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ABSTRACT
Designs generated by high-level synthesis (HLS) tools typically
achieve a lower frequency compared to manual RTL designs. In this
work, we study the timing issues in a diverse set of realistic and
complex FPGA HLS designs. (1) We observe that in almost all cases
the frequency degradation is caused by the broadcast structures
generated by the HLS compiler. (2) We classify three major types of
broadcasts in HLS-generated designs, including high-fanout data
signals, pipeline flow control signals and synchronization signals
for concurrent modules. (3) We reveal a number of limitations of
the current HLS tools that result in those broadcast-related timing
issues. (4) We propose a set of effective yet easy-to-implement ap-
proaches, including broadcast-aware scheduling, synchronization
pruning, and skid-buffer-based flow control. Our experimental re-
sults show that our methods can improve the maximum frequency
of a set of nine representative HLS benchmarks by 53% on average.
In some cases, the frequency gain is more than 100 MHz.

1 INTRODUCTION
High-level synthesis (HLS) tools simplify the process of imple-
menting new applications on FPGAs. They enable users to specify
untimed designs in high-level languages such as C/C++ or OpenCL
without concerning about cycle-accurate details at the register-
transfer level (RTL). However, there still exists considerable room
to improve the timing qualities of the HLS-synthesized designs.
Unfortunately, current HLS tools do not provide helpful feedback
or guidelines on how to improve the clock frequency at the source
level or to use additional tool options. It is also challenging for
regular HLS users to reverse engineer the synthesized RTL code
to identify the timing bottlenecks and optimize the corresponding
critical paths in the source program.

In this work, we analyze the timing issues of a diverse set of
real-world HLS designs that are implemented and optimized using
state-of-the-art commercial tools. To our surprise, in most cases,
the frequency degradation is related to signal broadcasts. The signal
broadcasts are automatically inferred or created by the HLS com-
piler, either in the datapath or the control logic. These broadcast
structures are typically not explicitly presented in the source code,
thereby often overlooked by HLS users. However, they will result
in high-fanout interconnects that pose challenges to downstream
physical design tools to close timing.

Here, we briefly discuss two case studies to motivate the impor-
tance of optimizing the implicit broadcasts in FPGA HLS. One is the
genome sequencing accelerator [1], where we identify a data signal
broadcast that sends the output of one register to tens of targets.
We observe that the tool underestimates the delay of the broadcast
operation, which leads to sub-optimal scheduling results. Fixing
the problem boosts the final frequency from 264 MHz to 341 MHz
when implemented on an Amazon F1 instance. Another example is
the streaming Jacobi accelerator [2], where the pipeline control sig-
nal broadcast becomes the critical path. By optimizing the control
strategy and removing its unnecessary broadcast, we improve the
maximum operating frequency from 120 MHz to 253 MHz (2.1×).

Motivated by these encouraging results, we conduct a systematic
analysis of the timing-critical broadcast structures in HLS, which
naturally fall into two major categories:

• Data broadcast refers to a high-fanout signal in the datapath,
which is typically formed after loop unrolling or array partition-
ing during the HLS compilation process. The wire delay of an
operator will increase as the broadcast factor increases. Such
varying delay may cause trouble to the HLS scheduler, which
generally relies on static pre-characterized delay estimation.

• Control broadcast refers to a high-fanout control signal which
typically originates from an FSM (or controller) and reaches nu-
merous datapath components such as registers or multiplexers.
In our study, we particularly focus on two critical classes of
control broadcast: (1) synchronization signal broadcast and (2)
pipeline control signal broadcast. These structures commonly
cause timing degradation in deeply pipelined and/or highly par-
allelized designs. Compared to the data broadcasts, the control
broadcasts are less studied in HLS.
The timing issues caused by such broadcasts are extremely hard

to debug. On the one hand, data broadcast structures are hard to
notice in the source code. It is difficult for HLS users to realize
and understand the fact that certain “innocent-looking” software
code has negative implications on the timing of the synthesized
hardware. On the other hand, since most of the control signals are
created by the HLS tool, they are much more challenging (if not
impossible) to optimize through source code changes. Hence, a sub-
optimal control broadcast may completely offset the performance
gains from other sophisticated HLS optimizations. Moreover, data
and control broadcasts often entangle with each other. As we will
see, an HLS design as innocent as a simple buffer can suffer from
both of these two broadcasts. Both data and control broadcasts must
be eliminated to achieve frequency improvements.

Although the broadcasts cause serious problems in the current
HLS tools, we manage to find concise and easy-to-integrate solu-
tions. First, we use synthetic designs to capture the relationship
between the increased net delay versus the broadcast factor, which
serves as an effective approximation. Second, we utilize a different
pipeline control methodology to trade area for a lower broadcast
factor, while we further minimize the area overhead. Third, we
propose to prune redundant synchronization signals to simplify the
design. Our experimental results based on Vivado HLS show that
(1) the timing problems caused by broadcast are indeed widespread,
and (2) our proposed methods can improve the frequency of a set
of representative HLS benchmarks significantly. In some cases, the
gain is more than 100 MHz.

Our main technical contributions are as follows:
• We are the first to identify that the implicit signal broadcast is a

major cause of the frequency degradation in highly-optimized
designs synthesized using industrial-strength HLS tools. We
further provide a classification of the timing-critical data and
control broadcast structures.

• We propose a set of simple but effective techniques to optimize
the timing of the implicit broadcasts in HLS automatically, which
includes broadcast-aware scheduling, redundant synchroniza-
tion pruning, and skid-buffer-based pipeline control.

• We apply our approaches to a set of nine real-world HLS bench-
marks, and improve their frequency by 53% on average, with a
marginal area overhead.



2 BACKGROUND
In a typical HLS flow, the scheduling phase inserts clock boundaries
into the original untimed specification. Generally, the HLS sched-
uler performs a high-level estimation of the operation delay. This
estimation is usually based on pre-characterized statistics, which in-
clude the delay of common components for computing, storage, and
interconnects (e.g., adders, multipliers, registers, BRAMs, multiplex-
ers, etc). However, HLS tools lack consideration of the additional
net delay in broadcast structures. The predicted delay by HLS tools
for a certain operator is fixed regardless of the actual environment.
Thus, the actual value for operators near broadcasts is usually larger
than the predicted value.

The RTL generation phase creates the control logic to orchestrate
the datapath, controlling each stage to execute at its scheduled cycle.
For fully-pipelined [3] datapath, the enable signals for activation or
the stall signals for flow control will be broadcast to every element
of the pipeline to operate the datapath as a whole. Meanwhile, the
FSM proceeds to the next stage only when all concurrent modules
at the current stage signal their completion to the controller. This
aggregated condition of dones is used as the next start signal, and
will be broadcast to the parallel modules in the next stage. The same
logical functionality can be mapped to different implementations,
thus it is important that the selected implementation is efficient
and scalable, otherwise this step may offset the gains of all other
intricate optimizations.

3 CLASSIFICATION OF HLS BROADCASTS
3.1 Data Signal Broadcast
By implicit data broadcast, we broadly refer to signal broadcasts in
the HLS-synthesized datapath. These broadcasts are specified by
the source code and directives, though they are less obvious to the
users. As is explained in Section 2, current HLS tools have a fixed
delay estimation for a certain operator. However, such estimation
is no longer accurate with large data broadcasts.

We create two synthetic examples of common HLS design pat-
terns to show how data signal broadcast structures are formed, and
what limitations in current HLS tools lead to this problem:

1) Loop unrolling, as in Figure 1. The variable source is defined
outside the loop body, and is loop-invariant. Since it is accessed in
each iteration, in the corresponding hardware shown in Figure 2,
the register for source is connected to 1024 instances of the loop
body, resulting in a data signal broadcast.

Obviously in this case, the actual delay of the add operator in
"source + foo" (line 5) includes the additional wire delay between
the source register and the add operators. However, the current
HLS delay model does not consider such a broadcast cost. Therefore,
the scheduler still views the delay of this 1024-broadcast-add the
same as a normal add without broadcast.

For example, in Figure 2, assume the delay of a simple add or sub
operator is 1.5ns, while the actual delay for the 1024-broadcast-add
is 2.5ns. If the timing target is 3ns, the HLS tool will schedule the
add and sub to be performed within the same cycle, while they
should have been separated to meet the timing constraint.

2) Large buffer and memory arrays, as in Figure 3. On FPGAs,
a large on-chip buffer will be implemented as multiple block RAMs
(BRAMs). Thus, the data source will fan out to many physically
scattered memories, though they jointly form a single logical entity.

When the buffer size increases, the load and store operations
will also suffer extra wire delays. However, most existing HLS
tools do not take them into consideration either. The predicted
delay remains the same regardless of the size of the buffer. This
results in inadequate pipelining between the BRAM units and the
data source/sink. For example, the double-buffer technique requires
distributing data to the local buffers of multiple parallel processing

1 data_t source = ...; // loop-invariant variable
2 for (size_t i = 0; i < 1024; i++) {
3 #pragma HLS unroll
4 foo = ...i...; bar = ...i...; // loop-dependent
5 dest[i] = source + foo - bar; /* ... */ }

Figure 1: Code of data broadcast - Example #1: loop unrolling.
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Figure 2: HLS-generated architecture of Fig. 1

1 data_t buffer[737280]; // mapped to multiple BRAM units
2 buffer[idx] = source; // `source` connects to every BRAM unit

Figure 3: Code of data broadcast - Example #2: large array.
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Figure 4: HLS-generated architecture of Fig. 3

elements (PEs) [4], which tend to be inadequately pipelined; the HLS
support for dynamic data structures also requires large buffers [5],
where their accesses degrades the maximum frequency.

3.2 Control Signal Broadcast - Synchronization
The synchronization logic originates from the parallelization of
the sequential source code. The HLS scheduler automatically infers
parallelism and schedules independent functions and operations to
the same state for concurrent execution. To guarantee correctness,
the HLS strictly follows the original semantics and generates control
logic to wait for all parallel modules to complete before proceeding
to the following operations. However, this fixed synchronization
template may not be optimal for large designs and may introduce
critical paths if the degree of parallelism scales up.

Figure 5a shows one scenario of this broadcast. For streaming
designs, users describe the dataflow graph in sequential C++ code
and let the HLS tools infer the parallelism. However, if multiple
streaming kernels are defined in the same loop, the HLS will pedan-
tically synchronize them at the granularity of one iteration. As a
result, independent flows are glued together and form a broadcast
of the synchronization signal. Figure 6a visualizes this situation.

Figure 5b shows another example, where multiple independent
instances of PE_*() are called, and they execute in parallel. The
controller waits for all of them to finish, then reads their outputs
together and proceeds to the next FSM stage. Figure 6b shows the
corresponding logic generated by HLS.

Although functionally correct, such synchronization strategy
is not scalable. The complexity of routing such “reduce-broadcast”
signals will soon explode with increasing degrees of parallelism.
Optimization of the synchronization logic is necessary.

3.3 Control Signal Broadcast - Pipeline
For a pipeline that interacts with modules with flow control in-
terfaces (e.g., FIFOs), the most common approach of current HLS
tools is to broadcast the back-pressure signals (e.g., empty/full
and valid/ready) to control the flow. Figure 7 shows an example,
and Figure 8 shows the corresponding inferred broadcast structure.
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Previous works based on the theory of latency-insensitive de-
sign analyze the role of back-pressure in a theoretical way [6], but
lack consideration in the aspect of circuit implementation. Though
effective for small designs, such methodology will soon become the
critical path with increasing pipeline sizes.

4 APPROACHES
4.1 Broadcast-Aware Scheduling
As previously mentioned, the current HLS delay estimation does
not consider the extra wire delay caused by the broadcast. Decades
of research on HLS have shown that it is extremely hard to have an
accurate delay estimation without the placement information [7].
However, here we propose a simple but effective method can be
used to approximate this extra delay.

We implement skeleton broadcast structures on an empty FPGA
to obtain the post-routed delay. For example, in one skeleton design,
we instantiate 64 adders, and one of the two input ports of every
adder is connected to a common source register. For buffer access
operations (load, store), we record the actual delays of different
buffer sizes. In this way, we collect reusable statistics of calibrated
delays for each combination of operator, data type and broadcast
factor. Each data point is averaged with its neighbors to suppress
random noise caused by the heuristic optimization in downstream
processes. When the broadcast factor is small, the delay obtained
from our experiment is consistent with the predicted delay of the

1 #pragma HLS dataflow
2 while (1) {
3 /* --- inferred parallelization --- */
4 inFifoA.read(&a);
5 outFifoA1.write(a.foo); outFifoA2.write(a.bar); // #A
6 inFifoB.read(&b);
7 outFifoB1.write(b.foo); outFifoB2.write(b.bar); // #B
8 /* --- HLS infers excessive synchronization --- */ }

(a) Code of synchronization - Example #1.

1 data_t kernel( ...... ) {
2 /* --- inferred parallelization --- */
3 aOut = PE_1(aIn); bOut = PE_2(bIn); cOut = PE_3(cIn); // ...
4 /* --- inferred synchronization --- */
5 return aOut + bOut + cOut /* ... */; }

(b) Code of synchronization - Example #2.
Figure 5: Example code of sync among parallel modules.
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Figure 6: HLS-generated architecture of the code above.

1 for (int i = 0; i < ITER; i++) {
2 #pragma HLS pipeline
3 input_fifo.read(&a); /* implicit "empty"-based stall */
4 b = inlined_datapath_foo(a);
5 output_fifo.write(b); /* implicit "full"-based stall */ }

Figure 7: Code example of pipeline control signal broadcast.
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Figure 8: HLS-generated architecture of pipeline control.

Vivado HLS tool. In fact, current HLS tools adopt a similar pre-
characterize approach to build up their delay model, except that
they do not characterize the effects of broadcasts as we do.

Figure 9 shows our measured delay of the add operation and
the BRAM buffer access of the int type, and multiplication of the
float type by Xilinx Vivado. For the add and buffer access opera-
tions, the delay values obtained by our experiments perfectly match
with the Vivado-HLS-predicted values when the broadcast factor is
small. For large broadcast factors, our measurement significantly
surpasses the HLS-predicted values, which reveals the inaccuracy
of current delay estimations under large broadcast factors. For the
multiplication, the HLS-predicted delays are much higher than that
in our experiments, possibly because the Vivado HLS tool is being
deliberately conservative about multiplication for floating points.
Therefore, we choose the maximum between the HLS-predicted
delay and our experimented results as our calibrated delay.
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Figure 9: Vivaod HLS estimated delay, our calibrated delay
and raw experimental delay on different operators.

To inject our calibration into the HLS tool, we parse the HLS
scheduling reports, which include the LLVM instructions annotated
with scheduled state/cycle, estimated delay, etc. For arithmetic op-
erations, we analyze all RAW dependencies to obtain the broadcast
factor (how many times a variable is read by later instructions in
the same cycle) and then calculate the calibrated total latency for
each chain of operations that are scheduled within one cycle. For
detected violations of the target frequency, we insert register mod-
ules to the source code, which is equivalent to forcing the scheduler
to split the operations into different cycles. If a broadcast of floating-
point multiplication by itself surpasses the delay target, we also
add additionally pipelining to facilitate downstream retiming. For
memory operations, the predicted delay is adjusted based on the
size of the buffer allocated, and additional pipelining will be added
to variables interacting with the buffer at the source code. For mem-
ory access to large buffers within a pipelined environment, we are
safe to add additional latency as this will not change the pipeline
initiation interval.

Another potential option is to explicitly construct a broadcast
tree in the source code to deal with huge broadcasts. However, it
is difficult to model the influence of different tree topologies on
the black-box physical design process. Our extensive experimental
experiences also show that it is better to let the physical design tools
handle the register duplication during placement, in which phase
the delay model and knowledge of layout are more comprehensive
and accurate.

4.2 Synchronization Logic Pruning
The redundant synchronization logic may severely limit the max-
imum achievable frequency. From the perspective of the down-
stream logic synthesis tools, they cannot be optimized away; but
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with high-level information, we are able to identify and get rid of
these synchronizations.

For the first case—dataflow synchronization, as shown in Fig. 5a,
we propose to isolate the independent flow paths in the flow graph.
We reconstruct the dataflow graph, not based on the user-defined
streaming kernels, but at the granularity of the elementary flow con-
trol units. We identify the isolated sub-graphs within user-defined
streaming kernels and split the independent flows explicitly into
separate loops, which avoids the unwanted synchronization from
the HLS compiler. Figure 10a shows the optimized logic.

For the second case — synchronizing parallel modules, as shown
in Figure 5b, the key idea is to only wait for the part with the longest
latency (Figure 10b). We read the HLS schedule report to look for
modules with determined latency for synchronization pruning. Our
method cannot handle modules with dynamic latency, but it is
possible to adopt symbolic execution to handle more situations, for
example loops with variable bounds. This remains our future work.

4.3 Skid-Buffer-Based Pipeline Control
We identify that the flow control broadcast can be avoided by a
common practice of adopting additional bounded-size buffering
called a skid buffer [8], which is shown in Figure 11. We further
improve this method by minimizing the area overhead.

Instead of switching the whole pipeline between two modes—
active and stalled, we transform the control logic to keep the
pipeline always flowing, and associate a valid bit with each data.
The key to avoiding overflow is the skid buffer (an extra bypass
FIFO) appended at the end of the pipeline. When the downstream
is not ready, data will accumulate in the buffer. Then the buffer
will become non-empty, and the pipeline will stop reading from
the upstream, so the later pipeline inputs will be invalid bubbles.
Assuming the length of the pipeline is N , as long as the depth of
the buffer is no smaller than N + 1 (+1 since the empty signal will
be deasserted one cycle after the first element is in), no overflow
will happen. We refer to this practice as skid-buffer-based pipeline
control. Note that this approach has the exact same throughput as
the original stall-based back-pressure control.

However, this method introduces area overhead. For the original
implementation, the area overhead will be:

BufferArea = (N + 1) ·wβ

where N is the depth of the pipeline and wβ is the width of the
output data of stage β , as marked in Figure 11.

Observe that the skid buffer can be split and distributed into
the datapath, as shown in Figure 12. Instead of an N -depth buffer
of width wβ at the end of the whole pipeline, we can insert an
(M+1)-depth buffer of width wα after the M-th stage, and an (N -
M+1)-depth buffer of width wβ after the final stage.

The new area overhead will be:
BufferArea′ = (M + 1) ·wα + (N −M + 1) ·wβ
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Figure 10: Pruned architecture corresponding to Figure 6.
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Figure 12: Multi-level skid-buffer-based pipeline control.

The minimization of the buffer area can be easily solved using
dynamic programming, and the details are omitted here.

To obtain the data width between stages, we parse the schedule
report and collect the definition location and usage location for each
variable, thus obtaining the total data width passed between stages.
Due to the engineering challenges to modify the HLS tool without
access to the source code, our proof-of-concept implementation of
the proposed solutions still involves some manual part. We hope
that the identified issues and corresponding solutions appeal to
HLS vendors and can be integrated into their commercial tools.

5 EXPERIMENTS
Our experiments are based on the Vivado HLS since most open-
source HLS benchmarks are developed using it. We use the Vivado
version 2018.2 with default mode. Retiming and fan-out optimiza-
tion are enabled. The target FPGA chips are based on the choices
of the original sources of the designs.

5.1 Benchmarks
Our results are in Table 1. The genome sequencing design is from [1].
We adjust the broadcast factor by changing BACK_SEARCH_COUNT.
The LSTM inference network design is from [9]. We adapt the
HLS_N-Node part, change the data type to floating point and set
N to be 256. The face detection design is from the Rosetta bench-
mark [11]. The matrix multiply and the pattern matching design are
adapted from [4]. We further increase the parallelism of the matrix
multiplication design to expose the problem. The Jacobi stencil ker-
nel and its HBM version are generated by the SODA compiler [2].
The streaming buffer design consists of two loops, which first write
to a very large buffer and then read from the buffer.

5.2 Broadcast-Aware Scheduling
We illustrate the experiment with [1] in detail as a case study to
present our broadcast-aware scheduling method.

1 #pragma HLS pipeline
2 #define UNROLL_FACTOR 64
3 // ......
4 for (int j = 0; j < UNROLL_FACTOR; j++) {
5 #pragma HLS unroll
6 dist_x = prev[j].x - curr.x;
7 dist_y = prev[j].y - curr.y;
8
9 dd = dist_x > dist_y ? dist_x - dist_y : dist_y - dist_x;

10 min_d = dist_y < dist_x ? dist_y : dist_x;
11 log_dd = log2(dd); // a series of if-else
12 temp = min_d > prev[j].w ? prev[j].w : min_d;
13
14 dp_score[j]= temp - dd * avg_qspan - (log_dd>>1)
15 if((dist_x == 0 || dist_x > max_dist_x )||
16 (dist_y > max_dist_y || dist_y <= 0) ||
17 (dd > bw) || (curr.tag != prev[j].tag) ){
18 dp_score[j] = NEG_INF_SCORE;
19 } } ......

Figure 13: Design code snippet from [1]. The loop-invariant
variables (broadcast sources) are marked blue.

Figure 14 shows an operation chain scheduled by HLS. Since
curr.x is consumed by 64 sub operators, in comparison to the HLS
predicted delay, we adjust the predicted delay of the sub from 0.78ns
to 2.08ns according to our measurement of the skeleton designs.
Therefore, we insert a register module to force the splitting of the
operation chain. Figure 15b shows the frequency gain.
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Table 1: Timing improvements and post-implementation resources on HLS designs using our proposed solutions.

Application Broadcast type Target FPGA
LUT (%) FF (%) BRAM (%) DSP (%) Freq (MHz)

Orig Opt Orig Opt Orig Opt Orig Opt Orig Opt Diff
Genome Sequencing [1] Data UltraScale+ (AWS F1) 22 22 11 12 6 6 8 8 264 341 29%
LSTM Network [9] Data UltraScale+ (AWS F1) 8 9 6 6 2 2 14 14 285 325 14%
Face Detection [10] Data ZYNQ (ZC706) 21 22 14 15 16 16 9 9 220 273 24%
Matrix Multiply Pipe. Ctrl. & Data UltraScale+ (AWS F1) 23 23 24 27 25 25 74 74 202 299 48%
Stream Buffer Pipe. Ctrl. & Data UltraScale+ (AWS F1) 1 1 1 1 95 95 0 0 154 281 82%
Stencil [2] Pipe. Ctrl. UltraScale+ (AWS F1) 40 40 41 41 30 29 83 83 120 253 111%
Vector Arithmetic Pipe. Ctrl. & Sync. UltraScale+ (AWS F1) 17 17 16 15 0 <1 60 60 195 301 54%
HBM-Based Stencil [2] Pipe. Ctrl. & Sync. UltraScale+ (Alveo U50) 21 23 23 23 34 31 37 37 191 324 70%
Pattern Matching [4] Data & Sync. Virtex-7 (Alpha-Data) 17 17 5 7 9 9 0 0 187 278 49%

curr.x
dist_x sub

dd
sub >

0.78ns
0.79ns 0.26ns 0.59ns

clock new clock

2.08ns

Line 6 Line 9 Line 11

target delay:               2.80 ns
HLS estimate delay:  2.80 ns
Calibrated delay:       3.179 ns (normal)
Calibrated delay:       5.665 ns (normal)
Actual delay:              4.278 ns 

clock

target = 2.8ns
uncertainty = 0.35 ns

Figure 14: An operation chain with broadcast operators.
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Figure 15: Optimization of data broadcast.

Experiment results show that our method approximates the ac-
tual delay in a more reasonable way, while the HLS-estimated delay
is invariant to broadcast factors. Although our result does not match
the actual perfectly, our frequency gain shows that this is helpful
for broadcast operations, since less neighboring logic will be put in
the same cycle of the broadcast, which will facilitate downstream
retiming and fanout optimization. As for overhead, the length of
the pipeline is 9 originally and 10 after optimization. Both have the
same initiation interval of 1. There will be fairly small overhead in
the usage of flip-flop, which is generally negligible.
5.3 Synchronization Logic Pruning
We use the HBM-based (High-Bandwidth Memory) Jacobi stencil
acceleration kernel generated by the SODA compiler [2, 12], which
uses 28 independent memory ports of the HBM. The 512-bit data
from each HBM port is scattered into 8 64-bit FIFOs, later to dif-
ferent streaming kernels. However, the SODA compiler expresses
the 28 independent flows together in a single loop, forming a sync
broadcast pattern similar to Figure 6a. Thus there is a synchroniza-
tion among all HBM ports and all destination FIFOs. We prune the
unnecessary sync by splitting the independent parts into different
loops. This boosts the frequency from 191 MHz to 324 MHz.
5.4 Skid-Buffer-Based Pipeline Control
We again experiment with the SODA compiler [2], but this time
generate the 2D Jacobi kernel as a whole pipeline. We concatenate
different iterations of the kernel to change the size of the pipeline.
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Figure 16: The achieved frequency of the Jacobi kernels.

Table 1: Timing improvements and post-implementation resources on real-world HLS designs using our proposed solutions.

Application Broadcast type Target FPGA
LUT (%) FF (%) BRAM (%) DSP (%) Freq (MHz)

Orig Opt Orig Opt Orig Opt Orig Opt Orig Opt Di�
Genome Sequencing [20] Data UltraScale+ 17 17 9 9 5 5 6 6 264 341 29%
Face Detection [21] Data Kintex-7 21 22 14 15 16 16 9 9 220 273 24%
Video Decoder [22] Data Virtex-7 38 38 22 22 2 2 10 10 192 230 20%
Matrix Multiply [19] Pipe. Ctrl. & Data UltraScale+ 23 23 24 27 25 25 74 74 202 299 48%
Stream Bu�er Pipe. Ctrl. & Data UltraScale+ 1 1 1 1 95 95 0 0 154 281 82%
Stencil [23] Pipe. Ctrl. UltraScale+ 40 40 41 41 30 29 83 83 120 253 111%
HBM-Based Stencil [23] Pipe. Ctrl. & Sync. UltraScale+ HBM 21 23 23 23 34 31 37 37 191 324 70%
Pattern Matching [19] Data & Sync. Virtex-7 17 17 5 7 9 9 0 0 187 278 49%
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Figure 17: Canton Tower

1 loop1: for (int i = 0; i < BIG_SIZE; i++) {
2 #pragma HLS pipeline II=1
3 in_fifo.read(&buffer[i]); } // data into buffer
4 loop2: for (...) ... // data out of buffer

Figure 18: Code for the large bu�er access example.

With the bubble-based pipeline control, the broadcast of enable is
avoided. Figure 19 shows the achieved frequency of varying bu�er
size. Three batches of experiments are done: the original one; only
�x the data broadcast; �x both the data and control broadcast. As
is obvious, we need to optimize both the data broadcast and the
control broadcast to achieve scalable performance.
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Figure 19: Achieved frequencies of the stream bu�er design
with di�erent bu�er sizes.

The simple design is representative to a large class of FPGA
accelerator designs. Transferring the data from external ports to
the local bu�ers of processing elements is the very foundation in the
pursuit of tremendous parallelism, which however ultimately boils
down to the few lines of code in Figure 18. The Pattern Matching
and Matrix Multiplication designs in our benchmark both fall into
this category.

7 CONCLUSION
In this paper, we �rst classify and analyze the common types of
broadcasts in the context of HLS. We present how these broadcasts
can become the critical paths due to the limitations of current HLS
tools. We propose corresponding solutions to each of the limitation
and test our solutions on both synthetic and real-world HLS designs.
Experiments show that our methods bring over 40% of frequency
gain on average.
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Table 2: Experiment results on 512-wide vector product.
Implementation Frequency LUT FF BRAM DSP
Stall 195 MHz 17% 16% 0% 60%
Skid Buffer 299 MHz 18% 16% 12% 60%
Min-Area Skid Buf. 301 MHz 17% 15% 0.02% 60%

Each iteration takes about 5% of LUT, 5% of Flip-Flop, 4% of BRAM
and 10% of DSP. Figure 16 shows the improvements by changing
the pipeline control logic to the skid-buffer-based method. For the
super pipeline of eight Jacobi iterations, it has 370 datapath stages
and produces 512-bit results. Since this pipeline has a spindle shape,
the best strategy is to add the entire buffer at the end of the pipeline.
The corresponding buffer only costs about 23KB of BRAM resource.

We present a synthetic example to further demonstrate the ben-
efit of our dynamic programming algorithm to minimize the area
of the extra buffer. Assume the pipeline computes (a · b)c, where
the dot-product of vector a and b is scalar-multiplied with vector
c. A reduction tree is inferred for a · b, and the output scalar is
multiplied with c. Figure 17 shows the case for 32-wide vector of
float numbers. Note that in stage #56 only one number (result of
a · b) is passed through. Thus, the first stages #1 to #56 should be
buffered separately from the stages after #56. Directly adding a
buffer at the end results in (61 + 1) × 1024 = 63488 bits while the
optimized version costs (56 + 1) × 32 + (5 + 1) × 1024 = 7968 bits.
Table 2 shows the results for the 512-wide vector product.

5.5 Combined Effect
In many real-world cases, we must combine these two aforemen-
tioned approaches to truly resolve the timing degradation. For
example, Figure 18 shows a simple stream buffer with both data
and control broadcasts. The source data register is connected to
each of the BRAM units, forming an implicit data broadcast. Besides,
the enable back-pressure signal is broadcast to all BRAM units.

5



1 loop1: for (int i = 0; i < BIG_SIZE; i++) {
2 #pragma HLS pipeline II=1
3 in_fifo.read(&buffer[i]); } // data into buffer
4 loop2: for (...) ... // data out of buffer

Figure 18: Code for the large buffer access example.

Based on the size of the array and the pipeline environment, ad-
ditional latency is added to optimize the data broadcast. Meanwhile,
the skid-buffer-based pipeline control is used to avoid the broadcast
of enable. Figure 19 shows the achieved frequency of varying
buffer sizes. Three batches of experiments are done: the original
one; the version which only has the data broadcast optimized; the
version with both the data and control broadcast optimized. As
is obvious, we need to optimize both the data broadcast and the
control broadcast to achieve scalable performance.
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Figure 19: Achieved frequencies of the stream buffer design.
Another example is pattern matching from [4] with both data

and sync control broadcast similar to Figure 6b. Addressing both of
them lead to a high frequency boost, as in Table 3.

Table 3: Experiment results on pattern matching.
Implementation Frequency LUT FF BRAM DSP
Original 187 MHz 17% 5% 9% 0%
Opt. Data 208 MHz 18% 7% 9% 0%
Opt. Data & Ctrl 278 MHz 17% 7% 9% 0%

6 RELATED WORK
General high-fanout optimization. fanout optimization has
been extensively studied in logic-synthesis [13, 14, 15] and physical
design [16, 17, 18, 19]. However, optimization approaches at these
levels are restricted by the cycle-accurate timing specification of the
RTL input. For example, they cannot arbitrarily divide the broadcast
delay into two or more clock cycles; retiming [19, 20] will not work
without enough registers on the path, etc. In contrast, optimization
at the behavior level is more effective as we can change the schedule
of the broadcast. Even though the original designs are implemented
with modern backend broadcast optimization, our behavior-level
optimizations still bring huge frequency gain. Cong et al. [21] uses a
multi-level broadcast tree for the control signal, but needs iterative
tuning for a satisfying tree topology.

Physically aware optimization for HLS. Zhang et al. [7] pro-
pose to iteratively run placement and routing to calibrate the delay
information used by HLS. However, this approach requires tens of
hours of compilation time overhead for each design. Meanwhile,
even with the accurate delay, it still cannot address the timing is-
sue caused by the auto-inferred control logic. Zhao et al. [22] and
Tan et al. [23] show that the delay prediction of logic operations (e.g.,
AND, OR, NOT, etc) is too conservative, so they propose to consider
the technology mapping for logic operations. Fujiwara et al. [24, 25]
try to model clock skew at the behavior level. All of these efforts
are orthogonal to our work. In contrast, we propose ways to cali-
brate the delay prediction for broadcasts. Cong et al. [26] propose
preliminary metrics to evaluate the layout-friendliness of an RTL
netlist, which lacks consistent accuracy. Tatsuoka et al. [27, 28]
reports which lines of source codes will lead to MUX and deMUX.

Optimization of HLS data broadcast. Cong et al. [29] tried to
solve a specific case of the data broadcast problem in our classifi-
cation. They attempted to alleviate the critical path by accessing
large buffers, which may be mapped to scattered BRAM units. How-
ever, they require explicit user intervention and iterative tuning to
explore the best topology. They do not consider the ultimate limita-
tion of the HLS. Moreover, they can only re-arrange the data inter-
connect between the external port and each explicitly-defined pro-
cessing element, but not fine-grained datapath. However, their ap-
proach is suboptimal compared to our data-control co-optimization.
1) We add more pipelining between the data port and target buffers.
2) we optimize the corresponding improper control logic. Besides,
we avoid user intervention and iterative tuning.

7 CONCLUSION
In this paper, we analyze the common types of broadcast in HLS.
We present delay model calibration, synchronization pruning and
min-area skid-buffer-based pipeline control. We bring over 50% of
frequency gain on real-world designs.
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