 = 1, l2 = 64) 152646 246865 127
Utilization 47% 37% 20%
Sorted chunk size M 256MB

weakpoint [14]: ensuring that the merge tree’s throughput
saturates the DRAM’s bandwidth is not enough, one must take
the tree leaf number and the intermediate sorted chunk size
after the sorting phase into consideration to best overlap the
merge tree kernel execution and the flash access.

To get good sorting performance, we need to select both the
appropriate merge tree configuration (p, l) and the intermediate
sorted chunk size M .

• Firstly, since the FPGA DRAM and the flash bandwidth
is relatively small, we only need to choose the minimal p1
and p2 required to saturate the FPGA DRAM bandwidth
and the flash bandwidth. For example, when each data
element takes 16 bytes and assume the merge tree kernel
is running at 250 MHz, a merge tree with p1 = 2 for the
sorting phase and another merge tree with p2 = 1 for the
merging phase is optimal.

• Secondly, with the tree throughput p determined, we try to
build the merge trees with the maximum number of leaves
l such that the on-chip resources allow, as increasing l1
and l2 could always be beneficial.

• Finally, the choice of M should also be appropriate.
Although we get the optimal value of M from solving
equation 8, we provide the intuition as below. In the
sorting phase, we fetch all of the data from the storage
to the FPGA kernel only once and the performance is
bounded by the kernel execution. If reducing M can
reduce the number of passes that the sorting kernel
spends on each unsorted data batch, the sorting phase’s
performance will be improved. On the other hand, the
merging phase always runs at a speed that saturates the
flash access bandwidth. But, if increasing M could reduce
the number of passes that the data travels between the
flash and the on-chip merge tree, the merging phase’s
performance could also be improved. Considering that
the number of passes (the logarithm item in the equation
8) needs to be rounded into discrete integers, M is chosen
as the minimum number that will not increase the number
of merging passes.

The configuration that we actually achieve on Samsung
SmartSSD is shown in Table III and we leave the detailed
explanation in Section V-B.

D. Architectural Insights

Our performance model is more than a guide to determine
the optimal design choices for the current Samsung SmartSSD
devices. In fact, the near-storage device vendors can also
benefit from our study and foresee the potential performance
gain from the architectural advancement.



• The drive’s bandwidth plays an important role in the end-
to-end execution of the merging phase. While the current
solid-state drives use the four-lane PCIe Gen3 links as
the primary interconnection to the host and the FPGA, the
technology scaling that incorporates the next generation’s
PCIe links will boost the merging performance.

• While the capacity of the FPGA DRAM does not
impact the performance, its bandwidth is the primary
bottleneck in the sorting phase. We anticipate that the
high-bandwidth memory (HBM), which features smaller
capacity but much higher bandwidth will be a better
candidate to perform sorting tasks (e.g. [21]) in near-
storage computing devices.

• The requirement that SSD data must first be transferred to
the FPGA DRAM further reduces the performance in the
sorting phase. In contrast, allowing the PCIe data to be
directly sent to the FPGA kernel as in [22] could remove
the DRAM degradation factor γ in equation 8.

V. EVALUATION OF FANS

In this section, we evaluate the overall performance of
FANS. First, Section V-A describes the experimental setup.
Then, Section V-B shows the detailed merge tree configura-
tion, the performance breakdown of FANS’s execution and
the impact of P2P transfers on the effective FPGA DRAM
bandwidth. Third, Section V-C compares FANS with previous
works and illustrates why FANS achieves better performance.
Lastly, we quantitatively evaluate the benefits that arise from
the near-storage characteristics of Samsung SmartSSD.

A. Experimental Setup

1) System Setup: We perform our experiments on Samsung
SmartSSD with the Xilinx OpenCL runtime. We prepare
the bitstreams of the two phases in advance and reprogram
the FPGA at runtime to switch between different bitstreams.
The host-side multi-threading is implemented through POSIX
Threads (pthreads). The sorting kernel is developed using
Verilog and is synthesized and implemented using Xilinx Vitis
2019.2. We also tune the kernel so it can run at a minimum
frequency of 230MHz.

2) Benchmark: The benchmark used in our experiments is
generated from the public Terasort benchmark [23], where
each record is 100 bytes with a 10-byte key and a 90-byte
value. To save the memory and PCIe bandwidth, we use the
same method in [14] that converts the 90-byte value into the 6-
byte index. That is, the record we actually sort is 16 bytes with
a 10-byte key and a 6-byte index. We generate 233 records,
which is 128 GB in size and store them into SmartSSD in
advance.

B. Performance of FANS

1) Merge Tree Configuration: We implement the merge
tree as Section IV-C suggests: for the sorting phase, we set
the tree throughput p1 to 2; for the merging phase, we set
the tree throughput p2 to 1. We also use a pre-sorter that
is able to sort 4 elements every cycle in the sorting phase.

TABLE IV: Performance breakdown when sorting 128GB data

Phase Time (s)
Sorting phase 85
Merging phase 100
Reprogram 4
Total 189

Then we maximize the corresponding leave number l1 and l2
that on-chip FPGA resources allow and make sure the design
does not have a routing failure. Although the advertised AXI
burst size is 4KB to achieve the peak DRAM performance,
we find that reducing the AXI burst size to be 1KB does not
hurt the DRAM read performance. Therefore, we issue the
AXI burst in a granularity of 1KB and set the size of each
leaf node buffer to be 2KB, which allows 2 outstanding AXI
bursts to be performed on-the-fly. Furthermore, to relieve the
routing congestion, we use LUTRAMs instead of BRAMs to
implement most of the leaf node buffers. Finally, we find the
maximum l1 and l2 to be 64, respectively. After fixing l1 and
l2, the intermediate sorted chunk size M is also determined to
be 256MB. A detailed resource utilization of the merge tree
kernels is listed in Table III.

2) Performance Breakdown: The performance of each
phase of FANS when sorting 128GB data is shown in Ta-
ble IV. In the sorting phase, the time spent is around 85
seconds, meaning the average performance is 1.5GB/s. The
performance is much less than the roughly 3GB/s flash read
and write bandwidth and it matches the analysis in Section
IV-A that the merge sort kernel is the bottleneck in this phase.

In the merging phase, FANS takes 2 passes to merge
the 256MB sorted subsequences into the final sorted results.
Ideally the end-to-end performance for phase 2 is half of the
flash read and write bandwidth, which is around 1.5GB/s. The
actual measurement of the performance is around 1.3GB/s.
Although the gap in between is close, we believe it is from
the overhead that halts the merge tree kernel too many times in
a cumbersome way. In fact, the merge tree kernel is suspended
whenever one of the DRAM buffers becomes empty.

3) Evaluation of the DRAM degradation factor γ: Section
IV-C shows that the direct P2P transfers between the flash
and the FPGA DRAM reduce the effective bandwidth for the
merge sort kernel and thus harm the performance of the sorting
phase. Section IV-D anticipates that if the FPGA can access the
flash data directly from the PCIe transaction packets instead
of from its DRAM, we can remove the DRAM degradation
factor γ in equation 7. To validate the claim, we do another
experiment that loads 256MB data onto the FPGA in advance
and we measure the pure kernel performance of the merge tree
kernel in the absence of P2P transfers.

As shown in Table V, the pure merge sort kernel without
P2P transfers is 20% faster than the actual performance we
observe in the sorting phase. This indicates that if the FPGA
kernel is able to directly stream data into the flash via PCIe
links, we can get another 20% performance speedup in the
sorting phase.



TABLE V: Evaluation of γ

Kernel Performance (GB/s)
With P2P 1.5
Without P2P 1.8

TABLE VI: Comparison between FANS and [14].

Item [14] FANS

Hardware setup

DRAM BW. (GB/s) 16 16
DRAM Capacity (GB) 1 4
Flash Read BW. (GB/s) 2.4 3
Flash Write BW. (GB/s) 2 3

Design Config.

No. of Leaf Mergers 16 64
Frequency (MHz) 125 250
Sorted chunk size M (MB) 512 256

Performance Sorting Performance (GB/s) 0.21 0.68 (3.2×)

C. Comparison with Previous Work

[14] builds an FPGA-accelerated flash storage system where
a Xilinx Vertex 7 FPGA is coupled with a custom flash
expansion card via two FMC ports. Using the system, [14]
is able to sort 1010 16-byte key-index pairs or 150GB of data
in 700 seconds. In contrast, FANS sorts 128GB of data in 190
seconds. Since the amount of time it takes to sort a dataset
is linear to the size as long as the number of merging passes
does not change, we can use the average performance, or the
total size of data divided by the entire sorting time, to make a
fair comparison. In terms of the average performance, FANS
achieves 3.2× speedup over the sorting system in [14].

Table VI summarizes the difference of hardware and design
choices between [14] and FANS. We notice that Samsung
SmartSSD has a higher flash access bandwidth, which enables
FANS to access the flash at a faster speed of 1.5×. The
different design choices further broaden the performance gap:
on the one hand, FANS allows us to use a merge tree
configuration with a 4× larger number of leaves l to reduce
the number of passes it takes to sort the entire data. On the
other hand, FANS selects a smaller intermediate sorted chunk
size M and uses the pre-sorter to decrease the number of
passes that the kernel takes to access the FPGA DRAM, thus
improving the performance in the sorting phase.

[15] presents an adaptive sorting solution that adapts the on-
chip computational resources to the available off-chip memory
bandwidth to optimize the sorting performance. While its
model-based analysis motivates this work, the external sorting
solution presented in [15] is based on a theoretical model
of near-storage devices and is not applicable to Samsung
SmartSSD. Specifically, [15] assumes a flash connected to
four DRAM banks and the flash bandwidth is as much as
8GB/s. To fully utilize the flash bandwidth in the sorting
phase, [15] proposes to have four merge sort kernels working
with the four DRAM banks separately and each kernel has
the same throughput as the flash. The four merge sort kernels
are connected in a pipelined fashion so that the output of the
current kernel will be fed as the input into the next kernel.
While this method achieves the best flash bandwidth utilization
in the described storage system, it cannot be used in the current
near-storage devices such as Samsung SmartSSD. First, due
to the cost and power consideration, Samsung SmartSSD has

TABLE VII: Effective communication bandwidth between the
FPGA and the flash without P2P transfers.

Direction Performance (GB/s)
flash to FPGA 1.5
FPGA to flash 1.3

only one DRAM bank and pipelining merge sort kernels in
this case is impossible. Second, the bandwidth of the current
flash is only 4GB/s. Even if we have multiple DRAM banks,
running those merge sort kernels with the same throughput
of the flash will not fully utilize the DRAM bandwidth
(e.g. 16 GB/s in half-duplex mode), thus making the system
performance sub-optimal. Since the hardware in [15] and
FANS is quite different, we omit the performance comparison.

D. Performance Benefits from near-storage acceleration

The feature of integrating the FPGA into the flash package
and allowing P2P transfers without interfering the host gives
another level of system gain. To quantitatively compare the
gain, we perform a check-experiment using SmartSSD but
relying on the host to access the flash storage as well as the
FPGA: in this case the FPGA is utilized as a conventional
accelerator and does not have the direct access to the flash.

As shown in Table VII, the involvement of the host reduces
the effective bandwidth between the FPGA and the flash from
3GB/s to 1.5GB/s. Using the analysis in Section IV-A and
Section IV-B, we anticipate that the performance bottleneck in
the sorting phase will be shifting from the merge tree kernel
to the effective FPGA-flash bandwidth and the performance
of the merging phase is going to be directly reduced by 2×.

Besides, a main benefit from near-storage computing plat-
forms is that it frees CPU cycles and reduces the DRAM usage
on the host side. Although we cannot directly see this benefit
from measuring the end-to-end sorting performance in this
work, one can derive a qualitative analysis of the host-side
gain using the same methodology found in [24].

VI. CONCLUSION

In this work, we propose FANS: an end-to-end FPGA
accelerated near-storage sorting solution that is able to sort
hundreds of gigabytes data on a single Samsung SmartSSD.
FANS is built on top of a concrete performance model
that analyzes the performance bottlenecks of the near-storage
sorting process and indicates that the flash access bandwidth,
the FPGA DRAM bandwidth, the configuration of merge tree
kernel and the intermediate sorted chunk size all impact the
end-to-end sorting performance. Through the optimized sort-
ing configurations, FANS achieves 3.2× performance speedup
over the previous FPGA-accelerated flash storage.
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