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Abstract—Stencil kernel is an important type of kernel used extensively

in many application domains. Over the years, researchers have been

studying the optimizations on parallelization, communication reuse, and

computation reuse for various target platforms. However, challenges still

exist, especially on the computation reuse problem for accelerators, due to

the lack of complete design-space exploration and effective design-space

pruning. In this paper, we present solutions to the above challenges for a

wide range of stencil kernels (i.e., stencil with reduction operations),

where the computation reuse patterns are extremely flexible due to

the commutative and associative properties. We formally define the

complete design space, based on which we present a provably optimal

dynamic programming algorithm and a heuristic beam search algorithm

that provides near-optimal solutions under an architecture-aware model.

Experimental results show that for synthesizing stencil kernels to FPGAs,
compared with state-of-the-art stencil compiler without computation
reuse capability, our proposed algorithm can reduce the look-up table

(LUT) and digital signal processor (DSP) usage by 58.1% and 54.6%

on average respectively, which leads to an average speedup of 2.3× for

compute-intensive kernels, outperforming the latest CPU/GPU results.

I. INTRODUCTION

Stencil computation [1] is often intuitively defined as the type

of computation that uses a sliding window of the input array to

compute the output array. Such computation patterns are widely

used in many areas, including image processing (e.g., [2], [3])

and solving partial differential equations (e.g., [4]). Although the

concept itself is relatively simple, it is non-trivial to optimize for

performance. Researchers have been optimizing stencil kernels in

three aspects. The first is parallelization. Stencil computation has

a large degree of inherent parallelism, but the sliding window

access pattern and the dependencies among elements in different

stages make it hard to fully utilize the available parallelism [4]–

[8]. The second is communication reuse. The sliding window pattern

makes it possible to reuse input data and reduce external memory

communication. On instruction-based processors (CPU, GPU), this

translates into improving locality [4], [9] and reducing inter-core

communication [10]. On accelerators (FPGA, ASIC) where data

paths can be fully customized, the communication reuse problem

can be optimally solved [11], [12]. The third is computation reuse.

Although stencil kernels often consist of multiple stages or iterations

and are compute-intensive, almost all such stencil kernels perform

commutative and associative reduction operations, thus making it

possible to reuse some of the computation [2], [13]–[17]. As a

motivating example, for a 17×17 kernel used in calcium image

stabilization [2], the number of multiplication operations can be

dramatically reduced from 197 to only 30, while yielding the same

throughput. However, that design was done with extensive manual

optimization. Our goal is to automate such optimization process.

Unlike the parallelization problem and the communication reuse

problem which have been optimally solved in [12], there are still

major challenges that have not been systematically addressed for the

computation reuse problem. One such challenge is that most stencil

compilers [13]–[17] are designed for instruction-based processors and

do not explore the complete design space for computation reuse, due

to the fact that parallelization and communication reuse have more

impact on performance and computation reuse is often just a by-

product [4], [9]. However, for accelerators, computation reuse can

be fully decoupled from parallelization and communication reuse via

datapath customization. An ideal stencil compiler for accelerators

should be capable of finding the optimal computation reuse if

possible. Moreover, since no stencil compiler uses an accelerator-

oriented model to evaluate the computation-storage trade-off, it is

hard to guide the design-space pruning and find the best solution.

This presents another challenge. In this paper, we present solutions

to the challenges mentioned above. Our major contributions include:

• Complete Design-Space Exploration: We formally define the

problem of computation reuse for stencil with reduction operations,

under which we present a dynamic programming algorithm that can

find the optimal computation reuse pattern.

• Optimality-Preserving Heuristics: We present a heuristic beam

search algorithm that significantly prunes the evaluated design

points while producing near-optimal results, which scales well

for large kernels. We also present an architecture-aware metric to

enable quantitative analysis of the computation-storage trade-off.

• Fully Automated Design Flow: We implement our algorithm

based on the open-source SODA compiler [12] and perform

design-space exploration and code generation in a fully automated

way. Since SODA is designed to be suitable as an intermediate

representation for stencil applications, other projects using SODA

as a backend (e.g., [18], [19]) can benefit from our work, too.

• Extensive Experiments: We evaluate our presented compiler with

various artificial and real-world kernels on a state-of-the-art FPGA

platform. Post-synthesis results on FPGAs show that on average

our proposed algorithm can reduce look-up table (LUT) and digital

signal processor (DSP) usage by 58.1% and 54.6%, respectively,

compared with the state-of-the-art SODA stencil compiler [12]

without computation reuse capability. For compute-intensive sten-

cils, our algorithm achieves an average speedup of 2.3×.

II. BACKGROUND

Stencil computation kernels can be defined as kernels that com-

pute output data elements using a multidimensional input array

according to some fixed, local pattern.

1 void Jacobi(const float X[N][M], float Y[N][M]) {

2 for (int j = 1; j < N - 1; j++)

3 for (int i = 1; i < M - 1; i++)

4 Y[j][i] = (X[j - 1][i] + X[j][i - 1] + X[j][i]+

5 X[j][i + 1] + X[j + 1][i]) * 0.2f;

6 }

Listing 1: A 5-point 2-dimensional Jacobi kernel.

As an example, Listing 1 shows a 5-point, 2-dimensional Jacobi

kernel on an M × N input X that computes output Y . In general,

an n-point, m-dimensional stencil kernel A defines a spatial window

{~as|s = 0, . . . , n − 1} and a function to compute the output at

spatial coordinate ~y = (y(0), . . . , y(m−1)) by consuming inputs at
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{~xs ≡ ~y + ~as|s = 0, . . . , n − 1}. ~as denotes the offset between

the s-th input and the output. Since all multidimensional indices are

eventually converted to 1-dimensional indices [12], when there is no

ambiguity, we will omit the vector notation on top of the coordinates.

Reduction operations are operations that are commutative and as-

sociative1. Given an n-point stencil kernel with reduction operations

Y [y] = g(f0(X[y + a0])⊕ ...⊕ fn−1(X[y + an−1]))

The reduction expression we are interested in is

f0[a0]⊕ ...⊕ fn−1[an−1] (1)

where fs[as] = fs(X[y+as]), meaning to apply a pointwise scaling

function fs on the input element in X with an offset of as relative

to the output element. We will, e.g., use [−1][0] or X[−1][0] to

represent X[j − 1][i] when it is clear from the context.

Computation reuse is a well-known concept in compiler optimiza-

tion, more commonly known as common subexpression elimination

(CSE). The classical CSE technique is based on expression analysis

of the program or value numbering. For example, to evaluate two

expressions x=a*b+c and y=a*b+d, a compiler is expected to find

that the two expressions for x and y share the same subexpression

a*b, which can be evaluated only once by evaluating a new expression

tmp=a*b before x=tmp+c and y=tmp+d.

While the classical CSE is powerful and effective, we notice

that it can only achieve spatial computation reuse, i.e., common

subexpressions exposed independently of the “temporal” loop vari-

ables. For example, in Listing 1, there is no common subexpres-

sions in the classical sense, but there actually is computation that

can be reused across loop iterations, i.e., temporal reuse. This

is because when iterating over arrays, different array references

from different loop iterations may be referring to the same data

element of arrays. For example, in Listing 1, the same computa-

tion X[1][2]+X[2][1] is done twice, X[j][i+ 1] +X[j + 1][i] for

Y[1][1] and X[j − 1][i] +X[j][j − 1] for Y[2][2].

Fig. 1 visualizes the above reuse by showing the

Fig. 1:

Overlapping

pattern.

overlapping inputs used for producing Y[1][1] and

Y[2][2]. With computation reuse, the new kernel

becomes a 2-stage kernel (Formula 2), which requires

only 3 additions per output. As a comparison, the orig-

inal kernel (Listing 1) needs 4 additions per output.

T [j][i] = X[j − 1][i] +X[j][i− 1]

Y [j][i] = (T [j][i] +X[j][i] + T [j + 1][i+ 1])× 0.2
(2)

Note that there is an implication: when processing such computa-

tion reuse, the compiler must recognize the reduction operation and

select operands for reuse from a proper computation order, e.g.

(([−1][0] + [0][−1]) + [0][0]) + ([0][1] + [1][0]) (3)

otherwise the binary + operator will not expose subexpressions like

[0][1]+[1][0] due to its default left-to-right associativity. In summary,

a compiler must perform both temporal exploration among different

loop iterations and spatial exploration among reduction operands to

find the best design point for computation reuse.

III. RELATED WORK

Previous work on computation reuse has limited temporal and/or

spatial exploration over the computation reuse design space.

On the temporal exploration side, [16], [17] find reuse among

iterations via loop unrolling plus spatial CSE, which is sub-optimal,

e.g., for Listing 1 it may only reuse 1 addition operation per 2 outputs,

resulting in 3.5 additions per output, as opposed to 3 achieved by

Formula 2. [2], [4], [20] only reuse the pointwise scaling operations

among iterations, resulting in redundant reduction operations.

1 ⊕ is commutative iff a⊕ b ≡ b⊕ a. ⊕ is associative iff (a⊕ b)⊕ c ≡
a⊕ (b⊕ c). We treat floating point additions as if they were associative.

On the spatial exploration side, [2], [17], [21] do not consider

commutativity and associativity. [13], [21] only consider operands

spanning in the horizontal direction (corresponding to the innermost

loop variable). [14] only considers operands spanning the horizontal

or vertical directions (corresponding to the loop variable of each level

of the loop nest). [15] additionally considers diagonal directions, i.e.,

all loop variables incrementing by the same value. Yet, computation

reuse could appear along any spatial direction of the stencil window,

which is likely missed by the prior work mentioned above.

Besides, previous work on computation reuse heavily focuses

on CPU and/or GPU [4], [13]–[17], where the trade-off between

computation and storage relies heavily on register pressure [13]

and/or cache [4], [9] analysis, which is generally hard to characterize

quantitatively due to the close yet unmanaged interaction between

the computation units and the memory system. For accelerators, [12]

shows that parallelization and communication can be fully decoupled

and presents a microarchitecture that requires the Pareto-optimal on-

chip buffer size w.r.t. the degree of parallelism. However, it does not

remove any redundant computation. We will show in this paper that

computation reuse can be applied independent of parallelization and

communication reuse, and how to obtain the Pareto-optimal on-chip

buffer size with computation reuse being taken into consideration.

IV. REUSE DISCOVERY ALGORITHM

A. Problem Formulation

A reduction expression defined by Formula 1 in Section II does not

define a specific computation order. This means the number of non-

redundant operations required to compute the expression may vary.

To account for that, we define the reduction schedule as a specific

computation order of an expression. A schedule has a well-defined

computational cost in terms of the number of reduction operations

⊕ and the number of scaling operations f , e.g., a naı̈ve left-to-right

schedule would require (n − 1) ⊕ operations and n f operations.

Although different schedules produce the same computational result

mathematically, the computational cost can be different. Note that

even if two schedules have the same computational cost, the storage

requirement on accelerators can still be different.

In this paper, we aim to find a schedule of an expression with 1)

the least possible number of ⊕ reduction operations, and 2) the least

possible number of f scaling operations. Notice that f operations can

be reused optimally by creating an intermediate array for each scaled

operand, we will focus on the optimal reuse of ⊕ operations in the

following part of this section. Furthermore, if multiple schedules have

the same number of operations, we aim to find the schedule with the

least storage requirement, which will be discussed in Section V.

B. Optimal Reuse by Dynamic Programming (ORDP)

To discover the optimal reuse, we enu-

a b

+

a b
+

c

+

a c

+ b

+

cb

a +

+

Fig. 2: Reduction trees

of a+ b+ c augmented

from a+ b.

merate over all possible schedules of a

reduction expression opd0 ⊕ opd1 ⊕ ... ⊕
opdn−1 and count the number of unique

subexpressions as the number of ⊕ op-

erations. Notice that a schedule with n-

operands corresponds to a binary reduction

tree, whose n leaf nodes correspond to

the n operands and n − 1 non-leaf nodes

correspond to the n−1 ⊕ operations, we can enumerate all schedules

via dynamic programming. As an example, let a+b+c be a 3-operand

reduction expression. The schedules of a+ b+ c can be constructed

by adding the third operand c to the existing schedules of a + b,

while a + b only has 1 trivial schedule, which corresponds to the
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binary tree shown in the upper part of Fig. 2. To obtain schedules of

a + b + c from a + b, we need to replace one node of a + b with

a new node, whose children are the original node and c. Since the

reduction tree of a+b has 3 nodes, there are 3 replacement outcomes,

too. The lower part of Fig. 2 shows all the 3 reduction trees obtained

in this way. The 3 trees correspond to (a+ c) + b, (a+ b) + c, and

a+(b+ c), respectively. In general, assume we have enumerated all

schedules of the first k operands, k = 2, 3, ..., n−1. To enumerate all

schedules of the first k+1 operands, all we need to do is to replace

one of the nodes in the k-operand reduction tree with a new node,

whose children are the newly added operand and the original node.

By doing so for all 2k − 1 nodes of all k-operand reduction trees,

we can obtain all schedules of the first k+1 operands. By induction,

we can enumerate all schedules of n operands. Such enumeration

achieves spatial exploration of computation reuse.

To count the number of operations required +

+

+

+

Fig. 3: Reduction

tree of Formula 3.

for a schedule, we need to count the number

of unique subexpressions. Since subexpressions

can be relatively shifted, we align their access

offsets (array references) for comparison. The

aligned access offsets are obtained by subtract-

ing the least-lexicographical-order [11] offset from all access offsets.

As an example, for the schedule given in Formula 3, there are

4 subexpressions (including the whole expression itself), each of

which corresponds to a non-leaf node shown in Fig. 3. Among

them, two subexpressions, [−1][0]+ [0][−1] and [0][1]+ [1][0], align

to the same [0][0] + [1][−1], which means they can be reused. A

hash table is used to count the number of unique subexpressions,

where the hash table is keyed by the aligned access offsets and

the scaling functions. Subexpressions with the same key indicate

reduction operation reuse opportunities. In the previous example, the

number of unique subexpressions is 3, which matches the analysis in

Section II. Access offset alignment achieves temporal exploration of

computation reuse.

The number of all possible schedules of an (n + 1)-operand

expression is (2n − 1)! ! = 1 × 3 × 5 × . . . × (2n − 1), which

is (2n − 1)× that of an n-operand expression, as discussed in the

dynamic programming algorithm presented above. This is asymptot-

ically O
((

2n−1
e

)n)

. The optimal solution works well when n is not

large (n ≤ 10) but does not scale. Next, we shall present an efficient

heuristic-based solution.

C. Heuristic Search–Based Reuse (HSBR)

In this section, we present a heuristic search–based reuse (HSBR)

discovery algorithm that can help us find near-optimal solutions with

polynomial time and space complexity. HSBR is a variant of beam

search [9] and is composed of three steps, namely 1) reuse discovery,

2) candidate generation, and 3) iterative invocation.

Reuse discovery enumerates all pairs of operands to find potential

reuse. If a pair of operand appears more than once after alignment,

it would be a reuse pattern that leads to computation reuse. Note

that although we only select pairs of operands, larger patterns are

considered since each operand itself can be a subexpression that is

composed of multiple operands (e.g., Fig. 4). For the example of

Formula 3, after enumerating all pairs of operands, we would find

both [−1][0] + [0][−1] and [0][1] + [1][0] align to [0][0] + [1][−1],
indicating a reuse opportunity. If no reuse is found in this step, the

algorithm terminates.

Candidate generation creates candidate schedules by replacing

reuse patterns with new, non-leaf operands. Such non-leaf operands

correspond to the intermediate arrays created for reuse, e.g., T in

Formula 2. Since there can be many different combinations of reuse

patterns, this step may generate a large number of candidates. For

example, for Formula 3, in addition to reusing [−1][0] + [0][−1]
for [0][1] + [1][0], we would also generate a candidate schedule that

reuses [−1][0] + [0][1] for [0][−1] + [1][0]. For each candidate, we

evaluate how much computation is reused by counting the number of

unique subexpressions and how much storage is required as will be

discussed in Section V. The best W candidates will be selected for

the next step. The constant W is the beam width in the beam search

algorithm.

Iterative invocation enqueues each selected candidate for the next

iteration of HSBR. New reuse patterns are found for each candidate

separately, but all next-generation candidates are subject to the same

constant bound of beam width W . Since the number of selected

candidates in each iteration is O(W ) and the number of iterations

is O(n) where n is the number of operands in the kernel, the total

number of candidates generated and evaluated will be O(Wn). For

each candidate, the number of operation required is O(n2), because

we enumerate all pairs of operands. Overall, HSBR is O(Wn3),
which guarantees scalability.

In the remaining part of this subsection, we discuss some opti-

mizations that reduce exploration time and improve quality of result.

1) Operand Selection: We maximize the number of reused

operand pairs in each iteration so that the number of iterations

is reduced, resulting in faster completion of HSBR, especially for

large stencil kernels. This greedy optimization is applied in two

places of the candidate generation step. First, for each reuse pattern,

we replace as many operand pairs as possible. For example, given

X[0] + 2X[1] +X[2] + 2X[3] +X[4] + 2X[5], the reuse discovery

step would find that the reuse pattern T [0] = X[0] + 2X[1] can

be reused for X[0] + 2X[1], X[2] + 2X[3], and X[4] + 2X[5].
In the candidate generation step, we greedily replace all operand

pairs for reuse (i.e., we replace the aforementioned operand pairs

with T [0], T [2], and T [4], respectively). Second, in addition to

the operand pairs that reuse the same reuse pattern, we also try

to apply other reuse patterns if permissible. For example, given

X[0]+2X[1]+X[2]+2X[3]+3X[4]+4X[5]+3X[6]+4X[7], we

reuse both T1[0] = X[0] + 2X[1] and T2[0] = 3X[0] + 4X[1] and

generate T1[0] + T1[2] + T2[4] + T2[6] directly in a single iteration.

2) Conflict Resolution: When selecting operand pairs for reuse,

sometimes not all valid pairs can be selected at the same time. For

example, given [0]+ [1]+ [2]+ [3]+ [4]+ [5], we’ll find that [0]+ [1]
can be reused for 5 different operations, i.e., [0] + [1], [1] + [2],
[2] + [3], [3] + [4], and [4] + [5]. However, since these operand pairs

overlap, e.g., the first two share the same operand [1], we cannot

possibly select all of them for reuse. Although it seems that this

problem can be formalized as a graph matching problem, where the

nodes are the operands and the edges are the operand pairs, it cannot

be solved using the standard minimum matching because the weight

(computational cost) of an edge is not static and may vary in different

matchings due to the sharing nature of the computational cost. HSBR

resolves the conflicts as follows. Notice that we only consider pairs

of operands, for the same reuse pattern, each pair can conflict with at

most two other pairs, making the conflict graph bipartite, i.e., there

are two conflict-free subsets for each group of conflicting operands.

In the previous example, the two choices of conflict-free subsets

are {[0] + [1], [2] + [3], [4] + [5]} and {[1] + [2], [3] + [4]}. In the

candidate generation step, we generate candidates from both choices.

To account for the conflicts between different reuse patterns, we

generate multiple candidates prioritizing each reuse pattern while

greedily selecting other non-conflicting reuse patterns.

3



3) Regularity Exaction: Reusing operands spanning multiple di-

mensions may break regularity and lead to sub-optimality. Take a 4×3

uniform-weight kernel as an example. The aforementioned greedy

algorithm selects two reuse patterns (labeled ① and ②) in the same

iteration, which ends up with a total of 5 ⊕ operations, as shown on

the left side in Fig. 4. Non-leaf nodes that correspond to the same

reuse pattern are labeled with the same number.

However, if we manually

①

④③

①

②

① ① ① ①① ①

②

Fig. 4: Different operand selections.

look for reuse, it is not hard

to figure out a schedule with

only 4 ⊕ operations (right

side of Fig. 4), which could

be generated if we only select patterns along the vertical dimension

(①) in the first iteration of the algorithm. To address this, when

the number of reuse patterns exceeds a threshold (e.g., number of

operands), candidate generation becomes less greedy and only selects

reuse patterns along the same direction.

V. STORAGE REQUIREMENT CHARACTERIZATION

Given the number of parallel processing elements (i.e., the parallel

factor), prior work [12] generates Pareto-optimal communication

reuse buffers and proves that the minimum on-chip storage required

by a stencil kernel is determined by the sum of the reuse distance and

the parallel factor. Since the parallel factor is an additive term and can

be chosen independently, the storage requirement of a stencil kernel

can be fully characterized by the reuse distance, independent of the

underlying hardware platform or microarchitecture. For a complex

multi-stage kernel, which is common after computation reuse is

applied (e.g., Formula 2), the conclusion from [12] still holds, and

the total storage requirement can be characterized by the total reuse

distance2. However, the total reuse distance is no longer a constant

attribute of the kernel. We will show an example of such case,

followed by an algorithm that minimizes it. The minimum total reuse

distance obtained will be used to characterize the storage requirement

with computation reuse.

A. Total Reuse Distance for a Complex Stencil Kernel

We start with the following example involving two input arrays

X1, X2, an intermediate array T , and an output array Y :

T [2] = X1[0] +X1[1] +X2[0] +X2[1]

Y [0] = X1[3] +X2[3] + T [0] + T [2]
(4)

The reuse distances for X1, X2, and T are X1[0] · · ·X1[3] = 3,

X2[0] · · ·X2[3] = 3, and T [0] · · ·T [2] = 2, respectively. The total

reuse distance is 3 + 3+ 2 = 8. Notice that Formula 4 implies T [2]
and Y [0] are produced at the same time, we can shift the production

of T and make T [4] be produced at the same time as Y [0], i.e.

T [4] = X1[2] +X1[3] +X2[2] +X2[3]

Y [0] = X1[3] +X2[3] + T [0] + T [2]
(5)

The reuse distances become X1[2] · · ·X1[3] = 1, X2[2] · · ·X2[3] =
1, and T [0] · · ·T [4] = 4, respectively. The total reuse distance

becomes 1 + 1 + 4 = 6 < 8. Obviously, the total reuse distance

for a complex stencil kernel may vary as the relative offset between

stages change. Section V-B will discuss how to minimize it.

B. Minimizing Total Reuse Distance

Assume we implement our stencil accelerator with a synchronous

clock. Given a stencil kernel in which q arrays {Yt|t = 0, ..., q −
1} are involved, let {Ys} be the children of Yt and Ys[0] consume

{Yt[au]} from Yt. For example, in Formula 4, X1, X2, T , Y are the

2 WLOG we assume all element sizes are the same for conciseness.

TABLE I: Stencil benchmarks used in the experiments.

Name Computation Size Name Computation Size

s2d5pt weighted sum of 5 3×3 s2d33pt weighted sum of 33 17×17
f2d9pt weighted sum 3×3 f2d81pt weighted sum 9×9
s3d7pt weighted sum of 7 3×3×3 s3d25pt weighted sum of 25 9×9×9
f3d27pt weighted sum 3×3×3 f3d125pt weighted sum 5×5×5

contrast3 weighted sum of 197 17×17 erosion3 minimum 19×19

xcorr3 sum except center 19×19 smoother weighted sum 25×25
bigbiharm weighted sum of 25 7×7 lilbiharm weighted sum of 13 5×5

arrays involved. T is a child of both X1 and X2. T [0] consumes X1

and X2 at X1[−2], X1[−1] and X2[−2], X2[−1], respectively. Let

{Yt[pt]|t = 0, ..., p−1} be produced at the same cycle. {pt} are the

variables to be determined. The reuse distance of each Yt is

Dt = pt −min
s,u

(ps + au|s ∈ children(t), u ∈ accesses(t → s))

Our goal is to minimize the total reuse distance
∑

t
Dt. For For-

mula 4,

T [pT ] = X1[pT − 2] +X1[pT − 1] +X2[pT − 2] +X2[pT − 1]

Y [pY ] = X1[pY + 3] +X2[pY + 3] + T [pY ] + T [pY + 2]

DX1
= pX1

−min (pT − 2, pY + 3) DT = pT − pY

DX2
= pX2

−min (pT − 2, pY + 3)

The constraint is that an array cannot be consumed before produced:

pt ≥ ps + au, ∀t, s ∈ children(t), u ∈ accesses(t → s)

For Formula 4, the constraints are:

pX1
≥ pT − 2 pX1

≥ pT − 1 pX1
≥ pY + 3 pT ≥ pY

pX2
≥ pT − 2 pX2

≥ pT − 1 pX2
≥ pY + 3 pT ≥ pY + 2

Notice that each constraint is of the type xi − xj ≤ cij , this is a

systems of difference constraints (SDC) problem and can be solved

optimally in polynomial time [22]. For Formula 4, the solution is

pX1
= pX2

= pY +3, pT = pY +4, which gives the minimum total

reuse distance of 6 and matches Formula 5.

VI. EXPERIMENTAL RESULTS

We extend the open-source SODA compiler [12] to implement

the presented algorithms. DSE is written in C++ and runs on a

single thread of Intel Xeon E5-2699 v3 CPU. Synthesis is performed

by Vivado 2019.1, targeting the Alveo U250 board. The stencil

kernels used in the experiments include eight Laplacian kernels

used in [4], [12], [20], [23], three image stabilization kernels used

in [2], a Gaussian smoother kernel used in pose detection [3], and

two biharmonic operator kernels used in [14], [15]. Details about

the kernels are listed in Table I. In addition to these real-world

benchmarks, we also generate artificial 3×3 kernels to assess the

optimality gap between the heuristic algorithm and the optimal one.

A. Number of Operation Reduction

Table II shows the number and type of operations required to

produce each output element. The performance of the kernels are

fixed to produce 1 output element per clock cycle and all off-chip

communication is fully reused. The baseline SODA [12] compiler

implements the kernels without computation reuse optimization. Note

that SODA outperforms previous papers [11], [23], [24] by up to

9.82× [12]. DCMI [20] is a recent work that synthesizes iterative

stencil kernels to FPGAs. DCMI removes redundant multiplication

operations, but not the addition (reduction) operations. HSBR shows

the result of our heuristic algorithm. Note that for kernels that are

small enough (less than 10 points), we are able to verify that the

heuristic algorithm actually produces the optimal result. On average,

our presented algorithm reduces the reduction operations by 58.2%4.

3 Marked benchmarks use 8-bit integers; others use 32-bit float.
4 = 1− GeoMean {target/baseline}
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TABLE II: Operation reduction. Bold items are verified to be optimal.

Kernel
Pointwise Operations Reduction Operations

SODA [12] DCMI [20]/HSBR SODA/DCMI HSBR

s2d5pt 5 1 (-80%) 4 3 (-25%)

s2d33pt 33 9 (-73%) 32 24 (-25%)

f2d9pt 9 3 (-67%) 8 6 (-25%)

f2d81pt 81 15 (-82%) 80 48 (-40%)

s3d7pt 7 1 (-86%) 6 5 (-17%)

s3d25pt 25 5 (-80%) 24 20 (-17%)

f3d27pt 27 4 (-85%) 26 14 (-46%)

f3d125pt 125 10 (-92%) 124 40 (-68%)

contrast 197 30 (-85%) 196 113 (-42%)

erosion 0 0 360 12 (-97%)

xcorr 0 0 359 13 (-96%)

smoother 625 91 (-85%) 624 336 (-46%)

bigbiharm 25 5 (-80%) 24 14 (-42%)

lilbiharm 9 3 (-67%) 12 9 (-25%)

average4 — -81% — -58%
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Fig. 5: Impact of heuristics in HSBR. Lower is better.

B. Impact of Design-Space Pruning Heuristics

Fig. 5 shows the average operation reduction and the design-space

exploration (DSE) time with different beam widths and heuristics

used in HSBR. Time is normalized per benchmark to obtain mean-

ingful averages over different benchmarks. In general, larger beam

width yields better results, but requires longer DSE time. Operation

selection speeds up HSBR by reducing the search depth. Conflict

resolution adds some over-pruned points back to the design space

and thus compensates some quality of result loss caused by operation

selection. Regularity exaction further improves the quality and the

runtime by prioritizing regular patterns.

C. Performance Boost for Compute-Intensive Stencil

Stencil computation can be compute-intensive if it is iterative [12],

[23]–[25], or has a large number of operations per output. For

compute-intensive stencil kernels, computation reuse can save re-

sources (Section VI-D) and directly result in a performance boost.

We compare the 8 iterative kernels with CPU/GPU results from [4] in

Fig. 6. Note that [4] includes all three aspects of stencil optimizations,

i.e., parallelization, communication reuse, and computation reuse. All

FPGA implementations are scaled up to use the available DSPs and

runs at 100 – 125 MHz5. On average, DCMI [20] achieves 1.6×

speedup over SODA [12], whereas our proposed HSBR algorithm

achieves 2.3×. Moreover, thanks to the highly customized datapaths

and fully pipelined microarchitecture, HSBR outperforms multi-core

Xeon Gold CPU by 10.9×, many-core Xeon Phi processor by 3.17×,

and P100 GPU by 1.53× on average, respectively.

D. Resource Consumption Reduction

Fig. 7 compares the resource usage of the DCMI optimization

and our proposed HSBR algorithm with the baseline SODA imple-

mentation. Flip-flop (FF) usage is not reported in the figure because

it is tightly coupled with look-up table (LUT) usage and is never

5 Designs are HLS-based prototypes and are not fine-tuned for high-
frequency [26]. We expect instrumentation at RTL level to further improve
the frequency and leave that as future work.
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Fig. 6: Performance of iterative kernels. Xeon & P100 are from [4].

used more than LUTs. From the figure, we can see that both opti-

mizations can save computational resources like LUTs and digital-

signal processors (DSP) compared with the baseline implementation,

possibly at the cost of storage resources (e.g., block random-access

memories, BRAMs). On average, DCMI uses 85.1% LUT and 62.6%

DSP with 100.0% BRAM usage (compared with SODA baseline).

The reduction on LUT and DSP is from the reuse of multiplication

operations, and the BRAM usage is the same as SODA since reusing

multiplication can be done without additional storage. The HSBR

algorithm, on the other hand, only uses 41.0% LUT and 45.4%

DSP with 123.7% BRAM usage (compared with SODA baseline).

For large kernels (e.g., contrast, erosion, and xcorr), the baseline

implementations generate very deep pipelines that lead to a high

BRAM usage. With computation reuse, the kernels are decomposed

into smaller ones with shallower pipelines, which can significantly

reduce the BRAM usage. The geometric mean of BRAM usage is

strongly biased by those cases; after excluding them, the average

BRAM usage is 231.9% for HSBR. Note that although the storage

(BRAM) usage with computation reuse applied can be as high as

7×, we argue that one can scale up the performance at the cost

of computational resources (LUTs and DSPs) without significant

increase of storage resources, which makes it reasonable to trade-off

storage for computation. Actually, when we scale up each benchmark,

we find that BRAM usage never bottlenecks the resource usage; the

bottleneck is always DSP (for floating-point numbers) or LUT (for

fixed-point numbers).

E. Design-Space Exploration Cost

The optimal algorithm scales up to 10-point stencil kernels and

runs in 10 minutes with 6 MiB memory. Although the memory usage

remains low, scaling to 11 points requires more than 2 hours on

our test machine. Fig. 8 shows the HSBR design-space exploration

(DSE) time with various beam widths. Note that since the DSE time is

tightly coupled with the kernels, the data points do not align well on a

straight line. Since beam search has bounded memory complexity, the

memory consumption of HSBR is moderate (< 100 MiB). In general,

the cost of the DSE becomes low with the heuristic algorithm.

F. Optimality Gap

Although it is impossible to assess the optimality gap for all

kernels, we assess the gap between the heuristic algorithm and

the optimal algorithm for small kernels. In addition to the real-

world benchmarks, we randomly generate artificial 3×3 kernels to

examine how well the heuristics perform. Out of the 11528 kernels

we generated randomly, there are 5281 kernels with computation

reuse opportunity, and our heuristic algorithm can find all of them

with the least number of required operations with a beam width of

3. Even with the storage overhead (total reuse distance) taken into

consideration, HSBR can yield the optimal reuse buffer size with a

beam width of 4. This is shown in Fig. 9.
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VII. CONCLUSION

In this paper, we exploit computation reuse optimizations for

stencil accelerators. We present an optimal algorithm that can thor-

oughly explore the complete design space of computation reuse for

stencil accelerators with reduction operations. In addition, we present

a heuristic beam search algorithm that can effectively prune the

vast design space while yielding near-optimal results. Moreover, we

fully automate the computation reuse by integrating our algorithms

into the SODA compiler. Experimental results show an average of

58.2% reduction on the number reduction operations needed and

58.1% and 54.6% post-synthesis resource reduction on LUT and

DSP, respectively, compared with the state-of-the-art SODA compiler.

For compute-intensive stencils, our algorithm achieves an average

speedup of 2.3× over SODA and outperforms optimized CPU/GPU

programs in various benchmarks.
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