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Abstract

Accelerator-rich platforms demonstrate orders of magnitude im-
provement in performance and energy efficiency over software, yet
they lack adaptivity to new algorithms and can see low accelerator
utilization. To address these issues we propose CAMEL: Composable
Accelerator-rich Microprocessor Enhanced for Longevity. CAMEL
features programmable fabric (PF) to extend the use of ASIC compos-
able accelerators in supporting algorithms that are beyond the scope
of the baseline platform. Using a combination of hardware extensions
and compiler support, we demonstrate on average 11.6X performance
improvement and 13.9X energy savings across benchmarks that
deviate from the original domain for our baseline platform.
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I. INTRODUCTION

Accelerator-rich designs have become more attractive in
recent years, providing power-efficient performance through
domain-specific specialization. Despite the dramatic improve-
ment in performance and power-efficiency, accelerator-rich
designs lack flexibility and longevity. Accelerators are typi-
cally designed for a particular algorithm or domain, and may
have limited usefulness when new algorithms emerge within a
domain, or when applied to an entirely different domain.

Instruction-based programmable accelerators [1], [2] are
one approach to adding flexibility. Rather than optimize the
accelerator for a single task, the accelerator executes a program
using potentially domain-specific components. For example,
while a GPU has been designed for graphics processing,
it is flexible enough to be used in other domains that can
leverage the stream-level parallelism that it exploits. However,
as we will demonstrate, this programmability comes at a
cost in power and performance efficiency compared to an
application-specific accelerator design. Intuitively, if a design
is general enough to run an application, it will be saddled
with the overhead of processing these instructions: instruction
decoding, architected register movement, etc.

Another alternative is to make use of programmable fabric
(PF) — i.e. FPGAs — to implement customized accelerators
for different tasks (e.g. [3], [4], [5]). This approach has nearly
unlimited potential for longevity and flexibility, as accelerators
are fluid: designers have the freedom to pick and choose the
accelerators that are instantiated on the fabric, even creating
new accelerators to adapt to algorithmic changes in a domain.
However, as we will demonstrate, accelerators implemented in
PF are considerably larger and slower than ASIC accelerators.
It was shown in [6] that on average an FPGA implementation is
40X larger and 3.2X slower, with 12X higher dynamic power
consumption. The inefficiency comes from the use of fine-grain
programmable elements like LUTs to implement accelerator
components and the high overhead of programmable intercon-
nects. The area inefficiency can be particularly costly if one is
constrained by a given size for the hardware; in this case, you
may not be able to implement as many accelerators, or may
resort to increased amounts of dynamic reprogramming, both
of which negatively impact performance.
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Yet another approach is to compose accelerators out of
coarser-grain building blocks [7], [8], [9], [10]. In these
designs, the recipe for composition is determined statically (i.e.
at compile time), but the resource allocation is dynamic (i.e.
at runtime). Since the programmability of the design is done
at a coarse granularity (i.e. composing small accelerators),
it does not have the same overhead as an instruction-based
programmable accelerator, which must interpret an instruction
stream. This design provides flexibility in that the building
blocks may compose a variety of accelerators, as opposed
to a monolithic accelerator design, which is restricted in its
reusability. However, the design is still limited to the set
of available building blocks that were originally provisioned.
While this set can be optimized for a particular domain,
the longevity of the design may suffer in the face of new
algorithmic innovations or if the design is used for a domain
that is different than that for which it was originally intended.

In this paper, we propose a hybrid approach that combines
the performance of composable accelerators with the flexibility
and longevity of PF-based accelerators. The PF will enable the
instantiation of new building blocks, while the performance
impact of the fabric will be mitigated by the fact that we
still maintain a rich set of building blocks implemented in
ASIC for the domain. Thus we will support composition of
accelerators that are a mixture of ASIC and PF components.
This approach provides a number of benefits. First, the pro-
grammable fabric serves as a design catch-all: we need not
implement infrequently used building blocks for a domain
in ASIC, as these blocks can be covered by the PF. This
frees up silicon resources for more critical building blocks.
Second, the programmable fabric can help adapt to domain or
algorithm variance: we can more efficiently employ our design
for domains/algorithms other than those originally intended by
instantiating new building blocks in the PF and still making use
of any useful building blocks that were already implemented
in ASIC. Our contributions are as follows:

e Compiler and Runtime Framework to Support
ASIC and PF Allocation - Our compilation frame-
work generates a task flow graph of interconnected
building blocks for a given kernel; it can also perform
platform-aware partitioning of the task flow graph
into subgraphs that can be accommodated by on-chip
resources; at runtime, our resource manager uses these
graphs to compose accelerators by allocating either
ASIC- or PF-based building blocks.

e Slack Analysis and Rate Matching - Our com-
piler statically identifies imbalance in the task flow
graph, and compensates for the computational slack
in shorter paths by allocating extra buffer space; our
hardware reduces PF performance overhead through
rate-matching, where it instantiates multiple PF-based
building blocks to collectively match the ASIC design
throughput.

e Design Space Exploration - We demonstrate the en-
hanced flexibility from our approach through analysis
on four distinct application domains, examining the
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Fig. 1: CAMEL Microarchitecture

benefits our approach provides to design extensibility
and longevity; while we analyze our results on one
candidate architecture for accelerator composition, our
techniques are more generally applicable to other
composable architectures.

The rest of this paper is organized as follows: Section III
introduces the CAMEL architecture, while Sections IV and V
outline our evaluation methodology and results. We discuss
prior work in Section II and conclude with Section VI.

II. RELATED WORK

Prior art in both academia and industry has evaluated
integrating accelerators and processing cores on a single chip.
Garp [3], UltraSPARC T2 [11], Intel’s Larrabee [12], and
QsCores [13] feature designs where accelerators are tightly
coupled with processing cores, or groups of cores. On the other
hand, ARC [14] and IBM’s WSP processor [15] are designed
with looser coupling, both in terms of programmability and
use. Our work focuses on loosely coupled accelerators that
are shared among multiple cores and can be composed to form
larger virtual accelerators.

Prior work has also examined the concept of construct-
ing large and complex computational elements out of sim-
pler structures. Examples of this are core fusion [16], core
spilling [17], and TRIPS [18]. In those works, the goal of
composition is to construct a mostly general-purpose process-
ing element, while our work focuses on composing highly
specialized structures that are capable of performance and
efficiency beyond the capability of general-purpose cores.

Accelerator virtualization has likewise been studied by
works such as VEAL [8], PPA [9], DySER [7], and
CHARM [10]. VEAL proposes an architecture template for
loop accelerators, along with a hybrid static-dynamic approach
to mapping a loop to that structure. PPA features an array of
processing elements which are configured to collaborate to-
gether. DySER proposes integrating a configurable accelerator
into a core’s execution engine to allow running programs to
dynamically encode program regions into custom instructions.
CHARM features hardware-based resource management, load-
balancing, and accelerator virtualization via building blocks.
These designs all lack support for virtualizing accelerators
outside the scope of their available building blocks. While
our experimental design driver is based on CHARM, the
techniques and contributions of this work could essentially
be integrated with any of these composable accelerator ar-
chitectures to enhance their adaptivity and longevity. Further-
more, while our composable acceleration scheme could be
implemented on a programmable SoC, such as Zynq from
Xilinx [19], integrating PF into an ASIC-based accelerator
architecture allows for added performance benefits from using
the customized ASIC accelerators. We also advocate dynamic

Fig. 2: Internal Structure of an ABB Island

Fig. 3: Programmable Fabric

accelerator composition and management in hardware, which
limits core interaction with accelerators, thereby removing it
as a performance bottleneck.

III. CAMEL ARCHITECTURE
The CAMEL architecture uses a combination of software

and hardware components to improve flexibility and longevity.
The hardware components are responsible for the actual accel-
erator composition, where the virtual accelerators, or loosely-
coupled accelerators (LCAs), are dynamically constructed us-
ing either the available accelerator building blocks (ABBs)
in ASIC or ABBs that have been instantiated in PF. While
our contributions in the CAMEL architecture are generally
applicable to composable architectures, in this paper we im-
plement our techniques and analyze results on the CHARM
architecture [10]. An overview of the CAMEL microarchi-
tectural components is presented (not to scale) in Fig. 1.
This figure consists of a set of cores with private L1 caches,
shared L2 cache banks, and the following specialized CAMEL
components: (1) ABBs grouped into a series of islands (shown
as “T”); (2) Accelerator Block Composer (ABC) responsible for
accelerator composition, PF assignment, and CAMEL resource
arbitration; and (3) PF (for additional ABBs).

A. ABB Islands
Fig. 2 shows the internal structure of an ABB island; in this

sample figure there are 8 ABBs, 8 Scratchpad Memory (SPM)
banks, and 1 multi-channel DMA controller (DMAC). Each
ABB has access to only 4 of the SPM banks using a partial
8x8 crossbar [20]. These SPMs are in turn connected to the
multi-channel DMAC. The numbers and types of the ABBs
are determined using software-driven design-space exploration,
and the ABBs of a given type are distributed evenly across the
islands in a round-robin fashion.

B. Programmable Fabric
The PF is used for hosting the ABBs required by new

applications (in new or existing domains). The internal design
of the PF in CAMEL is shown in Fig. 3. It consists of PF slices,
16 SPM banks, 4 DMACs, 4 network interfaces (NI), and 2
crossbars: one to connect a selected set of PF slices to SPMs
and one to connect SPMs to DMACs. Although a monolithic
PF presents challenges in its shared usage (i.e. ports, NoC
congestion, etc.), it accommodates ABBs of any size and
avoids performance hits due to static partitioning of resources.
The main advantage of using a PF is its reusability and run-
time reconfigurability. However, ABBs implemented on the PF
are less area- and power-efficient, and have lower performance
compared to ABBs implemented on ASIC. While the area and
power issues are largely technology-dependent, we address en-
ergy consumption and performance using hardware techniques
that compensate for the mismatch in computation speed.

When a virtual LCA is invoked, software sends to the
ABC an encoded task flow graph representing the LCA’s
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Fig. 4: Motivational Example of Applying Rate-Matching on PF

functionality. Nodes in this graph represent functionalities of
individual ABBs, while edges represent data transfers. This
functionality is executed in a pipelined fashion, with each
ABB in the graph communicating with others by means of
bulk transfers from/to its local SPM to/from remote SPMs or
memory. If a PF-implemented (presumably less efficient) ABB
is on the critical path, it can negatively impact the performance
of the entire LCA. Fig. 4 exemplifies this scenario and how
rate-matching helps. In this figure, the same task flow graph is
instantiated for three different hardware allocation scenarios,
and we see how four independent data sets (illustrated by
different shading patterns) would flow through the connected
ABBs. As Fig. 4-a shows, when all ABBs are operating at
the same frequency (e.g. f = 1), the LCA they compose will
have that same throughput. However, as shown in Fig. 4-b, if
one of the ABBs is slower than the others (e.g. ABB3 has f =
1/2), this ABB becomes a bottleneck and the other ABBs are
forced to stall. This results in the LCA as a whole progressing
at the rate of this single slow component. Since the ABBs
allocated in the PF typically have less throughput than ASIC
ones, the inclusion of a PF-based ABB could result in such a
bottleneck. To address this, CAMEL allocates multiple copies
of the slower ABB to bring the aggregate throughput of the
collection of slow ABBs up to match that of the faster ABBs.
This is referred to as rate-matching, and is shown in Fig. 4-c.
Provided there are sufficient PF resources for multiple ABB
instantiations, this technique interleaves independent data sets
between the duplicated PF-based ABBs and allows for the
LCA to make more efficient use of the ASIC-based ABBs. As
throughput is increased, the other ABBs and overall system
components are left idle for a shorter period of time, thereby
reducing static energy consumption. Although dynamic power
is slightly increased, dynamic energy remains constant and so
overall energy consumption is reduced. Thus, while rate match-
ing not only improves performance and resource utilization, it
also improves energy efficiency. The implementation of this
technique is described in Section III-C.

C. Runtime PF Allocation

The ABC performs PF-based ABB allocation using the
algorithm shown in Fig. 5. It receives information on the
available space on the PF, along with the list of available ASIC
ABBs and the LCA task flow graph. Using these it determines
what ABBs to allocate in PF. To achieve the best allocation, it
starts with the minimum configuration as a feasibility test; if
the minimum currently cannot fit, it temporarily keeps the task
until enough space is available on PF. If the minimum cannot
be implemented at all, the ABC informs the requesting core
of the failure to implement. If the feasibility check passes, the
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ABC attempts rate-matching: it iteratively increases the PF-
based allocation of critical ABBs (i.e. those on the critical
path of the task flow graph) until either no space is left on the
PF or the best rate-match is achieved.
D. Compiler Support

An overview of the CAMEL compiler framework is shown
in Fig. 6. Given information on ABB types to potentially use,
the compiler is responsible for mapping a given program kernel
to a set of those ABB types, producing a data flow graph (i.e.
task flow graph) whose nodes are ABBs and whose edges are
data transfers. The algorithm used is similar to that described
in [21]. Provided supplemental information on the available
ASIC ABBs and PF for a given platform, the compiler can also
determine if a kernel being mapped is too large for the total
number of ASIC ABBs combined with the total PF. In these
cases, the kernel’s task flow graph is partitioned into the fewest
number of regions such that allocation is possible. Partitioning
is done along regions of the graph such as to minimize data
transfer between partitions, and temporary storage is allocated
to store intermediate data. The partitioned regions become
subgraphs that can then be run sequentially. An example of
this is shown in Section V-D. After a mapping solution exists,
addressing for the local SPM of each ABB is calculated.
Part of this calculation is an optimization for graphs that
feature multiple paths of different lengths (i.e. slack) between
a pair of nodes. Once this slack is identified, computational
correctness is ensured by allocating extra buffer space along
shorter paths. By avoiding stalls, this method allows for higher
ABB utilization and overall throughput along all paths.

IV. METHODOLOGY

A. Tool Chain
In order to evaluate this architecture, we extended Sim-

ics [22] and GEMS [23] with the cycle-accurate models needed
by CAMEL. Table I shows the simulation parameters used.
We also implemented a complete tool-chain for generating



TABLE I: Simulation Parameters
Parameter Value
Main Memory Latency: 280 cycles, bandwidth: 10 B/cycle per controller

L2 Cache 8MB, 8-way set-associative, 32 banks, latency: 10 cycles
Coherence Protocol Shared banked L2-cache, L2: MOSI, L1: MSI
Network Topology 4x8 MESH, latency: link 1 cycle & router 5 cycles,

bandwidth: 72 B/cycle per link

16 islands; 14 ABBs and 14 4KB SPMs per island

ABB Islands (Base)

TABLE II: Tools for Timing and Power Models
Tool Purpose
Xilinx Vivado Design Suite [19] Accelerator high-level synthesis
Synopsys Design Compiler (32nm) [24] ASIC synthesis (power, performance)
Xilinx ISE [19] PF synthesis (performance)
Xilinx Virtex 6 XPower Estimator [19] PF power analysis

CACTI [25] Cache and scratchpad modeling
Orion [26] NoC power and area
McPat [27] Core and cache power analysis

simulator models starting from C-based kernel code. Table 11
shows the additional tools used for acquiring accurate timing
and power values for these models. Furthermore, the compiler
framework was implemented in LLVM, and has an average
compilation time of 6.1 seconds per kernel for our benchmarks.
B. Domains

In this work, we target the four application domains de-
scribed below. These four domains not only provide cover-
age of real-world applications with interesting computational
demands, they also represent classes of applications that are
algorithmically diverse in nature. Table III shows the numbers
and types of ABBs used for accelerating each domain using
one set of accelerators. Note that by one set of accelerators
we mean as many ABBs as it would take to instantiate one of
each virtual LCA in the domain. In our experiments, we have
used four sets of accelerators.

1) Medical Imaging (Med): Medical imaging is an im-
portant tool for diagnosis and treatment. Because of the
high volumes of data and high computational demands, the
algorithms cannot be easily used in real-time clinical diag-
nosis, making them excellent candidates for acceleration. The
medical imaging pipeline includes denoising, debluring, fluid
registration, image segmentation, and compressive sensing
for reconstruction. These algorithms and their acceleration

strategies are described further in [28].
2) Commercial (Com): We have selected three applications

from the PARSEC [29] suite to represent the commercial
domain: BlackScholes, Streamcluster, and Swaptions. These
applications solve partial differential equations, online cluster-
ing problems, and probability distribution estimations.

3) Vision (Vis): Computer vision is a compute-intensive
domain with inherent parallelism that makes it ideal for
streaming-data style of acceleration. Two main categories of
applications in this domainare feature extraction, for which
we include implementations of SURF from OpenCV [30] and
LPCIP from MRPT [31], and image processing, for which we
include the Texture Synthesis application from SD-VBS [32].
These applications provide a variety of computation including
complex matrix-based, trigonometric, log-polar, and gradient

histogram computations, with fluctuating memory usage.
4) Navigation (Nav): Navigation is a compute-intensive,

Al-related domain that aims to achieve high levels of situa-
tional awareness. We include EKF-SLAM from MRPT [31],
along with Robot Localization and Disparity Map from SD-
VBS [32]. These applications provide diverse computation in
the form of partial derivatives, covariance, spherical coordi-
nates, probabilistic models, particle filters, search for minimal
sum of absolute differences, etc.
C. ABB Characterization

The ASIC ABBs for our system have all been synthesized
with a frequency of 1GHz and an initiation interval (II) of 1.

TABLE III: ABB Types, PF Synthesis, Domain Numbers, and Func.

ABB FPGA Power Freq ABBs per Domain Functionality

Type Slices (mW) (GHz) Med Com Vis Nav Description

poly | 3536 571| 1/4| 47| 95| 143| 167(16 1/0 Polynomial (floating pt.)
sqrtf 672 176] 1/3 2 1| 1| 3|Square root (floating pt.)

divf 255 84| 1/3 6 5| 6| 7|Divide (floating pt.)

powf | 672 176| 1/3 1 3| 1| o0|Power function (floating pt.)
logf 672 176] 1/3 0 3| 0| O0]|Log base e (floating pt.)

rrlD 25 2| 12 0 2 0 0[Random read in 1 dimension
rr2D 90 70| 1/2 0 0 2 0[Random read in 2 dimension
rr3D 145 91| 1/2 0 0| 73| O[|Random read in 3 dimension
rwlD 25 2| 12 0 1 0 0[Random write in 1 dimension
selff 58 54| 1/2 0 4| 50| O[MUX (float inputs, float select)
selfi 57 54| 1/2 0 3| 4| 0|MUX (float inputs, int select)
selif 27 84 1 0 4| 8| O[MUX (int inputs, float select)
selii 30! 85 1 0 1| 0| O|MUX (intinputs, int select)
sum 134 77| 1/2 0 1| 8 1|Accumulate a vector

castfi 94 32| 1/4 0 of 43 0|Cast float to integer

castif| 108 35| 1/4] 0 0 1 0|Cast integer to float

mod 255 84| 1/3 0 0| 2| 0[Modulo

min 65 54| 1/2 0 0 3 0[Find minimum value in vector

TABLE IV: Power and Area for CAMEL Base Platform

Unit Num. Power per Area per Unit
Type  Units Unit (mW) (um~2)

ABC a 66.00 8383
poly ABB 188 6.65 362570
sqrtf ABB 8 9.49 368819
divf ABB 24 0.52 15117
powf ABB 4 9.49 368819
SPM 240 17.60 40773
DMAC 20 0.59 10071
L2 Bank * 32 148.97 881990
Core * 1 686.46 9868400
NoC * 1 4923.52 557978

* Power varies with execution; average value is shown.

Although the PF ABBs also have II's of 1, they have different
operating frequencies depending on their type. Table III details
the results of synthesizing the various ABB types for a Xilinx
Virtex6 FPGA, along with the numbers of ABBs needed by the
four domains and the functionalities of the ABBs. Note that
the ABB granularities and functionalities have been determined
according to a domain-space optimization primarily for Med,
which is the base domain of CAMEL in our case studies (see
Section IV-D), with additional ABB types added as needed.

D. Case Studies

For the purposes of this paper, we consider the cases
of running single benchmarks, where accelerator needs are
known. As such, PF reconfiguration can be done statically,
and so reconfiguration time is excluded from all results. In our
experiments we have considered the following cases, each rep-
resenting a different class of accelerator-based architectures:

e GPU is a Tesla M2075; performance measurements
consider computation only (not data transfer time).

e LCA-ASIC is based on an accelerator-rich platform
where all LCAs are monolithic and ASIC-based [14].

o LCA-FPGA is based on an accelerator-rich platform
where all LCAs are monolithic and FPGA-based [14].

e CHARM is based on a composable accelerator-rich
platform with Med base domain and no PF [10].

o CAMEL-x% is the CAMEL architecture with Med
base domain and “x” percent of the total ABB area
substituted (by removing “x” percent of ABBs of
each type, maintaining even ABB distribution across
islands) for equivalent area of PF; x ranges 0%-50%.

The power and area values modeled for the CAMEL-0%

base platform can be found in Table IV, where the total area
of the chip is 122 mm?2. To determine the number of PF slices
that can fit in CAMEL-x%, we have used the die area size of
Virtex6 (measured by taking X-ray photos) and have estimated
2955 um? for each slice in 32nm. Table V shows numbers of
PF slices and remaining ASIC-based ABBs for each CAMEL-
x% case. Note that ABB types vary in both area and quantity —
the distribution shown corresponds specifically to our platform.
As PF slices are linearly increased for the CAMEL-x% cases,



TABLE V: Number of ABBs and PF Slices in CAMEL-x%

Fig. 7: Performance Comparison between Acceleration Schemes
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different numbers of various types of ABBs are removed to
make room for the PF area, so the total number of remaining
ABBs may not decrease linearly.
V. RESULTS

In this section we present and discuss our simulated re-
sults. Although our Simics+GEMS framework simulates an
Ultra-SPARC-III-i 1GHz processor (running Solaris 10), we
conservatively measure our performance gains in terms of a
wall-time-based comparison to fully parallelized runs on a
4-core 2GHz Intel Xeon E5405 processor. When there are
insufficient accelerator resources to run a benchmark, we fall
back to running on the CPU, and thus exhibit no benefit.
A. Comparison Between Acceleration Schemes

Fig. 7 and Figure 8 compare four accelerator-based ar-
chitectures running benchmarks from the Med domain. As it
features domain-specific acceleration, CHARM (i.e. CAMEL-
0%) outperforms by 2.1X and saves energy by 93X compared
to the power-hungry GPU. Furthermore, with its ability to load-
balance and dynamically virtualize LCAs, CHARM on average
outperforms LCA-FPGA by 3.5X and LCA-ASIC by 1.8X,
resulting in energy savings of 14.5X and 5.1X, respectively.
For an optimal design, we would want the performance and
energy usage of CHARM with the adaptivity of GPUs and
FPGAs. We show next how CHARM is made adaptive for
greater performance and energy savings across domains.
B. Effect on Domain-Span

To evaluate CAMEL support of domain-span, we have used
the Med base domain (for ASIC ABBs) and chosen three
other target domains: Com, Vis, and Nav (as mentioned in
Section IV). In all of these experiments, we have kept the
overall area constant by removing 0%-50% of the ASIC ABB
area in increments of 10% (maintaining even distributions of
ABB types across islands) and adding PF slices equivalent to
the removed area.

Fig. 9 shows the aggregate speedup and energy savings for
all four domains, while Fig. 10 shows the average speedup and
energy savings of each domain vs. software-only versions of
the implementations. Since most of these new applications are
unable to run on the base without the PF (i.e. exhibit 1X as
they fall back to running on the CPU), the aggregate speedup of
CAMEL-0% (i.e. CHARM) across all benchmarks is relatively
low. As seen in Fig. 10-a, the Med applications, for which this

CAMEL-0% CAMEL-10% CAMEL-20% CAMEL-30% CAMEL-40% CAMEL-50%
# ABBs 224 192 168 148 128 108
# PF Slices 0 2466 4935 7404 9873 12342
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Fig. 9: Geometric Mean of All Speedups and Energy Savings
base was originally optimized, see performance improvement
with the addition of a small amount of PF, followed by a
decrease in performance as more PF is added. This is intu-
itively correct, as the platform considered was provisioned with
the ASIC-based ABBs designed specifically for accelerating
Med applications. A small amount of PF (10%-20%) provides
adaptivity for higher load balancing and resource utilization for
each individual benchmark, while larger amounts of PF begin
to starve the system of the improved performance efficiency
of the ASIC ABBs. However, even the small performance
improvement initially seen with the addition of PF is not
enough to counterbalance the reduction in power-efficiency
as ASIC ABBs are replaced by PF. As a result, we see an
initially small decrease in energy savings for CAMEL-10%
and CAMEL-20%, followed by a larger decrease for CAMEL-
30% and onward.

For Com (Fig. 10-b), no applications can be implemented
without PF because they all require a variety of new ABB types
that do not appear on the base platform (refer to Table IIT). As
PF is added, these ABBs can be instantiated and rate-matched,
resulting in large performance gains and energy savings. With
Vis (Fig. 10-c), we see behavior similar to that of the Com
applications. For Nav (Fig. 10-d), we see an initial speedup
even without the PF because this domain shares a lot of
the same ABBs as Med, allowing some benchmarks to be
minimally implemented on the base platform. As we initially
increase PF, we are able to instantiate the missing ABBs and
run all benchmarks, resulting in increased average gains in
both performance and energy. However, similar to the trends
we see with CAMEL-10% and -20% for Med, as more ASIC
is replaced by PF for Nav, performance continues improving
slightly, yet energy savings begin dropping (e.g. CAMEL-30%
and onward).

In summary, as ASIC ABBs are removed and replaced by
PF, more useful ABBs become available and rate-matching
takes effect. This translates into better adaptivity, and often
times higher performance and energy savings for new domains.
While these trends depend on the specific workload you are
considering, as intuitively suspected, the less similar a work-
load is to the base domain of the platform, the more useful the
PF. As with the law of diminishing returns, however, increasing
the PF past a certain point starts reducing the improvements
because the system is now removing too many of the useful
ASIC ABBs and replacing them with their equivalent PF-based
ones. We see this turning point with ~30% PF for domains
similar to the base (e.g. Nav) and ~50% PF for other domains
(e.g. Com and Vis).

C. Effect on Domain Longevity

In order to evaluate the longevity of the base domain, we
have added a new application to Med: Compressive Sensing
Magnetic Resonance (CS_MR) [33]. This application needs
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Fig. 11: Domain Longevity and Graph Partitioning

one additional ABB, namely the “sum” ABB, which is not
found on the Med base domain of CAMEL. This “sum” ABB
is one that accumulates the values of a given vector, and is used
to implement the internal FFT engine of CS_MR. The speedup
result for CS_MR is shown in Fig. 11. CS_MR does not need
many of the ASIC-based ABBs on CAMEL, so as more PF
slices are provided, it can use them to implement more “sum”
ABBs, allowing it to instantiate more of its virtual LCAs and
achieve more speedup.
D. Graph Partitioning for Lower-Capacity Hardware

As described in Section III-D, it is sometimes the case
that a benchmark demands a massive LCA for a large kernel
and requires more resources than are available on CAMEL,
even with PF. Benchmarks like Texture Synthesis, Swaptions,
Stream Clusters, and SURF contain kernels that can never
be implemented in their original form. To overcome this, our
compiler partitions the task flow graph of each of these kernels
into a number of subgraphs that can each fit on CAMEL-x%
(e.g. Texture Synthesis requires 6 partitions for CAMEL-50%).
Fig. 11 shows the result of accelerating Texture Synthesis as
an example after applying this graph partitioning technique,
where we are able to achieve up to 11.96X speedup.

VI. CONCLUSION

In this work we have proposed CAMEL, a coordinated
hardware-software approach for customized, adaptable ac-
celeration. By incorporating PF into an ASIC composable
accelerator platform, we add a new dimension of flexibility
while leveraging existing ASIC performance benefits. The
key characteristics of CAMEL include task graph partitioning,
slack compensation, and automated rate-matching. With this
approach we have shown that for three new domains, replacing
50% of the ASIC ABBs with PF achieves on average 11.6X
performance improvement and 13.9X energy savings over
using composable accelerators without PF.
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