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Abstract—Data compression techniques have been widely
used to reduce data storage and movement overhead, especially
in the big data era. While FPGAs are well suited to accelerate
the computation-intensive lossless compression algorithms, big
data compression with parallel requests intrinsically poses two
challenges to the overall system throughput. First, scaling
existing single-engine FPGA compression accelerator designs
already encounters bottlenecks which will result in lower clock
frequency, saturated throughput and lower area efficiency. Sec-
ond, when such FPGA compression accelerators are integrated
with the processors, the overall system throughput is typically
limited by the communication between a CPU and an FPGA.

We propose a novel multi-way parallel and fully pipelined
architecture to achieve high-throughput lossless compression
on modern Intel-Altera HARPv2 platforms. To compensate for
the compression ratio loss in a multi-way design, we implement
novel techniques, such as a better data feeding method and
a hash chain to increase the hash dictionary history. Our
accelerator kernel itself can achieve a compression throughput
of 12.8 GB/s (2.3x better than the current record throughput)
and a comparable compression ratio of 2.03 for standard
benchmark data. Our approach enables design scalability
without a reduction in clock frequency and also improves
the performance per area efficiency (up to 1.5x). Moreover,
we exploit the high CPU-FPGA communication bandwidth of
HARPv2 platforms to improve the compression throughput of
the overall system, which can achieve an average practical end-
to-end throughput of 10.0 GB/s (up to 12 GB/s for larger input
files) on HARPv2.

I. INTRODUCTION

Data compression techniques have been widely used in
datacenters to reduce data storage and network transmis-
sion overhead. Recent studies show FPGAs are promising
candidates for accelerating the Deflate algorithm, which is
the core of many lossless compression standards such as
ZLIB [1] and GZIP [2]. One study from Altera [3] imple-
ments a Deflate accelerator using OpenCL, which processes
15 bytes per cycle at a clock frequency of 193 MHz and
achieves a compression throughput of 2.84 GB/s. Another
study from Microsoft [4] using a hardware description lan-
guage (HDL) scales the design to process 32 bytes per cycle
at a maximum clock frequency of 175 MHz. It achieves a
record compression throughput of 5.6 GB/s on FPGAs.

However, most prior studies [3], [4] only report the
theoretical compression throughput for the FPGA kernel
itself. In fact, an FPGA needs to read its input data from
a CPU’s DRAM, perform the compression, and then write
the output data back to the CPU’s DRAM. This CPU-FPGA
communication can introduce significant overhead, espe-
cially in the mainstream PCIe-based loosely coupled CPU-
FPGA platforms [5]. Two recent studies [6], [7] do observe a
significant degradation of the compression throughput for the
overall PCIe-based CPU-FPGA platform. They only achieve
marginal improvement compared to a multicore CPU im-
plementation for big data workloads that usually perform
compression on different data partitions concurrently.

Even given higher CPU-FPGA communication band-
width, scaling current single-engine FPGA accelerator de-

signs also encounters the bottleneck. As the Microsoft
design [4] presented, each time it scales the number of bytes
processed per cycle (BPC) by 2x, the resource utilization
will increase by around 3x. Moreover, even provided with
more area resources in larger FPGAs, further scaling BPC
(e.g., from 32 to 64) for a single compression engine will
increase the critical path and degrade the clock frequency,
making the total throughput saturated. As a result, there will
be a large degradation of performance per area efficiency
when further scaling BPC in a single-engine design.

In this paper we present a novel multi-way parallel Deflate
compression accelerator design where each way represents
a well-optimized and fully pipelined Deflate engine. It im-
proves the overall design scalability as the clock frequency
of the design is not affected by the number of Deflate
engines. It also improves the performance-per-area efficiency
since the resource utilization goes almost linearly with the
throughput. However, the multi-way parallel design comes
at a cost of degraded compression ratio due to the fact that
compression opportunities in one engine may disappear as
the matching records reside in another engine. To maintain
a comparable compression ratio to prior studies, we provide
novel optimizations within each Deflate accelerator engine,
including 1) a better data feeding method to reduce the loss
of dictionary records, 2) a hash chain to increase the hash
dictionary history. Moreover, we break the clock frequency
bottleneck in current designs by introducing the double bank
design instead of the double clock design used in [4] and
reverse multiplexer designs in hash memory update.

By parallelizing up to four Deflate engines on HARPv2,
we can compress up to 64 bytes of data per cycle with a
fixed clock frequency of 200 MHz, at a compression ratio
of 2.03. That is, our Deflate accelerator can achieve a peak
compression throughput of 12.8 GB/s, which is the best pub-
lished result (to the best of our knowledge). Compared to the
record design by Microsoft [4] with 5.6 GB/s throughput, we
achieve 2.3x higher throughput, 1.5x performance-per-area
efficiency, more scalability, and a comparable compression
ratio (96%). In addition, on the HARP platform that has
the same Stratix V FPGA as the Microsoft design [4], our
accelerator design can achieve a throughput of 9.6 GB/s,
with a 1.4x better performance-per-area efficiency.

Finally, we also explore the impact of CPU-FPGA com-
munication bandwidth on system-level compression through-
put. We wrap our FPGA accelerator with the CPU software
invocation and abstract it as a software library on modern
Intel-Altera HARP and HARPv2 platforms. With the CPU-
FPGA communication bandwidth significantly increased,
we achieve an average practical end-to-end compression
throughput of 3.9 GB/s on HARP and 10.0 GB/s (up to
more than 12 GB/s for large input files) on HARPv2. This
shows that the compression design is rather powerful in
real-world applications. We will open source our design in
https://github.com/WeikangQiao/HT-Deflate-FPGA.



II. DEFLATE ALGORITHM AND REVIEW

A. Prior Studies and Their Limitations
In addition to the two recent designs discussed in Sec-

tion I, there are several other studies. IBM proposed a
multi-way parallel compression engine design based on the
842B algorithm [8]. They implemented a single compression
engine that processes 8 bytes per cycle at a clock frequency
of 125 MHz and achieves a compression ratio of 1.96. By
applying four engines they can get a throughput of 4 GB/s,
but the compression ratio will be further sacrificed based
on our study. Furthermore, there are no system interface
and data feeding methods to support the multi-way paral-
lel compression kernel, and thus no in-depth analysis or
solid implementation when the compression engine scales
to process a larger equivalent data window size—as will
be done in our study. Later on, IBM implemented another
Deflate accelerator [9] which achieved a throughput of
16 bytes/cycle at 250 MHz, i.e., 4 GB/s. However, its
scalability is limited due to certain architectural choices like
a 256-port hash table. Another Xpress9 compressor [10],
targeting high compression ratio, integrated seven engines
to support heavily multi-threaded environments. However,
its throughput is only limited to 200 to 300 MB/s.

A quantitative comparison of our work to the recent
IBM [9], Altera [3], and Microsoft [4] implementations will
be presented in Section V-B.

B. Algorithm Overview
The lossless Deflate algorithm [11] mainly includes two

stages: first, it performs the dictionary-based LZ77 [12]
compression; second, it performs the Huffman encoding [13]
to compress at bit level.

LZ77 [12] scans the incoming byte stream and compares
the new input with the entries in a dictionary which is
populated by past input data. After finding a common string
of length L, this repeated section of the incoming string is
replaced with a (L, D) pair, where D is the distance between
the history and the incoming string. Then, the incoming
string is recorded in the dictionary for future references. The
Deflate format limits distances to 32K bytes and lengths to
258 bytes, with a minimum length of 3.

Huffman encoding is known to produce the minimum
length encoding given the alphabet and the relative fre-
quency of all characters. The Deflate algorithm has a dy-
namic Huffman encoding option, where it creates a Huff-
man code with the relative frequency of the current input,
resulting in the minimum length encoding for the given
input’s LZ77 result. However, it requires frequency tracking
and must be done after the LZ77 phase. Dynamic Huffman
encoding is typically used in higher levels of ZLIB and GZIP
standards, where a high compression ratio is favored over
throughput. Meanwhile, the Deflate algorithm also allows a
static Huffman encoding option, where the Huffman code is
generated by a golden frequency and is statically available.
We use the static Huffman encoding option in this paper in
order to enable the fully-pipelined accelerator design.

C. Review of Existing Single-Engine Implementation
Our initial single-engine accelerator architecture is shown

in Figure 1, which is similar to [3] and [4]. We summarize
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Fig. 1: Design of single-engine fully-pipelined Deflate accelerator
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Fig. 2: Current and next window of input string to be compressed

the implementation of six major stages in this subsection
and refer the audience to [3] and [4] for more details. Let
us denote the bytes we are currently processing ”the current
window,” and the number of bytes processed in each clock
cycle ”VEC,” which represents the compression throughput.

Stage 1: Hash calculation. In each cycle the pipeline
extracts all the substrings of length VEC, starting from every
byte in the current window, and indexes each substring to
its corresponding history memory using hashing. For the
example of VEC=4 in Figure 2, it extracts four substrings
(each with length 4) for the current window. VEC-1 more
bytes from the next window are required for extracting
substrings starting from later bytes of the current window.
These substrings are then hashed and later matched with
history data to implement the LZ77 algorithm. The length
of VEC represents the substring lengths to be compared,
and therefore the maximum match length. It seems the
better maximum match length, the better the compression
ratio. However, the study in [4] shows no compression ratio
improvement when increasing VEC from 24 to 32. This is
because in most of the standard benchmarks there is no
match whose length is larger than 24, or such a match cannot
be detected in the proposed algorithm. This observation is
important as it enables us to start from a relatively small
VEC design with negligible compression ratio loss.

Stage 2: Hash memory update. The hardware compares
these VEC input substrings to the records in the hash history
memory, and replaces the old records with these input
strings. The hash history memory is a dual-ported RAM
that enables one read and one write per clock cycle. To
help reduce bank access conflict, [4] suggested the hash
memory runs at twice the clock rate of the rest of the
system so each bank can handle two read requests in one
system clock cycle. Figure 3 shows an example of bank
conflict. Assuming strings ”AABA,” ”ABAA,” and ”AABC”
are all mapped to bank 2, in this case only the first two
strings are allowed to access the bank. The switch part that
connects each substring to its corresponding memory bank
will become the critical path when we scale VEC to a higher
number. It will limit the clock frequency of the design, since
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each time it needs to reorder VEC inputs while each input
is a string of VEC bytes. The situation will be even worse
when using a doubled-rate clock frequency since the switch
also needs to be operated at the same clock frequency.

Stage 3: String match. The VEC records from hash
history memory are matched with their corresponding input
strings in parallel, and any match with match length smaller
than 3 is rejected. Another switch is required to remap the
VEC records to their counterparts, and it faces the same
timing challenges as the one in Stage 2. According to the
LZ77 algorithm [12], an (L,D) pair is emitted for each input
position. If there is a match, then L represents match length,
and D represents the distance between the history record and
the current input string. If the match is rejected, then L is
the byte value and D is 0. A special case that needs to be
addressed is: if match length L is larger than D, L needs to
be truncated to D to avoid overlapping.

Stage 4: Match selection. The matches in the current
window could stretch to the next window and need to be
pruned to avoid match overlapping between windows. This
is implemented in two phases. First, in each cycle VEC
matches from each byte in the current window will be
compared to select a best match that extends farthest. The
best match will be taken and any byte included in the best
match will be covered. This comparison can be done in
parallel. Then the bytes in-between the current best match
and the best match extended from the previous window will
be examined one by one to resolve the conflict between
adjacent matches, this is referred to as lazy evaluation [4].
This phase is a loop behavior and can be implemented as a
series of VEC pipeline stages.

Stage 5: Huffman translation. The following stage is
Huffman encoding. The method of counting symbol fre-
quency and using dynamic Huffman encoding no longer
works because the Huffman packing pipeline must run
simultaneously with LZ77 stages in a pipeline fashion.
Therefore, static Huffman encoding is used in this design.
Static Huffman encoding is nothing but a dictionary lookup,
which is implemented as a ROM. The VEC (L,D) pairs can
be looked up within VEC ROMs in parallel. After each (L,D)
gets translated, we get a four-code tuple (Lcode, Dcode,
Lextra, Dextra). Lcode and Dcode are the codes for literal
and distance; Lextra and Dextra are the extra bits to encode
literal and distances.

Stage 6: Bit packing. The last step involves packing the
binary codes of different lengths together and aligning them
to byte boundaries. This is because the length of the four-
code tuple output ranges from 8 bits to 26 bits, while the
data we finally stored are in byte format. Packing can be
easily achieved by a series of shift-OR operations [4].
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Fig. 4: Overview of our multi-way parallel and fully-pipelined
Deflate accelerator design

III. ACCELERATOR OPTIMIZATION

To improve the compression throughput and overall sys-
tem efficiency of the FPGA Deflate accelerator design, we
exploit a multi-way parallel design, where each accelerator
engine can compress a relatively small amount of data
concurrently. A system-level overview of our multi-way
accelerator design is shown in Figure 4. The details of the
CPU-FPGA interface will be introduced in Section IV-A.
Our initial accelerator engine pipeline is similar to that in
[3] and [4]. Note that for a single accelerator engine, as
the data window size VEC increases from 16 to 32 bytes
(per cycle), the ALM resource usage on FPGAs is increased
nonlinearly by roughly 2.6x times, while the compression
ratio is improved only by 3%, as observed both by us and
the study in [4]; so using a data window size of 16 would
be a good trade-off of resource usage and compression ratio.
We will evaluate the design trade-offs in Section V.

To compensate for the compression ratio loss in our multi-
way design and improve the overall efficiency, in this section
we will mainly present novel optimizations implemented
in our accelerator. First, we propose a better data feeding
method to multiple engines to reduce the loss of dictionary
records and thus improve the compression ratio. Second, we
propose single engine optimizations, including hash chains
to improve the hash dictionary length and compression ratio,
double bank design and switch optimization to improve
clock frequency and resource utilization.

A. Multi-Engine Data Feeding Method
Since we propose a multi-way parallel FPGA Deflate

accelerator design shown above in Figure 4, we need to
divide the input file into multiple (four in our example)
segments to feed each Deflate engine (core). There are two
ways to fetch data for the FPGA accelerator. The first is
cyclic data feeding, shown in Figure 5(a). Each time it
fetches four small consecutive blocks (e.g., VEC bytes of
data, or cachelines in HARP and HARPv2 platforms) and
feeds them to the four parallel engines. The second is block
data feeding, shown in Figure 5(b); it is also employed by
multi-core software compression solution such as pigz [14].
It segments the entire input file into four large consecutive
parts. Each time it fetches one (or multiple) cachelines from
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one of the four parts and feeds them into each compression
engine.

Due to the fact that similar pieces of data are usually
located in nearby regions in a file, the compression ratio
(measured by input file size divided by output file size) of
the block data feeding is much higher than that of cyclic
data feeding. Actually, the block feeding method suits the
Deflate algorithm perfectly to compress large files since the
Deflate format limits history distance to 32K bytes. For
files much larger than 32K bytes, strings in the latter part
will not be compared to the previous part with a distance
longer than 32K bytes. Therefore, it makes minor impacts
on compression ratio to segment large files for block data
feeding, because only the compression of data strings in
block boundaries might be affected. Compared to cyclic data
feeding, the degradation on compression ratio due to block
segmentation is negligible. On the other hand, cyclic data
feeding offers better streaming capability. However, block
data feeding can work as well for streaming applications
by processing a collection of streaming data each time, for
example, on the order of a few megabytes. Considering
these, we will use the block data feeding as our default data
feeding method.

B. Single Engine Optimization
In this subsection we will mainly present our opti-

mizations for the single compression engine to improve
compression ratio, clock frequency, and resource utilization
efficiency. These optimizations mainly focus on the major
bottleneck stages 2 and 3 in Section II-C, which 1) map
the input strings that will be stored to the memory banks;
2) obtain and map the read results of previous strings
from the memory banks for the inputs; and 3) compare the
input strings and previous strings to get the match length
and distance results. With all the optimizations, our single
compression engine is fully pipelined, with an pipeline initial
interval of one.
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1) Hash Chain Implementation: As presented in Sec-
tion III-A, even given the block data feeding method, the
compression ratio will drop to some extent—which means
we need to compensate for the potential compression ratio
loss in a single engine. Therefore, we increase the history
dictionary size to find a better match. To achieve this, a hash
memory chain, as shown in Figure 6, is implemented in the
hash memory update stage. It is like a shift register, but in
more of a register file format. Every cycle different depths
of the chained memory all return a candidate string as the
read output, and the current depth’s read output is the input
written into its next depth’s memory. The substring in the
current window will be stored into the memory in the first
depth of the chain. In the example, candidate 1, 2 and 3 are
the output of each memory at different depths of the memory
chain, and all of them will be compared to the substring to
find the best match. After that, the current substring will be
stored into chain depth 1, candidate 1 will be stored into
chain depth 2, and so on.

2) Double Clock Design vs. Double Bank Design: To
reduce the compression ratio drop caused by bank conflicts,
Microsoft [4] uses a second clock whose frequency is twice
the global clock to read and update the 16 (VEC) hash
memory banks (dictionaries), which we refer as design
1. As will be evaluated in Section V, the doubled clock
frequency of the memory part will become the bottleneck
of the whole design and significantly limits the system
performance, especially when we integrate the idea of hash
memory chain. We propose a second design to use a single
clock while doubling the number of banks to 32 (2*VEC),
as shown in Figure 7. As a result, we increase the length of
the hash dictionary. This approach avoids the doubled clock
frequency bottleneck and enables us to integrate more depth
of hash chain.

3) Switch Optimization: As presented in Section II-C,
we implement the switches with multiplexers whose inputs
are strings and select signals are the hash values. For the
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first set of switches that map the input strings which will
be stored to the memory banks, we can use one 16-to-1
(VEC=16) multiplexer (MUX) for each hash chain as shown
in Figure 8. To avoid the timing bottleneck, we pipeline the
16-to-1 MUXes into 2 stages using 4-to-1 MUXes.

For the second set of switches that map the read results
of previous strings from the memory banks for the inputs,
it is more complex. A straightforward way is using a 32-
to-1 128 bit-width input MUX to select the record string
from the 32 output ports of memory banks (hash table)
for each depth of the chain, and then compare it with the
input string, as shown in Figure 9. This way ensures that
for those strings which cannot access the memory (e.g.,
bank conflict, their mapped banks have been accessed) are
still able to measure if they are matched with the previous
strings. Another way is to leave those strings as mismatched
literals and just compare output port data of memory with
the data delayed by 1 cycle from its input port, as shown in
Figure 10. If the bank has not been accessed, (e.g., Banks
3), then the match calculation unit will generate a pair
of (L=0, D=0) to indicate the case. The compared result
is simply a 5-bit length data, which is much shorter than
the original 128-bit data string. So we can use 5 bit-width
MUXes to select the corresponding hash match results for
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each input string. In this design we employ the second
option to avoid the overhead of multiplexers to improve the
timing and resource consumption. The compression ratio
only degrades by 3% since we have actually mapped the
16 input strings to 32 memory banks (e.g., design 2) or
conceptually due to its double clock frequency (design 1).
The second way eliminates the timing bottleneck even when
we scale further up. For example, when we scale to process
32 bytes per cycle, we only need to use 32 6-to-1 MUXes,
which introduces much less overhead and does no harm to
the clock frequency of the design.

IV. SYSTEM INTEGRATION

In this section we first introduce some of the background
on the recent Intel-Altera HARP [15] and HARPv2 [16]
CPU-FPGA platforms that we leverage to achieve high end-
to-end compression throughput. Then we present the CPU-
FPGA communication flow of our multi-way accelerator
architecture in the tightly coupled Intel-Altera HARPv2
CPU-FPGA platform.

A. CPU-FPGA Platform
The mainstream PCIe-based CPU-FPGA platforms use

direct memory access (DMA) for an FPGA to access the data
from a CPU. First, the FPGA needs a memory controller IP
to read the data from the CPU’s DRAM to its own DRAM
through PCIe. And then the FPGA performs specified accel-
eration in its accelerator function units (AFUs). In fact, this
DRAM-to-DRAM communication through PCIe can have a
limited bandwidth in practice; for example, this practical
PCIe bandwidth can be only around 1.6 GB/s (although
the advertised bandwidth is 8 GB/s) according to the study
in [5]. This makes it impractical to implement full-speed
acceleration even if we have a high throughput compression
accelerator on the FPGA side.
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The recent Intel-Altera HARP platform uses the Quick-
Path Interconnect protocol (QPI). HARPv2 uses one QPI
channel and two PCIe channels within a single package to
connect the CPU cores and FPGA accelerators, as shown in
Figure 11. The CPU and FPGA can communicate using the
shared memory to significantly increase the communication
bandwidth. AFU can read/write data directly from/to system
virtual memory through the core-cache interface (CCI). This
makes FPGA have first-class access to the system memory
and thus achieve a high-bandwidth and low latency for CPU-
FPGA communication. According to the study in [5], HARP
can provide 7.0 GB/s FPGA read bandwidth and 4.9 GB/s
FPGA write bandwidth. Using the same benchmark method
in [5], we find that HARPv2 has further improvement and
can provide more than 15 GB/s FPGA read and write band-
width. Such high CPU-FPGA communication bandwidth
provides opportunities to achieve a much higher end-to-end
compression throughput in practice.

Moreover, this shared system memory architecture elimi-
nates explicit memory copies and increases the performance
of fine-grained memory accesses. This proves to be rather
useful in our multi-way parallel design where we need to
read/write to multiple random memory locations in consec-
utive cycles.

B. CPU-FPGA Communication Flow and Interface Design
Figure 12 presents the flow of compression execution.

At initialization, the CPU first allocates memory workspace
which is shared by the CPU and the FPGA. This includes
device status memory (DSM) workspace to keep track of
the status of the FPGA accelerator, a source buffer for
storing the source data, and a destination buffer to store
the processed output data. After loading the source file into
the source buffer, the CPU segments the source file equally
into N blocks (four in our example) and then writes the
segmented base addresses and block sizes to the FPGA. The
initial setting being done, the CPU enters a wait state and
polls the status bit in DSM until the FPGA sends an ending
signal. On the other side, the FPGA accelerator begins
execution after loading the addresses and source data block
sizes. Each engine is allowed an equal share of time to send
read requests for source data from the shared memory using
a round-robin arbiter. Since read responses are out of order
in the HARPv2 platform, re-order buffers are used to restore
source data order before compressing. The processed results
are kept temporarily in first-in-first-out (FIFO) buffers before

writing back to the destination buffer in the shared memory.
Another arbiter is used to control write access among the
Deflate engines. After all the source data are processed, the
FPGA will signal the CPU that all work has been done.

In HARPv2, the data transfer size for each read/write
request can be 1,2 or 4 consecutive cache lines (64 bytes per
cache line); and for maximum CPU-FPGA data bandwidth,
our design uses 4 cache lines per request. The three physical
links (one QPI and two PCIes) are configured to one virtual
channel in our accelerator design, and the FIU will optimize
the communication bandwidth by steering requests among
the three physical links.

V. EVALUATION

A. Experimental Setup
We test our FPGA Deflate accelerators on the

HARPv2 [16] platform (major platform) and use the Calgary
Corpus [17] datasets as the benchmarks to measure the
average compression throughput and compression ratio. To
show how CPU-FPGA communication bandwidth may limit
end-to-end throughput and avoid FPGA hardware generation
gap, we also test some of the designs on the HARP platform
as a comparison since HARP still has a very limited com-
munication bandwidth and it uses the same Stratix V FPGA
as previous studies [3], [4].
HARP Platform. HARP platform integrates an Intel Xeon
E5-26xx v2 processor and an Altera Stratix V GX FPGA.
HARPv2 Platform. HARPv2 platform integrates a 14-core
Broadwell EP CPU and an Altera Arria 10 GX1150 FPGA.

B. Comparison of Deflate Accelerators
Since most prior studies only measure the performance of

the FPGA Deflate accelerator, we first compare our accel-
erator design to state-of-the-art studies in Table I. By using
the novel multi-way parallel and fully pipelined accelerator
architecture where each way features a single clock, 32
banks and a memory chain depth of 3 designs that can
process 16 bytes per cycle, we can compress 64 bytes/cycle
(4-way parallel) at a clock frequency of 200 MHz. This is
more scalable than merely scaling up the data window size of
a single Deflate engine, since the area increases nonlinearly
with the data window size, and the maximum frequency the
engine can achieve drops as a result of routing problems. In
summary, our FPGA Deflate accelerator achieves a record
compression throughput of 12.8 GB/s, which is 2.2x faster
than the prior record in [4]. In addition, our design is also
much more resource-efficient in terms of compressed MB/s
per kilo ALMs, which is 1.5x efficient than the prior record
in [4]. Please also note we measure our designs at a fixed
clock frequency of 200 MHz, since the platform provides
the fixed clock. In fact, due to our optimizations, our FPGA
kernel can work at an even higher clock frequency.

The compression ratio drops by 4.7% compared to Mi-
crosoft’s work [4], but it is still acceptable. This drop is due
to the fact we divide the input file into four parts to feed
into four different compression engines. If the data in one
part should be matched better with the data in another part,
then in our case the compression ratio drops.

To be fair about the comparison, we also break down the
compression accelerator kernel speedup into two parts:



Table I: FPGA Deflate accelerator comparison
Design Frequency Throughput Compression ratio Area(ALMs) Efficiency (MB/s per kilo ALMs)

IBM [9] 250 MHz 4 GB/s 2.17 110,000 36
Altera [3] (Stratix V) 193 MHz 2.84 GB/s 2.17 123,000 23

Microsoft [4] (Stratix V) 175 MHz 5.6 GB/s 2.09 108,350 52
This work on HARP (Stratix V) 200 MHz 9.6 GB/s 2.05 134,664 71.3

This work on HARPv2 (Arria 10) 200 MHz 12.8 GB/s 2.03 162,828 78.6
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Fig. 13: Compression ratio when scaling from 1 engine to 4 engines

1) Improvement from Accelerator Design: Since previous
studies [3], [4] both implement their designs on Stratix V
FPGA, we also list the experimental result on HARP, which
also uses Stratix V. Due to the total resource limitation, we
can only put three Deflate engines on it. Still, we can achieve
a compression throughput of 9.6 GB/s, which is 1.7x faster
and 1.4x more efficient in performance per area over the
record design [4].

2) Improvement from Technology Advancement:
HARPv2 uses a more advanced Arria 10 FPGA, which
provides more area and enables us to integrate one more
Deflate engine than HARP Stratix V FPGA. As a result,
we can achieve 12.8 GB/s compression throughput on
HARPv2. Table II lists the FPGA resource utilization
on the HARPv2 platform, where ALMs are the main
contributor. Note that HARPv2 interface itself occupies an
additional 20% of the FPGA resource.

Table II: FPGA resource utilization on HARPv2
Resources Amount

ALMs 162,828 (38%)
Registers 248,188 (15%)

Block Memory Bits 16,177,152 (29%)

C. Scaling Effect
Figure 13 shows the corresponding compression ratio

of Calgary Corpus benchmarks as we change the parallel
engine number from 1 to 4. The single engine (VEC=16)
achieves an average compression ratio of 2.11. When we
increase the throughput to 12.8 GB/s with 4 engines, the
average compression ratio drops by 3.7%. Note that the
compression ratio of those large files (e.g., book1, book2,
news and pic) only degrades by less than 1%. This result
proves the analysis we present in Section III-A that the
multi-way parallel Deflate compressor perfectly suits the
applications where large files need to be compressed.

Table III: Scaling results on HARPv2
Parallel Engine No Throughput Compression ratio Area (ALMs)

1 3.2 GB/s 2.11 38,297
2 6.4 GB/s 2.07 78,604
3 9.6 GB/s 2.05 118,891
4 12.8 GB/s 2.03 162,828

Table III lists the area usage (and compression ratio) for
scaling up engines, and the total area usage increases roughly
linear. Considering that the area when we directly change
the data window size of a single compression engine from
16 to 32 bytes will increase the ALM usage by 2.6x, it is
also difficult to keep the frequency to a high value. This
becomes the bottleneck for scaling in some cases where the
system needs to run at a fixed clock frequency. For example,
on HARP the system needs to run at 200 MHz. Exploiting
the parallel engines can avoid this scaling problem as each
engine is designed and placed separately.

D. Design Tradeoff Evaluation
The single compression engine design is important as it

determines the baseline performance for the whole design.
Thus, we explore the single engine design space to choose
the best.

1) Memory Chain Depth: We first compare the perfor-
mance of different hash chain depths for a single engine in
Table IV. Increasing one depth only augments 3,500 more
ALMs, thanks to the MUX optimization, and there is more
than a 9% improvement on the compression ratio, increasing
depth from 1 to 3. Note that further increasing memory
chain depth will not benefit the system performance much,
and the compression ratio gain becomes marginal (less than
1.5% improvement measured). In fact, the dictionary strings
read from each depth need to be compared with the same
input substring simultaneously, so matching comparison of
the input string and the output dictionary string from the
deepest memory bank will become the critical path.

Table IV: Memory chain depth on HARPv2
Depth Compression ratio Area(ALMs)

1 1.92 31,360
2 2.04 34,761
3 2.10 38,297

2) Double Clock vs. Double Bank: As presented in
Section III-B2, a double clock design (design 1) is also
implemented whose memory part uses a clock frequency that
is twice the global clock. We use the same number of bank
numbers as VEC (i.e., 16 banks), set the memory chain depth
to be 3, and integrate 4 parallel engines. Table V summarizes
the two designs. For the double clock design, since BRAM
blocks are placed as arrays and the interconnect between two
adjacent arrays will consume more time, the memory chain
which occupies more than one single array can only run at a
frequency of 340 MHz under the fastest configuration, thus
limiting the system performance. Since HARPv2 provides
another clock group of 150/300 MHz, we take 150 MHz as
the system clock for the design and achieve the equivalent
throughput of 9.6 GB/s, which is only 75% of the perfor-
mance of the single clock design with double banks.

However, the area efficiency of the double clock design is
slightly better than the double bank design since it reduces
the use of memory banks and corresponding multiplexers.
Another interesting benefit of the double clock design is



Table V: Double Clock v.s. Double Bank on HARPv2
Design Frequency Throughput Compression ratio Area(ALMs) Efficiency (MB/s per kilo ALMs)

Double clock design 150 MHz 9.6 GB/s 2.10 115,436 83
Double bank design 200 MHz 12.8 GB/s 2.03 162,828 78.6
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Fig. 14: Compression throughput and ratio on HARPv2, under
different file size of Calgary Corpus datasets

that it gives a slightly better compression ratio. This is
because raising clock frequency while reducing memory
banks enables similar strings to have more chances at being
mapped to the same bank.

E. End-to-End Compression Throughput
We measure the end-to-end compression throughput by

inserting a counter on the FPGA side. The counter counts the
total clock cycles from when FPGA sends the first request
to read the memory to the time it sets the data valid bit in
the memory—which indicates the FPGA work is done and
all of the data has been written back to the memory. Note
that on HARP and HARPv2, the CPU and FPGA share the
same memory so that there is no additional memory copy
overhead on conventional PCIe-based platforms. Denote the
total clock cycles as tcycle and the total amount of data fed to
the compression engine as Adata bytes, then the end-to-end
compression throughput can be measured as Adata /tcycle.

The end-to-end overall compression throughput results
are shown in Table VI. To show the overhead of CPU-
FPGA communication, we first test our design on HARP,
where the QPI bandwidth is limited (7 GB/s for read and
4.9 GB/s for write). We integrate 3-way parallel engines on
HARP since the Stratix V FPGA module on HARP provides
less resources and cannot accommodate more engines. The
FPGA kernel throughput is 9.6 GB/s, while we can only
achieve an average of 3.9 GB/s practical throughput based
on the Calgary Corpus benchmarks.

Table VI: End-to-end compression throughput on HARP and
HARPv2

Platform FPGA Throughput Practical Throughput
HARP 9.6 GB/s 3.9 GB/s

HARPv2 12.8 GB/s 10.0 GB/s

On the other hand, even considering the read and write
latency, we can see that HARPv2 can achieve an average
end-to-end compression throughput of 10.0 GB/s since it
has over 15 GB/s CPU-FPGA communication bandwidth.
We also list each benchmark’s size and its corresponding
practical throughput in Figure 14. If the file size is larger
than 500 kB (e.g., book1, book2 and pic), then the overhead

of communication latency will be negligible and the end-to-
end throughput can be up to 12 GB/s.

VI. CONCLUSION
In this work we designed an FPGA Deflate accelerator

that can be easily scaled to achieve a record compression
throughput of 12.8 GB/s while maintaining a relatively high
compression ratio of 2.03. We presented methods for effi-
ciently feeding data into the parallel compression engines,
improving the resource utilization, augmenting compression
ratio, and improving the clock frequency of the single
fully pipelined compression engine. This is the first public
work to integrate the compression accelerator with Intel-
Altera HARP and HARPv2 platforms, where we leverage
the high CPU-FPGA communication bandwidth to achieve
high end-to-end system compression throughput. The end-
to-end compression throughput we achieve is 3.92 GB/s on
HARP and 10 GB/s (12 GB/s) on HARPv2. This shows that
our compression accelerator design is a great fit for the new
HARP and HARPv2 platforms.
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