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ABSTRACT
Deep Neural Networks (DNNs) are becoming more and more com-
plex. Previous hardware accelerator designs neglect the layer diver-
sity in terms of computation and communication behavior. On-chip
memory resources are underutilized for the memory bounded lay-
ers, leading to suboptimal performance. In addition, the increasing
complexity of DNN structures makes it difficult to do on-chip mem-
ory allocation. To address these issues, we propose a layer conscious
memory management framework for FPGA-based DNN hardware
accelerators. Our framework exploits the layer diversity and the
disjoint lifespan information of memory buffers to efficiently uti-
lize the on-chip memory to improve the performance of the layers
bounded by memory and thus the entire performance of DNNs. It
consists of four key techniques working coordinately with each
other. We first devise a memory allocation algorithm to allocate
on-chip buffers for the memory bound layers. Then, buffer sharing
between different layers is applied to improve on-chip memory uti-
lization. Finally, buffer prefetching and splitting are used to further
reduce latency. Experiments show that our techniques can achieve
1.36X performance improvement compared with previous designs.

1 INTRODUCTION
DNNs are compute-intensive learning models with growing appli-
cability in a wide range of domains. FPGA is one of the promising
hardware platforms for DNNs due to its high performance, energy
efficiency and reconfigurability. Compared with other hardware
platforms, off-chip memory bandwidth of FPGA is a limitation fac-
tor for high performance. Previous designs [1, 2, 20] attempt to keep
part or all the parameters or activations on chip to avoid off-chip
memory data transfer. However, they are only applicable for simple
neural networks with linear structures that do not need large mem-
ory volume for activations. There are also FPGA designs using very
low bit precisions like 1- or 2-bit [15, 24]. But they are not applicable
for all DNN scenarios. Recently, the data sizes, network topology
and depth of DNNs are rapidly evolving [21]. For example, the
inception module introduced in the GoogLeNet [13], the residual
block and dense block introduced in ResNet [7] and DenseNet [5],
use non-linear structures with complex data dependency between
layers. As a result, it is impossible to store all the parameters and
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activations in FPGA’s on-chip memory for these latest models. Pre-
vious DNN accelerator designs [2, 9, 10, 12, 18, 22, 23] adopt a
uniform memory management strategy for all the layers, which
uses off-chip memory to store the entire data and uses on-chip
memory for reuse within a tile.

We observe that different layers of DNNs often employ different
shapes of tensors, leading to diverse computation and communica-
tion behaviors. The bandwidth requirements of some layers can ex-
ceed the device bandwidth limitation. As a result, the performance
of these layers are bounded by the off-chip memory bandwidth. For
example, more than half of the layers in Inception-v4 [14] are mem-
ory bounded. Moreover, within these memory bounded layers, over
60% of them even need 70 GB/s bandwidth, far exceeding DDR4
peak bandwidth which is 20 GB/s. But for the other layers, they are
computation bounded and we can keep their data in off-chip mem-
ory without harming the performance. Based on this observation,
our motivation is to devise a more elaborate on-chip memory allo-
cation strategy in order to overcome the performance bottlenecks
for the memory bounded layers. Prior work [6] tries to minimize
the number of off-chip buffers on FPGAs. There also exist some
prior works [11, 16] that use memory management techniques for
optimizing the training process on GPUs. However, none of them
explore on-chip memory management for DNN accelerators. For
FPGA-based DNN accelerators, we are facing two challenges. On
one hand, since different layers vary in terms of computation and
communication behaviors, it is challenging to determine which data
should be stored in on-chip memory to maximize the performance
gain under on-chip memory constraints. On the other hand, the
increasing complexity of DNNs poses great challenges for on-chip
memory allocation. The traditional double buffer allocation for lin-
ear structures used by previous models like AlexNet and VGG is
not enough for DNNs with complex graph topology.

In this paper, we propose a layer conscious memorymanagement
framework which jointly exploits the layer diversity in terms of
computation to communication ratios and the disjoint lifespan
information of memory buffers. It helps improve the performance
of the memory bounded layers and thus the entire performance of
DNNs by efficiently utilizing the on-chip memory. The core part
of the framework is a memory allocation algorithm called DNNK.
DNNK optimizes the performance of the whole DNN model by
allocating the data of some layers in on-chip buffers while other
layers accessing data from off-chip memory. Our framework also
finds buffer reuse opportunities between tensors in order to improve
on-chip memory utilization. For feature maps, a global liveness
analysis is applied on the computation graph of a given DNNmodel
to do feature buffer reuse. For weights, a buffer prefetching pass
is firstly applied in order to hide the latency of weight loading.
Then liveness analysis is again used for weight buffers to do buffer
sharing between two layers that have disjoint lifespan. Finally, the
framework uses a buffer splitting pass to separate two tensors with
huge bandwidth requirement difference.

In summary, this paper makes the following contributions,



• On-chipmemory allocation for DNNs.We design a memory
allocation algorithm to efficiently utilize the on-chip memory to
improve the performance for memory bounded layers.
• On-chip buffer sharing techniques. We design buffer shar-
ing techniques in order to improve on-chip buffer utilization.
Furthermore, a buffer splitting technique helps improve perfor-
mance in case the buffer sharing be too radical.
• Weight buffer prefetching.Wedesign aweight buffer prefetch-
ing technique to reduce weight buffer loading time.
We evaluate our layer conscious memory management frame-

work on three latest DNNmodels. Compared with the designs using
uniform memory management, our techniques achieve up to 1.36X
performance improvement on average.
2 BACKGROUND AND MOTIVATION
2.1 Memory Hierarchy of DNN Accelerator

// middle loops
S0: (for s0 = 0; s0 < Ms0; s0++)
…
S5: (for s5 = 0; s5 < K; s5++)
❷IR=IB[ibx(s0,…,s5)], WR=WB[wbx(s0,…,s5)]

// inner loops
T0: (for t0 = 0; t0 < Mt0; t0++)
…
T3: (for t3 = 0; t3 < Wt3; t3++)
OR[ogx(t0,…,t3)]+=
WR[igx(t0,…,t3)]*IR[wgx(t0,…,t3)]

(a) Uniform memory hierarchy dataflow

// outer loops
L0: (for l0 = 0; l0 < Ml0; l0++)
…
L3: (for l3 = 0; l3 < Wl3; l3++)
❶IB=I[ix(i0,…,i3)], WB=W[wx(i0,…,i3)]
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(b) State-of-the-art DNN architecture
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Figure 1: Dataflow of previous DNN accelerators
DNNs contain various layers according to their operation types,

of which the convolutional layers dominate both computation and
storage of network running, especially for the recent models like
GoogLeNet [13] and ResNet [7]. Thus the focus of DNN accelera-
tion is still on the architecture design for convolutions. The basic
operation of convolution involves a multiply-and-accumulation
(MAC) operation on an input feature map tensor and a weight ten-
sor, and returns an output feature map tensor. It contains 6 nested
loops with upper bounds (M,C,H ,W ,K ,K).M and C indicate the
number of output and input feature maps. H andW are the height
and width of a feature map. K × K is the filter size.

The convolutions have huge volume of computation and band-
width requirement. Due to the limited on-chip resources, previous
FPGA-based DNN accelerators [10, 18, 22, 23] adopt a two-level
loop tiling dataflow by tiling each loop level twice and fully unroll
the inner one. Then there are three sets of loops, as known as outer
loops, middle loops and inner loops as shown in Fig. 1(a), signifying
the off-chip data transfer, on-chip data transfer, and parallelism of
computation, respectively. The loop orders, loop unrolling factors,
loop tiling, as well as the number of loops in each set vary across
different designs. But all these designs [10, 12, 18, 22, 23] adopt a
uniform memory management methodology. As shown in Fig. 1(b),
the input tensors are firstly partitioned into tiles, and then they are
repeatedly loaded one after another from off-chip memory to on-
chip memory and processed in sequence. The execution of each tile
corresponds to an iteration of the outer loops (L0−L3). Once a tile is
fetched from off-chip memory (I andW) according to the tile index
(ix and wx), it is stored in the input tile buffers (IB and WB) for
data reuse ( 1 ). The middle loops (S0 − S5) represent the sequential
processing of feeding data from the input tile buffers according to
indices within a tile (ibx andwbx) to the local buffers (WR, IR and
OR) of compute array ( 2 ). Parallel execution represented by the
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Figure 2: Diversity of layer computation to communication ratios
and difficulty in on-chip memory allocation
inner loops (T0 −T3) is performed in the compute array in a pipeline
manner on the data accessed by local buffer indices (igx, wgx and
ogx). Finally, the output tile is stored back to off-chip memory. All
the layers follow the same strategy.
2.2 Memory Bottlenecks in DNNs
The topologies of DNNs have evolved into general computation
graphs. As DNNs are going deeper and becoming more complex,
the tensor shapes vary a lot across different layers, resulting in
diverse computation and communication ratios [8]. We use the
roofline model [19] to perform a layer by layer characterization
in terms of both computation and data transfer. The platform we
use is Xilinx VU9P FPGA. The peak performance is up to 2.7 Tops
under 200 MHz frequency. There are four DDR banks and the theo-
retical bandwidth is up to 19.2 GB/s on each bank using DDR4. As
input features, weights and output features access off-chip memory
simultaneously according to the dataflow in Fig. 1, we assume each
interface is assigned one third of the theoretical bandwidth which is
25.6 GB/s ( 19.2×43 ). Then we plot the computational roof and band-
width roof of input feature map in Fig. 2(a) for Inception-v4 using
8-bit data precision. The y-axis denotes the attainable performance
(Tops), and the x-axis is the operation intensity (Ops/Byte), which
represents operations per off-chip data transfer. Each point in the
figure represents the (Tops, Ops/Byte) coordinate for a layer. Note
that some points are overlapped. For Inception-v4, there exist 82
memory bound layers, accounting for 58% of the total layers. The
same conclusion can be made for other latest models like ResNet,
GoogLeNet, etc. In general, it is impractical to put all the activations
and parameters in on-chip memory.

Ourmotivation is to put the data of some layers on-chip to reduce
off-chip memory transfer. For a snippet of the block inception_c1 in
Inception-v4 as shown in Fig. 3(a), there are six convolution opera-
tions (C) connected by feature outputs (f ). The other data source
to convolution is weight (w). We firstly unfold the execution of the
convolution operations with the uniform memory management
method, as shown in Fig. 3(b). Each tensor is allocated a buffer in
off-chip memory, and there are three tile buffers of input feature
map (ifmap), output feature map (ofmap) and weight. Note that in
current DNN computation graphs, f1, f2 and f4 actually contain
the same data. Here we differentiate them for inputs to different
operations, and their final buffer allocation is determined by our
techniques in Sec. 3. The performance of this model is 1.2 Tops
using the design in [18] with 5 MB on-chip memory usage. We plot
this point in Fig. 2(b). According to the profiling result in Fig. 2(a),
we find that the performance of layers C3 and C5 is bounded by
computation, while other layers are memory bound. Then we se-
lect the memory bounded layers and try to store their data into
on-chip memory with limited size. As shown in Fig. 3(c), f1, f2, f4
and f6 are put in on-chip memory. Similarly, we could apply this
for weights. After that, the performance is improved to 1.3 Tops.
As layers could have different memory hierarchies during their
execution, we call the design method in Fig. 3(c) as layer conscious
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(a) Computation graph (b) Uniform memory management
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Figure 3: Memory footprints of uniform memory management and layer conscious memory management
memory management. Inception-v4 has 14 inception blocks in total.
For each block, we could choose where to store the data (on-chip or
off-chip). Collectively, it constitutes a design space containing 16384
(214) points. We plot these points in Fig. 2(b). The x-axis is on-chip
memory consumption (MB) while y-axis is performance (Tops). We
can see that more on-chip memory doesn’t necessarily mean higher
performance. Even around the device limit (40 MB), there are lots
of points that have not achieved the highest performance. That’s
because different layers have different memory bandwidth require-
ments. The tensor sizes also vary a lot across layers. This layer
diversity renders the decision to put the data of which layer on chip
difficult. Moreover, different tensors could share the same buffer
once their lifespans do not overlap. The complexity of current DNN
models imposes challenge for on-chip memory allocation.
3 MEMORY MANAGEMENT FRAMEWORK

DNNK

Buffer 
Splitting

Feature Buffer 
Reuse

Weight Buffer 
Prefetching

Tensor 
Vectors
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Buffers
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Buffers, Lat

Figure 4: Layer conscious memory management framework
In this section we propose the Layer Conscious MemoryManage-

ment framework (LCMM) for FPGA-based DNN accelerators. The
framework can be integrated into prior design space exploration
(DSE) frameworks for FPGA-based DNN accelerators [12, 18, 22]
which optimize the PE array and tile buffer structure of the DNN
accelerators. The LCMM flow is shown in Fig. 4. After the tensor
vectors are updated by DSE according to the PE array and the sizes
of tile buffers, the feature buffer reuse performs liveness analysis for
the tensor vectors to find opportunities to accommodate two fea-
ture map tensors in the same buffer. The weight buffer prefetching
performs a similar liveness analysis for the weight tensors. The de-
pendency between weight tensors is represented by the prefetching
dependence graph rather than the DNN computation graph.

The feature buffer reuse and weight buffer prefetching will be
illustrated in detail in Sec. 3.1 and Sec. 3.2. The buffers returned
by the two buffer reuse processes are called virtual buffers as they
have not been allocated physical on-chip memory. Then the on-
chip memory allocation algorithm, called DNN knapsack (DNNK),
is applied to the virtual buffers. Based on the modelling of perfor-
mance improvement through on-chip buffer allocation, DNNK uses
a dynamic programming algorithm to allocate physical buffers for
the virtual buffers to derive the minimal latency. DNNK will be in-
troduced in Sec. 3.3. Finally, buffer splitting in Sec. 3.4 is performed
if there exist tensors that have not been allocated.

3.1 Feature Buffer Reuse
We observe that the lifespans of different feature tensors could
be different, which provides the opportunity to share the same
buffer to save storage if the lifespans of two tensors do not overlap.
For example, as shown in Fig. 3(a), as C2 executes before C3 in
topological order, the lifespans of f2 and f6 do not overlap. Thus
they could share the same buffer because the data consumed by C2
will not be used again and thereafter the buffer it occupies could
be reused by C3.

f7

f2

f1 f8

f6

f9

vbuf1 vbuf2 vbuf3 vbuf4

(b) Feature buffer allocation(a) Feature interference graph
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Figure 5: Feature buffer reuse by liveness analysis
We thereby apply accurate liveness analysis for thewhole compu-

tation graph to determine the number of on-chip buffers for feature
tensors, and an interference graph is built as shown in Fig. 5(a).
Note that the computation bounded tensors such as f3 and f5 are
not included in the interference graph. Then we run a revised graph
coloring algorithm to determine the minimal on-chip memory size
to accommodate the feature tensors. The problem can be solved
based on any register allocation algorithms [4, 6]. We leverage the
solution in [6], with the modification that our target is minimizing
total size of buffers rather than the number of registers/buffers.
The coloring result shows that 4 buffers can be allocated for the
6 feature tensors. The mapping of tensor data onto the allocated
buffers is shown in Fig. 5(b). If several tensors could share the same
buffer, the size of the buffer is determined by the tensor with the
largest size. For example, tensors f2 and f6 are mapped on vbu f 1.
Supposing the sizes of f2 and f6 are 0.2 MB and 0.1 MB respectively,
the size of vbu f 1 is 0.2 MB. Then after on-chip memory allocation,
we can see that the virtual buffers vbu f 2, vbu f 3 and vbu f 4 are
allocated with physical on-chip buffers, while vbu f 1 is spilled to
off-chip memory. We will discuss the on-chip memory allocation
process in details in Sec. 3.3.
3.2 Weight Buffer Prefetching
Different from features, the lifespans of weights span across the
whole execution of the computation graph, hence storage for weight
tensors is permanent. On the other hand, the on-chip buffers for
weight tensors can be prefetched before they are used by the cor-
responding nodes. Then weights could be reused for multiple in-
stances of inference. Next, we design a prefetching technique for
weight tensor data in order to hide the prefetching overhead.
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Figure 6: Weight buffer prefetching
For each memory bound node Ck , we compute the time T for

loading the weight tensor from off-chipmemory to on-chipmemory.
From Ck we do a backtrace to locate a node Ck ′ to guarantee the
elapsed time between Ck ′ and Ck is greater or equal to T . Then we
create an edge which ends at Ck and begins with Ck ′ . If the weight
loading for Ck could begin earlier than the execution of Ck ′ , the
weight tensor will be on-chip when Ck begins to execute and the
loading time could be hidden by the execution of the nodes before
Ck . The edge is named as prefetching edge for Ck . After all the
prefetching edges are created for the memory bound nodes, we
build a graph called prefetching dependence graph (PDG) which
expresses the order of prefetching operations for weight tensors.
The PDG for the computation graph of Fig. 3(a) is shown in Fig. 6.
We can see that if two prefetching edges do not overlap, their end
nodes could share the same buffer for weight tensors. Thus for
weight tensors of the memory bound nodes, we build a weight
interference graph similar to the interference graph for feature
tensors in Fig. 5(a). After that, as shown in Fig. 3(c), buffer allocation
could also be applied on the weight interference graph to save on-
chip buffer sizes for weight tensors.
3.3 DNN Knapsack Allocation
After all tensors are allocated with virtual buffers, we apply on-
chip memory allocation for the virtual buffers in order to minimize
latency. We use latency as our performance metric, because FPGA
is a low latency hardware, especially for DNN applications. The
information of each virtual buffer, including buffer size and the
tensors sharing the buffer, is recorded in a virtual buffer table as
shown in Fig. 7(a). For a computation graph as shown in Fig. 3(a),
supposing the number of nodes in the graph is N , the latency
lat(i)(0 ≤ i < N ) for processing node Ci is equal to the minimum
of computation and data transferring according to the dataflow in
Fig. 1, as computation and data transferring are executed in parallel
with the help of double buffering. Thus lat(i) is defined in Eq. 1.

lat (i) = max{lat c (i), {xd (i)latd (i) |d ∈ {i f , wt, of }}} (1)
where latc (i) is the latency for processing layer i by the computa-
tion units, and d denotes a tensor data type which could be i f ,wt or
o f , representing the data source is input features, weights or output
features respectively. The latency information of a given operation
is recorded in the operation latency table as shown in Fig. 7(c). The
tensor data are categorized according to the node index in the com-
putation graph, and their data sources. For example, td (i) denotes a
tensor for data source d of node i . Thus latd (i) denotes the latency
for transferring a tile of td (i). xd (i) is a binary variable representing
whether td (i) is put on-chip or off-chip: if xd (i) = 1, td (i) is put
on-chip; otherwise, it is in off-chip. For td (i), we define the metric
Ld (i) to demonstrate its contribution to latency reduction if it is
put in on-chip memory. Ld (i) is computed in Equation 2.

Ld (i) = xd (i)(latd (i) −max{latd ′ (i) |latd ′ (i) < latd (i)}) (2)
The latency reduction of tensor d is equal to the difference between
the latency of tensor d and the maximal latency values that are less
than latd (i). The latency reduction for each tensor could be found
in the tensor metric table as shown in Fig. 7(b).

In order to formulate the on-chip memory consumption of all the
tensors, we define two binary variables odk (i) andyk . If tensor td (i)

is assigned virtual buffer vbu fk , odk (i) = 1; otherwise, odk (i) = 0.
yk indicates whether vbu fk is allocated with on-chip or off-chip
memory. yk is computed as:

yk =

{
1, if

∑N
i
∑
d xd (i)odk (i) , 0;

0, otherwise .
(3)

Then the latency reduction for the virtual buffervbu fk is computed
in Eq. 4.

Lbk =
N∑
i

∑
d

odk (i)(xd (i)Ld (i) − xp (i)
∑
d ′<p

(xd
′

(i)Ld
′

(i))) (4)

In Lbk , there is a tensor p which we call it the pivot tensor. If
a pivot tensor is allocated in off-chip memory, the tensors that
have been put in on-chip buffers will have no effect on latency
reduction if their latency values are less than p. The subtrahend
means the sum of latency reduction of these tensors. We call it pivot
compensation for latency. For example, considering the 3 tensors
of C4 in Fig. 3(a), the latency reduction for f7, w4 and f4 are 0.01,
0.01 and 0.05 respectively. If we have put f7 in on-chip memory and
w4 in off-chip memory, then the pivot isw4. If next f4 is allocated
an on-chip buffer, the latency reduction it brings should be 0.04
(0.05 − 0.01) because the 0.01 has been counted when f7 is put in
on-chip memory. The problem of maximizing latency reduction is
then formulated as:

maximize
|
−−−−−→
vbuf |∑
k

ykLbk , subject to
|
−−−−−→
vbuf |∑
k

ykSk ≤ Rsram (5)

where Rsram is the total on-chip memory size.
Buf. ID S (MB) Start ID

vbuf1 1.01 1

vbuf2 1.18 3

vbufn 0.72 ns

(a) Virtual buffer table

End ID

2

4

ne

(b) Tensor metric table (c) Operation latency table

OP latc latif latwt latof

… … … … …

C3 0.16 0.15 0.41 0.08

Tensor ID

3 0.05

L (ms)

4 0.01
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C4 0.03 0.10 0.05 0.04

C5 0.16 0.15 0.41 0.08

… … … … …
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…

… … …

OP
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C2

…

…

12 0.01 wt C4

… … … …

Figure 7: DNN computation graph metric tables
The classic 0-1 knapsack problem could be reduced to the max-

imizing latency reduction problem. Meanwhile, we must consider
the pivot compensation in Eq. 4 and dynamically update pivot of
an operation according to the buffer allocation status of its tensors.
Based on the dynamic programming flow for the 0-1 knapsack
problem, we design an algorithm called DNN Knapsack (DNNK)
that applies the pivot compensation. The algorithm is shown in
Alg. 1. The DNNK algorithm contains two nested loops as shown
by line 1 and line 4 in Alg. 1. The first loop iterates through all
the unallocated buffers

−−−−→
vbu f . The second loop sweeps all possi-

ble on-chip memory sizes. The pivot compensation is performed
(lines 9–12) according to Eq. 5. If a buffer is put in off-chip memory,
pivot will be updated as illustrated by lines 15–17. After finishing,
Alg. 1 obtains the allocated buffer list

−−−→
pbu f , which is derived by a

backtrace pass on the memo pbu f _table . pbu f _table(i, j) records
whether

−−−−→
vbu f (i) is on-chip given on-chip memory size j.

3.4 Buffer Splitting
Because of buffer reuse between tensors, if a virtual buffer is spilled
to off-chip memory, all the tensors sharing this virtual buffer will
not be put on chip. For example, in Fig. 5, both f6 and f2 will be
in off-chip memory if vbu f 1 is spilled. It may cause the spilling of
some tensors that have smaller buffer size requirement but larger
latency reduction cost, which is referred as misspilling. To alleviate
the side effect of misspilling, we apply a buffer splitting pass to
tentatively separate the tensors sharing one virtual buffer into
multiple virtual buffers. It provides the opportunity for some of
the tensors to be reallocated on-chip buffers. The idea of buffer
splitting is to add a false lifespan overlap edge between two tensors
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Algorithm 1: DNNK memory allocation algorithm
input :Unallocated buffer list

−−−−→
vbuf

Operation latency table Tlat and tensor metric table Tmetr ic

output :Allocated buffer list
−−−−→
pbuf

1 Initiate pbuf _table to all 0s
2 for i ← 1 to |

−−−−→
vbuf | do

3 tensor _buf ←
−−−−→
vbuf (i)

4 tensor _buf .L ←
∑
t∈tensor_buf .tensor_l ist t .L

5 for j ← 0 to Rsram do
6 if j ≥ tensor _buf .S then
7 L0 ← L(i − 1, j)
8 L1 ← L(i − 1, j − tensor _buf .S ) + tensor _buf .L

// pivot compensation
9 for t ∈ tensor _buf .tensor _l ist do

10 op ← t .дet_op(Tmetr ic )
11 p ← op .дet_pivot (Tlat )
12 L1 ← L1 −

∑
d<p (pbuf _table(op .дet_idx (d ), j) ∗ t .L)

13 if L0 > L1 then
14 L(i, j) ← L0 , pbuf _table(i, j) ← 0

// pivot update
15 for t ∈ tensor _buf .tensor _l ist do
16 op ← t .дet_op(Tmetr ic )
17 op .update_pivot (Tlat )
18 else
19 L(i, j) ← L1 , pbuf _table(i, j) ← 1
20 else
21 L(i, j) ← L(i − 1, j), pbuf _table(i, j) ← 0
22
−−−−→
pbuf ← backtrace(pbuf _table)

which actually have no lifespan overlap, if the variance of sizes and
latency reductions between the two tensors exceeds a threshold.
The false overlapping edge forces the two tensors that should have
been assigned the same buffer to have different colors. If we add a
false lifespan overlap between f2 and f6 and allocate two virtual
buffers to f2 and f6 respectively, f6 will still have the chance to
have a buffer allocation in the DNNK process if f2 doesn’t. In each
iteration, the rationale of adding a false lifespan overlap edge is to
greedily find the virtual buffer with the largest size. Then we add
the edge between the tensor which has the same size as the virtual
buffer and its neighbor.
4 EXPERIMENT EVALUATION
The LCMM framework can be combined with any of the prior
FPGA-based accelerators designs. In this work, we demonstrate the
benefit of LCMM by combining it with [18], a representative CNN
accelerator using systolic array architecture. The systolic array with
uniform memory management (UMM) in [18] will be used as our
baseline. We use three latest DNN models as our benchmark suite,
which includes ResNet-152 (RN), GoogleNet (GN) and Inception-v4
(IN). All the designs are implemented by Vivado HLS and synthe-
sized by Xilinx SDAccel 2018.2 flow, and are evaluated on the Xilinx
VU9P FPGA. We use various precisions, 8- and 16-bit fixed point,
and 32-bit floating point data types for evaluation. Our evaluation
methodology consists of two parts. We first evaluate LCMM by
comparing it to baseline designs. Detailed analysis in terms of per-
formance improvement and resource utilization is given. We also
compare our results with the state-of-the-art designs.
4.1 Effectiveness of LCMM
We list the detailed comparison results of designs using UMM and
designs using LCMM in Tab. 1. We can see that LCMM outperforms
UMM for all benchmarks. The average performance speedup is
1.36X. Taking the 8-bit cases as example, we get 1.42X, 1.23X and
1.17X performance speedup for RN, GN and IN respectively. The
speedup comes from two aspects. The first is LCMM improves
the efficiency of the memory bound layers through on-chip buffer
allocation. Tab. 2 lists the detailed on-chip memory consumption.
We can see that LCMMhasmuch higher on-chipmemory utilization
than UMM due to the usage of tensor buffers instead of tile buffers
only. In Tab. 2, we use a metric named Percentage of On-chip

Table 1: Detailed results
Benchmark Design Performance % Utilization SpeedupLatency

(ms) Tops Freq.
(MHz) DSP CLBs SRAM

RN 8-bit UMM 18.806 1.227 190 83 32 14 1.42LCMM 13.258 1.747 180 83 41 86
RN 16-bit UMM 22.253 1.126 190 83 44 18 1.46LCMM 15.243 1.644 180 83 58 85
RN 32-bit UMM 125.720 0.184 180 83 80 22 1.45LCMM 86.754 0.266 160 83 87 80
GN 8-bit UMM 5.589 0.936 190 83 22 10 1.23LCMM 4.650 1.148 180 83 29 88
GN 16-bit UMM 6.366 0.668 190 83 42 15 1.29LCMM 4.929 0.863 180 83 52 83
GN 32-bit UMM 24.454 0.213 160 83 61 22 1.25LCMM 19.439 0.269 160 83 70 83
IN 8-bit UMM 7.110 1.293 190 75 34 12 1.17LCMM 6.030 1.528 180 75 46 89
IN 16-bit UMM 9.595 0.968 190 75 50 16 1.36LCMM 6.972 1.319 180 75 57 88
IN 32-bit UMM 37.515 0.213 170 75 72 21 1.33LCMM 28.255 0.325 160 75 86 81

Table 2: On-chip memory utilization

Design
% On-chip Memory Utilization

RN GN IN
BRAM URAM POL BRAM URAM POL BRAM URAM POL

UMM 8-bit 8 15 94% 8 10 83% 8 13 78%LCMM 8-bit 34 87 26 84 26 88
UMM 16-bit 8 21 94% 8 17 82% 8 18 79%LCMM 16-bit 30 82 22 86 21 88
UMM 32-bit 12 25 84% 10 25 61% 10 24 66%LCMM 32-bit 27 82 28 80 22 80

Layers (POL) to denote the percentage of layers that benefit from
LCMM in the total memory bounded layers. Taking ResNet-152
for example, 14 buffers are allocated to store the 94% of memory
bounded tensors, and there are 9 of them consuming 32 URAM
blocks. Other buffers consume 64, 96, 128 and 288 URAMblocks. The
second reason is from the improvement of computation efficiency.
The usage of tensor buffers in LCMM designs help to improve the
data reuse. The sizes of tile buffers of LCMM designs is thereby
smaller than UMM. Thus, the reduced tile sizes lead to reduction
of actual operations [18]. We also find that the improvement of
ResNet-152 is higher than GoogLeNet and Inception-v4. That’s
because the network structure of ResNet is much simpler. Hence
the number of required buffer for feature map tensors is less than
other two networks. Especially for the 8-bit precision ResNet-152,
the allocated buffers could cover all tensors except 3 weight tensors
with size 320 memory blocks.

Furthermore, the performance improvement also increases when
data precision increases from 8-bit to 16-bit. Then it drops after
the precision becomes 32-bit. The reason for the increase is that
the bandwidth requirements of operations also increase for the
designs use 16-bit precision compared with 8-bit. The sizes of most
allocated buffers at 16-bit precision keep the same as 8-bit precision,
though. On the contrary, when the bitwidth increases to 32-bit, the
sizes of buffers will also increase. On the other hand, it needs 5
DSPs to perform a floating point multiply-and-accumulation (MAC)
operation on Xilinx FPGAs. For a fixed point MAC, it needs only 1
DSP. Therefore bandwidth requirement decreases compared with
the fixed point data types.

We further use 16-bit implementation of GoogLeNet for more
detailed analysis. The results are shown in Fig. 8. We firstly ap-
ply feature map reuse only with all weights being stored in off-
chip memory. In Fig. 8(a), we can see that from inception_3a to
inception_4b, obvious performance improvement are obtained from
feature buffer reuse. There are two reasons for this improvement.
Firstly, from inception_3a to inception_4c, the sizes of feature maps
are sufficiently large. Thus the feature map reuse helps mitigate the
off-chip memory bandwidth for the layers with small filter sizes
like 3 or 1. Afterwards, the bandwidth requirement for the weight
increases as the feature map dimensions decrease. Therefore the
bandwidth requirements for weights increase and the performance
is bounded by data transferring for weights as the feature map sizes
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Figure 8: Detailed analysis on GoogLeNet

decrease to as small as 14 or 7 when the network goes deeper. On the
other hand, if we only use the weight buffer prefetching technique,
as shown in Fig. 8(b), from inception_3a to inception_4b, the perfor-
mance is bounded by data transferring for input feature maps. After
that, thanks to weight buffer prefetching, weights data transferring
is no longer the performance bottleneck. Finally, the integration
of feature buffer reuse and weight buffer prefetching guarantees
the performance improvement across the whole network, which is
shown in Fig. 8(c).
4.2 Comparison with State-of-the-art Designs

Table 3: Comparison with State-of-the-art Designs
Design [3] Ours [17] Ours
DNN Model ResNet-50 ResNet-152
FPGA Xilinx

VU9P
Xilinx
VU9P

Xilinx
VU9P

Xilinx
VU9P

Frequency (MHz) 214 180 200 180
DSP Util. 5489 (80%) 5632 (83%) 4096 (60%) 5632 (83%)
BRAM Util. (MB) 7.20 (76%) 3.98 (42%) 6.45 (68%) 2.84 (30%)
URAM Util. (MB) 27.68 (82%) 27.00 (80%) 19.56 (39%) 27.68 (82%)
Logic Util. 728K (62%) 692K (59%) 506K (43%) 776K (66%)
Throughput (Tops) 1.235 1.672 1.463 1.644
Latency/Image (ms) 8.12 6.46 17.34 15.24
Perf. Density
(ops/DSPslice/cycle) 1.05 1.65 1.78 1.62

We compare our 16-bit fixed point results with the best two
end-to-end results [3, 17] on ResNet. Both performance and re-
source utilization results are shown in Tab. 3. For performance
comparison, our designs have 1.35X and 1.12X speedup in terms of
throughput (Tops) over the two designs respectively. The design
in [3] consumes more on-chip memory than ours because it tries
to keep all intermediate feature maps between different accelera-
tors on-chip. On the contrary, our design only stores the results
of memory bound layers in on-chip memory as shown in Tab. 2.
The 80% URAM utilization overcomes the off-chip memory bottle-
necks for 94% of memory bounded layers, which cannot be achieved
without LCMM. Moreover, after the off-chip memory bottleneck is
overcome, we could use smaller tile size to improve computation
efficiency, leading to less BRAM consumption. Our design has 12%
performance improvement over [17] at the cost of 37% more DSP
utilization, 20% more on-chip memory consumption, as well as
50% more logic usage. Instead of storing the whole feature maps in
on-chip memory, the design in [17] streams a tile of feature map
data between accelerators to avoid off-chip memory footprints. In
addition, the heterogeneous design in [17] has higher performance
density. Fortunately, LCMM is orthogonal to the heterogeneous
design methodology which could be integrated into our designs in
the future to further improve performance density.
5 CONCLUSIONS
In this work, we propose the layer conscious memory management
framework for general DNN accelerator designs on FPGA. LCMM
optimizes the performance of DNN accelerators through on-chip
memory allocation by exploiting the layer diversity and memory
lifespan information. It performs liveness analysis on the feature
tensors and prefetching time span analysis on weight tensors to im-
plement reuse on both feature and weight buffers, improving buffer

utilization. Experiments show that our techniques can achieve 1.36X
performance improvement compared with previous design.
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