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ABSTRACT
To drastically improve energy efficiency, we believe future pro-
cessors need to go beyond parallelization and provide architec-
ture support for customization, enabling systems to adapt to differ-
ent application domains. In particular, we believe future architec-
tures will make extensive use of accelerators to significantly reduce
energy consumption. Such architectures present many new chal-
lenges and opportunities, such as accelerator synthesis, schedul-
ing, sharing, virtualization, memory hierarchy optimization, and
efficient compilation and runtime support. With respect to these
areas, we review the progress of our research in the Center for
Domain-Specific Computing (supported by the NSF Expeditions-
in-Computing Award), and discuss ongoing work and additional
challenges.
Categories and Subject Descriptors
C.1.3 [PROCESSOR ARCHITECTURES]:
Other Architecture Styles—Heterogeneous (hybrid) systems

General Terms
Design

Keywords
Chip multiprocessor, Hardware Accelerators, Accelerator Virtual-
ization, Accelerator Sharing

1. INTRODUCTION AND MOTIVATION
The computing industry is facing ever-increasing computing needs

and power density limitations that can no longer be solved us-
ing simple processor frequency scaling. In order to tackle these
new challenges, the commonly proposed solution has been par-
allelization: integrating tens to hundreds of computing cores in a
single processor and connecting hundreds to thousands of com-
puting servers in a warehouse-scale data center. The caveat with
such highly-parallel general-purpose computing systems, however,
is the introduction of a series of new challenges in terms of per-
formance, power, heat dissipation, space, and cost. Our solution,
on the other hand, is to look beyond parallelization and focus on
domain-specific customization, providing capabilities that adapt ar-
chitectures to specific application workloads in order to achieve sig-
nificant improvements in power-performance efficiency.
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There often exists a significantly large performance gap between
an entirely customized solution (using an application-specific inte-
grated circuit (ASIC)) and a general-purpose one. In a case study
of the 128-bit key AES encryption algorithm [21], an ASIC imple-
mentation in 180 nm CMOS achieves 3.86 Gbits/sec at 350 mW,
while the same algorithm achieves 31 Mbits/sec at 240 mW on a
StrongARM processor and 648 Mbits/sec at 41.4 W on a Pentium
III processor. In the worst case, when the algorithm is coded in
Java and executed on an embedded SPARC processor, it yields 450
bits/sec at 120 mW. This difference implies a performance/energy
efficiency (measured in Gbits/sec/W) gap of roughly 3 million. Sim-
ilarly, in a recent study by Hameed et al. [14], it is shown for a 720p
HD H.264 encoder that ASIC is 500X more energy efficient than a
four-processor CMP.

To better understand the inefficiency of a general-purpose pro-
cessor, we have carried out detailed analysis on how it consumes
energy. We model a typical superscalar out-of-order pipeline for
which the hardware parameters are shown in Figure 1. The energy
breakdown of the various pipeline components, 1 which is based on
McPAT [17] modeling for SPEC [1] benchmarks, is shown in Fig-
ure 2. Notably, of the total energy consumption of the pipeline, ac-
tual compute units (i.e. Int ALU, FPU, and Mul/Div) and memory
account for only 26% and 10%, respectively. 2 As such, the major-
ity of the energy consumption (i.e. 64%) is for supporting the flexi-
ble instruction-oriented model of the general-purpose core, and not
for performing actual computations. Therefore, by avoiding con-
ventional instructions and registers, a fundamental efficiency gain
can be achieved from shifting to an accelerator-centric paradigm.

To further highlight the inefficiency of the processor’s compu-
tations, we measure the energy consumption of the compute units
(running at 2GHz) for 32-bit addition, 32-bit multiplication, and
single-precision floating-point (SP FP) operations, comparing them
to dedicated logic blocks implemented in 45nm ASIC technology
(TSMC library [2]). The results are as follows:
• 32-bit add: Processor = 0.122 nJ; ASIC = 0.002 nJ (at 1 GHz)
• 32-bit mul: Processor = 0.120 nJ; ASIC = 0.007 nJ (at 1 GHz)
• SP FP: Processor = 0.150 nJ; ASIC = 0.008 nJ (at 500 MHz)

The dedicated logic achieves energy savings of 61X for 32-bit
addition, 17X for 32-bit multiplication, and 19X for single-precision
FP operations. The processor’s compute units are considerably
more power-hungry for several reasons. First, there is excessive
functionality: the processor’s compute units consume more power

1“Miscellaneous”, according to McPAT, refers to energy consumed
by pipeline registers, control logic, and “undifferentiated logic”.
2McPAT reports 422.02 mW of average power consumption for the
Int ALU (running at 2 GHz); synthesis in 45nm using Synopsys
Design Compiler results in 11.41 mW of power consumption, yet
the ALU can only run at a maximum clock rate of 500 MHz.
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Fetch/issue/retire width 4 

# Integer ALUs 3 

# FP ALUs 2 

# ROB entries 96 

# Reservation station entries 64 

L1 I-cache 32 KB, 8-way set assoc. 

L1 D-cache 32 KB, 8-way set assoc. 

L2 cache 6 MB, 8-way set assoc. 
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 Figure 1: Hardware parameters for general-purpose processor
to provide support for multiple operations (i.e. addition, subtrac-
tion, and bit-wise operations). Second, there is excessive precision:
64-bit ALUs in the processor are being used for 32-bit operations,
while dedicated units can be fine-tuned to the required precision.
Finally, there are higher frequency operations: dynamic/domino
logic, which dissipates more power, is used for running the com-
pute units at the processor’s clock rate, while static logic can be
used for dedicated logic running at lower frequencies. We note that
the McPAT modeling tools assume dynamic/domino logic, result-
ing in higher estimations of power and energy consumption for the
compute engines. However, though innovations in industry may
allow for static logic with 45nm or smaller technology, we would
nevertheless see a significant benefit in customization due to the
elimination of excess functionality and precision support.

Using custom ASIC for the compute units (i.e. Int ALU, FPU,
and Mul/Div), we reduce 97% of the energy consumed by the com-
pute units, bringing their total energy consumption to less than 1%
(vs. 26%) of the original energy for the pipeline (as shown in Fig-
ure 3). However, noting that the total energy consumption for com-
putation (i.e. compute units + memory) is now 11% of the original
energy consumption, an accelerator-rich architecture has the po-
tential to gain significant energy savings from the remaining 89%.
Furthermore, an accelerator-centric design may achieve additional
energy efficiency by way of bit-width customization, specialized
memory architectures that better utilize on-chip data, and custom
on-chip networks that exploit predictable communication patterns.
Overall, we believe accelerator-based techniques could lead to 10-
100X energy efficiency over general-purpose processors.

By primarily expending energy on actual computation, ASIC-
based accelerators significantly improve performance/energy effi-
ciency compared to general-purpose processors. There are three
essential problems facing extensive usage of ASIC-based accelera-
tors: (1) low utilization, (2) narrow workload coverage, and (3) de-
sign cost. However, due to tight power and thermal budgets, which
lead to the utilization wall [22] and dark silicon [12] issues, we
can simultaneously activate only a fraction of computing elements
on-chip in future technologies. This means low utilization is an
inherent characteristic of future chips. To address the problem of
narrow workload coverage, we look to composition of fine-grained
accelerators to virtualize larger blocks of computation (discussed in
Section 2). Furthermore, although implementing monolithic accel-
erators in ASIC may have excessive design costs, compiler-driven
customization of composable accelerators is a more viable option.
As data is streamed through distributed sets of composed acceler-
ators on a heterogeneous platform, the processor no longer acts as
the main focal point of computation. This fundamental shift from
traditional von Neumann designs allows future architectures to em-
brace the dark silicon era through customization for maximum en-
ergy efficiency. As such, we foresee future processor architectures
that are rich in accelerators, as opposed to general-purpose cores.

The rest of this paper is organized as follows: Section 2 reviews
the progress of our research on accelerator-rich architectures con-
ducted at the Center for Domain-Specific Computing (CDSC) [11].
Section 3 discusses our current efforts in addressing the limitations
of composable accelerator-rich platforms and Section 4 details the
methodology we use to model these systems. Our simulation re-
sults are presented in Section 5, related work is discussed in Sec-
tion 6, and we conclude with Section 7.

2. PROGRESS ON DEVELOPING
ACCELERATOR-RICH ARCHITECTURES

We began our investigation of accelerator-rich architectures in
2010 and developed three generations of architecture templates.
The first generation of architectures focused on hardware support
for accelerator management (ARC) [6]. Figure 4-A shows the over-
all architecture of ARC, which is composed of cores, accelerators,
the Global Accelerator Manager (GAM), shared L2 cache banks,
and shared network-on-chip (NoC) routers between multiple accel-
erators. These components are all connected by the NoC. Each
accelerator node includes a dedicated DMA-controller (DMA-C)
as well as scratch-pad memory (SPM) for local storage and a small
translation look-aside buffer (TLB) for translating from virtual to
physical addresses. In this architecture, we first introduce the GAM,
a hardware resource management scheme that provides support for
sharing a common set of accelerators among multiple cores. Us-
ing a hardware-based arbitration mechanism, the GAM provides
feedback to cores indicating the wait time for a particular resource
to become available. In addition, a lightweight interrupt system
is introduced to reduce the overhead incurred by the OS for han-
dling interrupts, which can occur frequently in an accelerator-rich
platform. ARC also provides architectural support allowing for the
composition of a larger virtual accelerator out of multiple smaller
accelerators. On a set of medical imaging applications (our origi-
nal driver applications at the CDSC), ARC shows significant per-
formance improvement (on average 16X) and reduction in energy
consumption (on average 13X) compared to software-based execu-
tion on an Intel Xeon E5405 server running at 2GHz.

Although ARC produces impressive performance and energy im-
provements, it has two limitations. First, it has narrow workload
coverage. For example, the highly specialized monolithic accel-
erator for Deblur cannot be used for Segmentation (refer to the
medical imaging pipeline in [11]). The second limitation is that
each accelerator has repeated resources, such as the DMA engine
and scratchpad memory (SPM), which are underutilized when the
accelerator is idle. To overcome these limitations of ARC, we in-
troduced CHARM [8] (shown in Figure 4-B), a Composable Het-
erogeneous Accelerator-Rich architecture that provides scalability,
flexibility, and design reuse. We noticed that all the ARC acceler-
ators for the medical imaging domain could be decomposed into a
small set of computing blocks, such floating-point divide, inverse,
square root, and 16-input polynomial functions. These blocks are
called the accelerator building blocks (ABBs). Our compiler de-
composes each compute-intensive kernel (i.e. code region selected
as a candidate for acceleration) into a set of ABBs at compile time,
and stores the data flow graph describing the composition [15].
The GAM is extended to include an “accelerator block composer”
(ABC), which uses data flow graphs at runtime to dynamically al-
locate and compose available ABBs in order to virtualize mono-
lithic accelerators. Therefore, although each composed accelerator
is somewhat slower than the dedicated accelerator, we can poten-
tially obtain more copies of the same accelerator, leading to better
acceleration results. Our ABC is also capable of providing load
balancing among available compute resources to increase acceler-
ator utilization. With respect to the same set of medical imaging
benchmarks, the experimental results on CHARM demonstrate im-
proved performance (over 2X better than ARC) and similar gains
in energy efficiency [8].

In addition to improving performance/energy efficiency, the CHARM
architecture provides better flexibility and wider workload cover-
age compared to ARC. As shown in [8], by using the same set of
ABBs designed for the medical imaging domain, one can compose
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Figure 2: Energy breakdown of original pipeline
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Figure 3: Energy breakdown when custom ASIC is employed
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Figure 4: Overview (not to scale) of accelerator-rich architectures: (A) ARC; (B) CHARM; (C) CAMEL
accelerators in other domains, such as computer vision and navi-
gation, while still achieving impressive speedup and energy reduc-
tion. However, it is possible that CHARM misses some ABB types
that are necessary for composing functions in a new application do-
main. To address this issue, we proposed CAMEL [9], which fea-
tures programmable fabric (PF) to extend the use of ASIC-based
composable accelerators and support algorithms beyond the scope
of the baseline platform. Figure 4-C presents an overview of the
CAMEL architecture. With a combination of hardware extensions
and compiler support, we demonstrate an average of 12X perfor-
mance improvement and 14X energy savings compared to a 4-core
2GHz Intel Xeon E5405 processor across benchmarks that deviate
from the original medical imaging domain used for our baseline
platform. More details are available in [9].

3. ONGOING RESEARCH ON COMPOSABLE
ACCELERATOR-RICH PLATFORMS

Throughout our work on composable accelerators, and in par-
ticular CHARM, we have come to better understand associated
performance characteristics. A large part of our ongoing work is
to find an optimal design point that better facilitates communica-
tion between ABBs. An important limiting factor on the over-
all performance of a CHARM system is the NoC connecting the
various islands to memory resources, and off-chip memory band-
width. These elements place a hard constraint on the potential per-
formance of a CHARM system. For the purposes of this study, we
fix the design of all system components except structures internal
to the ABB island, so as to focus on the implications of various
design decisions for components internal to an island. Details re-
garding the evaluated system can be found in Section 4.
3.1 Anatomy of an ABB Island

In order to evaluate the quality of an ABB island design, we
must first categorize the individual components of an island, and
understand the design goals of these components. Each ABB is-
land consists of a series of ABBs that serve as the accelerator com-
pute engines, a set of SPM banks that serve as local storage for
the ABBs, a DMA engine to coordinate memory traffic between
shared memory and the island, and a pair of networks for internal
connectivity.

The two networks of this system, which together constitute the
elements of greatest cost and greatest impact on performance, are
networks connecting the ABB to the SPM (ABB↔SPM), and con-

necting the SPM memory to the DMA engine (SPM↔DMA). The
design objective of the ABB↔SPM network is to provide low and
uniform latency. Latency fluctuations in this network result in stalls
in the ABB compute engine. The design objective of the SPM↔DMA
network is high bandwidth between the DMA and the individual
SPMs. Latency in this network is less critical.

The original CHARM architecture used a crossbar for both the
ABB↔SPM and SPM↔DMA networks. While this provides low
latency and reasonable bandwidth, crossbars scale poorly. This be-
comes a concern as the size of the island increases, and the number
of ABBs on a single island grows beyond a small number. The
ABB↔SPM crossbars in the original CHARM design also allowed
for sharing of SPM banks between multiple accelerators. However,
sharing in the ABB↔SPM network artificially limits the number
of ABBs that can be active at any given time, and introduces com-
plexity to scheduling. To eliminate SPM sharing conflicts and make
more efficient use of memory resources, it therefore becomes nec-
essary to have each SPM bank allocated to only one ABB at a time.
3.2 Design Space Exploration Parameters

Our design space exploration begins by adjusting the number of
islands while keeping the system-wide total number of ABBs fixed,
resulting in configurations with different numbers of ABBs per is-
land. In particular, we vary the number of islands from 3-24 while
maintaining a total of 120 ABBs in the system. In terms of mem-
ory, while the amount of SPM dedicated to a given ABB is fixed
by the type of ABB, we vary the number of ports of this SPM from
the minimum to two times this quantity. The minimum is defined
as the number of ports (in aggregate) that are necessary to allow
the ABB to run at peak throughput. Adding SPM ports beyond
this minimum keeps the ABB compute engines from observing the
impact of bank conflicts.

We also evaluated two potential designs for the ABB↔SPM net-
work: (1) a crossbar that connects the ABB to a set of private SPM
banks, and (2) a wider crossbar that connects each ABB to both its
most local SPMs and the SPM banks of its neighbors. This second
design allows for sharing of SPM banks, and potentially allows for
fewer SPM banks to be included, while also allowing for an in-
crease in utilization of SPM resources.

As for the SPM↔DMA network, we evaluated three potential
designs: (1) a unidirectional ring network, an example of which
can be seen in Figure 5, (2) a crossbar connecting the DMA to
every SPM bank, and (3) a crossbar connecting all SPM banks to
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Figure 5: Island design using ring for SPM↔DMA network

each other as well as to the DMA. Chaining in the second option
involves sending data from the source SPM to the DMA, then to
the destination SPM. For this reason we refer to the second option
as the proxy crossbar design. Chaining in the third option involves
sending data directly from the source SPM to the destination SPM;
we refer to this option as the chaining-optimized crossbar design.

4. SIMULATION AND MODELING DETAILS
Our evaluation uses a detailed full-system cycle-accurate sim-

ulator based on Simics [18] and GEMS [19]. Our modifications
primarily consist of adding simulation support for the ABB types
described in [8], as well as modeling the ABC, the compute en-
gines, and the internal mechanisms of ABB islands. Table 2 in [9]
describes the tools we used for modeling timing and power of the
various components of our island-based architecture. For the ring
network featured in this work, we model area and energy of the
routers and links using the Orion [24] tool, estimating link lengths
based on island size. Furthermore, the parameters of the simulated
system can be found in Table 2 of [8], with the exception that the
system in this work is configured with 4 memory controllers (avg.
180-cycle latency @ 10 GB/s) and 120 ABBs (78 polynomial, 18
divide, 9 sqrt, 6 power, 9 sum) with uniform distribution of ABBs
among the islands and islands among the processor.

The workloads used for this evaluation are drawn from the Medi-
cal Imaging and the Navigation domains, and can be found detailed
in our prior work [6, 8, 9]. Our software infrastructure includes a
compiler framework [8, 9, 15] for automating the process of an-
alyzing a given accelerator kernel, determining a minimum set of
ABBs to cover the kernel, and generating an ABB flow graph to be
used for dynamically composing that accelerator.

5. RESULTS
For the purpose of discussing the findings of this study, we will

consider the simplest possible island construction as our baseline.
This island would feature conservative SPM porting, the proxy cross-
bar for the SPM↔DMA network, and no sharing of SPMs.
5.1 SPM Sharing

The original CHARM architecture featured partial crossbars be-
tween the ABBs and the local SPM banks. The purpose of this
was to allow for SPM sharing, and reduce the amount of area de-
voted to the SPM. Each ABB is connected both to its own memory
and to the memory of its neighbors, and some subset of these SPM
banks are needed to use this ABB. Since the allocation of a partic-
ular ABB requires assigning the shared memory to be temporarily
owned by the newly allocated ABB, the act of allocating an ABB
renders other near-by ABBs unusable.

The given architecture exhibits three main costs: (1) the algo-
rithm that performs allocation must take into consideration side-
effects when making an allocation decision, resulting in a consid-

erably more complex ABC, (2) the ABB↔SPM crossbar is larger
than it would be were the SPM banks private to a given acceler-
ator, and (3) even if a system has a large number of ABBs, the
effective usable amount of ABBs reduces as the degree of sharing
increases. This third point is especially critical in a system like
CHARM, since the total number of ABBs is heavily dominated by
a single type of ABB (polynomial), making it impossible to arrange
a sharing scheme that allows for effective utilization of the available
compute resources.

While all of the above points are valid arguments against shar-
ing, the most quantitatively concise point against sharing is the
increased complexity of the crossbar joining the ABB and SPM
banks. Because the SPM banks are individually quite small, the
increase in crossbar complexity eliminates area savings. We found
that introducing a crossbar that allows an ABB to share the SPM of
only its immediate neighbors, a modest amount of sharing, grows
the ABB↔SPM crossbar by 3X its original size, and potentially
reduces the number of SPM banks by 0.66X. With the volume of
SPM banks allocated to a given ABB already constituting about
20% as much area as the ABB↔SPM crossbar (reduced to 7% with
sharing), this is a poor trade. For these reasons, we will show no
further results regarding SPM bank sharing, and dismiss it as a poor
design choice.
5.2 Chaining-Optimized Crossbar Topology

A chaining-optimized crossbar, as described in Section 3.2, is
attractive for performance reasons as intra-island communication
constitutes a non-trivial amount of the total communication be-
tween ABBs. In terms of performance, this crossbar conceptu-
ally would be an optimal choice for enabling intra-island chain-
ing. However, we have found that this design does not scale be-
yond the smallest islands. For large islands, such as those with
40 ABBs, the SPM↔DMA network accounts for over 99% of the
total island area, while contributing only modest performance im-
provements. The reason performance is not improved more signif-
icantly is that not only is there extra latency for routing through
the large crossbar (which will be discussed in greater detail in Sec-
tion 5.5), but more importantly, chaining on this network is not
observed to constitute the primary performance bottleneck. At
any given time, most ABB pairs are not communicating with one
another, which becomes increasingly apparent as the size of islands
increases. Therefore, this chaining-optimized crossbar topology
provides a great deal of connectivity, but severely over-provisions
the capacity for chaining relative to what is needed in practice.
5.3 Ring Network Width & Ring Count

We have evaluated various bit-widths (16-byte and 32-byte link
widths) for SPM↔DMA networks. In the cases of ring networks,
we have also evaluated the benefit of adding multiple rings. We
have found that a 2-ring network with 16-byte wide channels per-
forms almost identically to a 1-ring network with 32-byte wide
channels, and does so with reduced ring router complexity. The pri-
mary benefit for having a larger number of narrow rings is to make
better use of bandwidth in the case where transmitted packets are
smaller than the ring width, which would allow for transmission of
multiple flits simultaneously. Because the SPM↔DMA network
almost exclusively transmits data at the granularity of cache blocks
(64-byte) or half-blocks (32-byte), reducing the bit-width below a
half-block size does not lead to an improvement. As such, we will
not show further results for network configurations with 16-byte
link widths except in the case of a single ring, since this data point
provides a reasonable distinction from the 32-byte-wide rings.
5.4 SPM Porting

Intuitively, bank conflicts on local memory have the potential to
constitute a substantial performance shortcoming. For this reason,



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3 Islands 6 Islands 12 Islands 24 Islands

Denoise, Crossbar Denoise, 1-Ring, 16-Byte

Denoise, 1-Ring, 32-Byte Denoise, 2-Ring, 32-Byte

Denoise, 3-Ring, 32-Byte EKF-SLAM, Crossbar

EKF-SLAM, 1-Ring, 16-Byte EKF-SLAM, 1-Ring, 32-Byte

Figure 6: Performance impact of utilizing different
SPM↔DMA networks while adjusting number and size of
ABB islands; normalized to baseline for 3 islands

0.9

1.0

1.1

1.2

1.3

D
e

b
lu

r

D
e

n
o

is
e

S
e

g
m

e
n

ta
ti

o
n

R
e

g
is

tr
a

ti
o

n

R
o

b
o

t 
Lo

ca
li

za
ti

o
n

E
K

F
-S

LA
M

D
is

p
a

ri
ty

 M
a

p

D
e

b
lu

r

D
e

n
o

is
e

S
e

g
m

e
n

ta
ti

o
n

R
e

g
is

tr
a

ti
o

n

R
o

b
o

t 
Lo

ca
li

za
ti

o
n

E
K

F
-S

LA
M

D
is

p
a

ri
ty

 M
a

p

3 Islands (40 ABBs / Island) 24 Islands (5 ABBs / Island)

1-Ring, 16-Byte 1-Ring, 32-Byte 2-Ring, 32-Byte 3-Ring, 32-Byte

2.2 
2.6 

2.2 
2.2 1.9 

1.6 
1.7 

1.3 
1.3 

Figure 7: Performance of various SPM↔DMA ring networks;
shown for 3 islands (40 ABBs / island) and 24 islands (5 ABBs /

island); normalized to baseline for respective number of islands

0.9

1.1

1.3

1.5

1.7

D
e

b
lu

r

D
e

n
o

is
e

S
e

g
m

e
n

ta
ti

o
n

R
e

g
is

tr
a

ti
o

n

R
o

b
o

t 
Lo

ca
li

za
ti

o
n

E
K

F
-S

LA
M

D
is

p
a

ri
ty

 M
a

p

D
e

b
lu

r

D
e

n
o

is
e

S
e

g
m

e
n

ta
ti

o
n

R
e

g
is

tr
a

ti
o

n

R
o

b
o

t 
Lo

ca
li

za
ti

o
n

E
K

F
-S

LA
M

D
is

p
a

ri
ty

 M
a

p

3 Islands (40 ABBs / Island) 24 Islands (5 ABBs / Island)

1-Ring, 16-Byte 1-Ring, 32-Byte 2-Ring, 32-Byte 3-Ring, 32-Byte
5.0 4.7 

3.4 6.4 5.0 2.7 
2.6 1.7 

1.7 

Figure 8: Performance per unit energy of selected designs; nor-
malized to baseline for respective number of islands
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Figure 9: Performance per unit area of selected designs; nor-
malized to baseline for respective number of islands

we have evaluated two SPM porting configurations. The first con-
figuration features exactly the number of ports required to keep the
compute engines functioning at peak throughput. The second con-
figuration features twice this amount, with the intent that bank con-
flicts can be overcome by over-provisioning SPM bandwidth. We
have found that adding ports to SPM banks contributed very little
to the total amount of performance, if at all. The primary reason for
this is that software has control over the layout of data in the SPM,
and even a superficial effort to place data in a favorable SPM bank
could eliminate almost all SPM bank conflicts. Over-provisioning
of SPM ports therefore only eliminates a negligible amount of con-
flicts, thereby marginally improving the throughput of the attached
ABB. Also, because the ABB performance is not the primary lim-
iting factor for this entire system, as discussed in Section 5.5, this
marginal drop in ABB performance is of little consequence under
most circumstances. Furthermore, increasing ports increases the
area and power consumption of SPM banks, along with the size of
the ABB↔SPM crossbar (if used). As such, we conclude that de-
signing an island with exact provisioning of SPM ports is not only
sufficient, but preferable.
5.5 Performance

We have consistently found that one of the primary performance
limitations in this accelerator-rich architecture is the interface be-
tween the ABB island and the NoC, particularly the NoC band-
width. This bottleneck is the primary reason for the results shown
in Figure 6, which displays performance for a selection of bench-
marks using several SPM↔DMA network configurations with dif-
ferent numbers of islands (results are normalized to the baseline
configuration for 3 islands). In almost all island configurations, the
link connecting the ABB island to the rest of the system has been
fully utilized. As ABBs are distributed across more islands (i.e.

fewer ABBs per island), there is likely more inter-island commu-
nication, which causes performance to be more heavily dominated
by the NoC. For benchmarks with small amounts of ABB chaining
(e.g. Denoise), compared to benchmarks with more ABB chain-
ing (e.g. EKF-SLAM), inter-island communication is less probable
and constitutes a smaller portion of the total traffic on the NoC. As
such, when the number of islands is increased, benchmarks with
less chaining exhibit larger improvements in average performance
across all the SPM↔DMA network configurations.

Figure 7 shows the performance impact of adjusting the topol-
ogy of the SPM↔DMA network. As shown, the majority of ring
configurations outperform the proxy crossbar (i.e. the baseline to
which the results are normalized), though the impact is reduced
as the total number of islands increases. The crossbar also ex-
hibits particularly poor performance for cases with large amounts
of ABB chaining, such as with the Segmentation, Robot Local-
ization, and EKF-SLAM benchmarks. Unlike a crossbar, the ring
network presents a more scalable solution, and exhibits bandwidth
provisioning that is easier to fine-tune.
5.6 Energy & Energy Per Computation

Figure 8 shows performance per unit energy for several con-
figurations. This shows the efficiency with which we are able to
achieve a given performance point. This graph clearly shows that
over-provisioning interconnect resources allows for more energy-
efficient operations. The reason for this is because a more robust
interconnect allows for higher performance, but uses very similar
power per bit-transferred. Also, comparing the 24-island configu-
ration with the 3-island one reveals that having more islands results
in smaller efficiency gains as the interconnect strength is increased.
This is to be expected since performance is more heavily domi-
nated by the NoC interface when the number of islands increases
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Figure 10: Performance and energy gains of “best” accelerator-
rich design configuration over chip multi-processor (CMP)

(as described in Section 5.5).
5.7 Area & Compute Density

The SPM↔DMA network accounts for 16-40% of the total is-
land area for a ring network (depending on the bit-width of links
and the number of rings), and 44-50% of the total island area for
crossbar networks for large islands. For this reason, under-provisioning
this resource, and thus maximizing network utilization, allows for
an increase in compute density, even though performance suffers.
Figure 9 shows this clearly, with compute density (i.e. performance
per unit area) dropping as network resources are added to increase
the system’s performance. Small networks see high utilization, and
even limit accelerator throughput severely in some cases. However,
due to the NoC interface bottleneck described in Section 5.5, there
is little justification for enlarging the SPM↔DMA network capac-
ity very much beyond the bandwidth cap instituted by the NoC.
5.8 Comparison to Chip Multi-Processor (CMP)

Based on our design space exploration, the configuration that
performs the best in terms of average performance, energy effi-
ciency, and compute density is the 24-island design with a 2-ring
SPM↔DMA network of 32-byte links, and with no SPM sharing
and no over-provisioning of SPM ports. In Figure 10, we compare
this design to a 12-core 1.9 GHz Intel Xeon E5-2420 processor,
where on average, our accelerator-rich design achieves 7X speedup
and 20X energy savings. Comparing to the 4-core CMP used in [9],
we see 25X speedup and 76X energy savings. Furthermore, this
design maintains an average ABB utilization of 18.5% with a peak
utilization of 43.5%.

To fully validate the performance and energy benefits of accelerator-
rich architectures, the CDSC researchers are also actively working
on silicon prototyping. Preliminary prototyping results of ARC and
CHARM have been recently reported in [3] and [5].

6. RELATED WORK
There have been a number of recent designs of heterogeneous

architectures. Core fusion [16], core spilling [10], and TRIPS [13]
have considered the composition of simple cores to form more
complex general-purpose cores. However in those works, the com-
position is of coarser grain than the ABBs in CHARM, which al-
lows for less flexibility in exploiting pipeline parallelism existing
between ABBs. Also, in the CHARM approach there is no restric-
tion on ABBs, which cannot be said for any of the above works. Qs-
Cores [23] relates to CHARM as it uses specialized cores to provide
energy efficiency by exploiting similar code patterns within and
across applications. However, it lacks dynamic, hardware-based
management and load-balancing of the accelerators.

Related work in accelerator virtualization is featured in VEAL [4]
and PPA [20]. VEAL [4] uses an architecture template for a loop
accelerator and proposes a hybrid static-dynamic approach to map
a given loop onto that architecture. PPA [20] uses an array of PEs,
which can be reconfigured and programmed. Similarly, CHARM [8]
implements accelerators for the applications in a domain using a
minimal set of fine-grained accelerator building blocks (ABBs).

CAMEL [9] expands upon the CHARM work to provide more flex-
ibility in terms of applicability to multiple domains as well as future
additions or modifications to the same domain.
7. CONCLUSION

Composable accelerators have been shown, both by ourselves
and others, to be capable of performing competitively with special-
purpose monolithic accelerators for a variety of workloads. In ad-
dition to offering attractive performance, composable accelerators
offer a viable programming platform that is free of much of the
intractability, both in terms of computation and engineering costs,
that has thus far barred accelerators from pervasive usage. While
this work may not show the best possible design for an accelera-
tor centric platform, or even the design of a CHARM island, we
have shown that there is a very large design space to explore. Due
to the page limit, we were unable to include other work related to
accelerator-rich architectures, such as memory system design [7]
and compiler support [15].
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