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Abstract

Large language models (LLMs) based on transformer archi-
tecture have shown outstanding performance across numer-
ous real-world tasks. However, the autoregressive nature of
these models makes the inference process slow and costly.
Speculative decoding has emerged as a promising solution,
leveraging a smaller auxiliary model to draft future tokens,
which are then validated simultaneously by the larger model,
achieving a speed-up of 1-2×. Although speculative decod-
ing matches the same distribution as multinomial sampling,
multinomial sampling itself is prone to suboptimal outputs,
whereas beam sampling is widely recognized for producing
higher-quality results by maintaining multiple candidate se-
quences at each step. This paper explores the novel integra-
tion of speculative decoding with beam sampling. However,
there are four key challenges: (1) how to generate multiple
sequences from the larger model’s distribution given draft se-
quences from the small model; (2) how to dynamically opti-
mize the number of beams to balance efficiency and accuracy;
(3) how to efficiently verify the multiple drafts in parallel; and
(4) how to address the extra memory costs inherent in beam
sampling. To address these challenges, we propose dynamic-
width speculative beam decoding (DSBD). Specifically, we
first introduce a novel draft and verification scheme that gen-
erates multiple sequences following the large model’s distri-
bution based on beam sampling trajectories from the small
model. Then, we introduce an adaptive mechanism to dy-
namically tune the number of beams based on the context,
optimizing efficiency and effectiveness. Besides, we extend
tree-based parallel verification to handle multiple trees simul-
taneously, accelerating the verification process. Finally, we
illustrate a simple modification to our algorithm to mitigate
the memory overhead of beam sampling. Experimental re-
sults show that our approach achieves a 1.5-1.9× speed-up
and 1.8-2.5× lower energy consumption compared to beam
sampling, with no loss in downstream performance. More-
over, it can produce significantly higher-quality outputs than
speculative decoding, while maintaining similar time, mem-
ory, and energy costs. In summary, our method offers a more
efficient and effective inference process for LLMs.

1 Introduction
In recent years, large language models based on transformer
architecture (Vaswani et al. 2017), such as GPT-4 (Achiam
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et al. 2023), Llama-3 (AI@Meta 2024), and PALM (Anil
et al. 2023), have demonstrated remarkable performance
across a wide range of real-world tasks, including text gener-
ation, summarization, and translation. However, the autore-
gressive nature of these models, where tokens are generated
one at a time, leads to slow inference speeds and high com-
putational costs. As the size and complexity of LLMs con-
tinue to increase, the demands on computational resources
and energy consumption during inference have become ma-
jor concerns, limiting their scalability and accessibility.

Speculative decoding has emerged as a promising tech-
nique to accelerate LLM inference by leveraging a smaller
auxiliary model to generate draft tokens. These tokens are
then validated by the large model, resulting in a significant
reduction in inference time. The primary advantage of spec-
ulative decoding is its ability to maintain the same quality
of output as multinomial sampling while achieving a 1-2×
speed-up. However, multinomial sampling itself is limited
to generating a single sequence based on local optimality.
This limitation makes it susceptible to returning suboptimal
results, as it lacks the diversity that could be achieved by
considering multiple candidate sequences simultaneously.

Motivated by the need to improve the output quality,
we explore the integration of speculative decoding with
beam sampling, a technique that maintains multiple candi-
date sequences (beams) at each step to enhance the diversity
and quality of the generated output. This fusion, however,
presents several challenges. First, while previous studies fo-
cused on obtaining a single token from the large model dis-
tribution given draft tokens from the smaller model, our ap-
proach requires generating multiple tokens (beams) simulta-
neously, which necessitates a new verification scheme. Sec-
ond, determining the optimal number of beams is critical:
too many beams can lead to inefficiency due to a high rejec-
tion rate, while too few beams may result in under-utilization
of the small model’s potential and low effectiveness. Third,
efficiently verifying multiple draft sequences in parallel re-
quires a technique that can process and validate multiple
beams concurrently. Fourth, addressing the additional mem-
ory cost of storing multiple key-value caches is crucial to
enable LLMs to use beam sampling in practice.

To address these challenges, we propose dynamic-width
speculative beam decoding (DSBD) that combines specula-
tive decoding with beam sampling through a series of inno-
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vations. First, we introduce a draft and verification scheme
that processes beam decoding trajectories as forests of trees,
which are verified layer by layer by the large model. This
approach allows us to efficiently generate multiple beams
while maintaining the large model’s sampling distribution.
Second, we propose a mechanism to dynamically adjust the
number of beams based on the context, ensuring a balance
between efficiency and effectiveness. Third, we extend ex-
isting tree-based parallel verification techniques (Miao et al.
2023) to operate on multiple trees, incorporating a forest-
based parallel verification strategy that enhances the speed
of the verification process. Finally, we introduce a simple
modification to DSBD that reduces the memory cost by stor-
ing only one set of key-value caches, while still delivering
better output quality than multinomial sampling.

Experimental results show that our approach achieves
a 1.5-1.9× speed-up and 1.8-2.5× smaller energy con-
sumption than beam sampling, without sacrificing perfor-
mance on downstream tasks. Besides, it can produce sig-
nificantly higher-quality outputs than speculative decod-
ing, while maintaining comparable time, memory, and en-
ergy costs. These findings suggest that DSBD successfully
bridges the gap between speculative decoding and beam
sampling, providing a more efficient and effective decoding
method for LLMs. Our code is open source1.

2 Preliminaries
2.1 Decodings of LLMs
Let p denote the distribution defined by a large language
model Mp. Given an input prefix, the optimal decoding algo-
rithm is to generate a sequence of N tokens with maximum
likelihood p(x1:N |input).
Multinomial Sampling. Multinomial sampling, also
known as standardized sampling, samples the next token
xt based on T ◦ p(·|x1:t−1, input), where T is a warping
operation applied to enhance the high probability region.
Some common warping operations include top-k warping,
which limits the selection to the top k tokens, and top-p
warping, where tokens are sampled from the smallest possi-
ble subset of the vocabulary whose cumulative probability
mass exceeds a specified threshold p. The deterministic
version of multinomial sampling is a special case when
k = 1.

Beam Sampling. Beam decoding aims to do a better job
than multinomial sampling. For each position t (1 ≤ t ≤
N ), it maintains W > 1 candidate sequences, which are
also called beams. Assume we have already kept the W se-
quences It−1 = {x(1)

1:t−1, . . . , x
(W )
1:t−1} at position t − 1, W

sequences with length t are then sampled from T ◦ pbeam,
where pbeam:It−1 × V → [0, 1] is the beam sampling prob-
ability:

pbeam(x
(i)
1:t−1, xt) =

p(x
(i)
1:t−1, xt|input)∑

x
(j)
1:t−1,x

′
t∈It−1×V

p(x
(j)
1:t−1, x

′
t|input)

(1)
1https://github.com/ZongyueQin/DSBD

Notice that p(x
(i)
1:t−1, xt|input) = p(xt|x(i)

1:t−1, input) ·
p(x

(i)
1:t−1|input). In practice, beam sampling stores the like-

lihood p(x
(i)
1:t−1|input) for each beam, and the computation

complexity of pbeam is O(W · |V |). In deterministic beam
sampling, the top W sequences with the highest likelihood
pbeam(x1:t) will be kept.

(Shi et al. 2024) shows that beam sampling in general has
better downstream effectiveness than multinomial sampling.
Figure 1 shows an example where beam decoding returns a
better output.

2.2 Vanilla Speculative Decoding
Speculative decoding utilizes a small model to generate the
next γ tokens and then employs the large model to verify
these drafted tokens in parallel. The process is summarized
as follows:

1. Given input, the small model samples γ draft tokens
x1, . . . , xγ using greedy decoding, based on the warped
predicted conditional probability q̃(xt|x1:t−1, input) for
t = 1, . . . , γ, where q̃ = T ◦ q and q is the small model’s
output distribution.

2. The large model verifies the draft tokens in parallel
by computing the conditional probability p̃ = T ◦
p(xt|x1:t−1, input) for t = 1, . . . , γ.

3. Each draft token xt is accepted with probability
min(1, p̃(xt)/q̃(xt)). The draft tokens before the first re-
jected token are kept as the decoding output. An addi-
tional token is sampled from a residual distribution as a
correction for the first rejected token. The accepted to-
kens and the resampled token are then appended to the
context prefix as input for the next iteration.

4. Repeat steps 1-3 until reaching the stopping criteria, such
as a length limit.

By verifying γ tokens in parallel with one run of the large
model, speculative decoding reduces the time cost compared
to calling the large model γ times. Additionally, although the
small model still runs in an autoregressive manner, its infer-
ence speed is much faster than the large model. This makes
speculative decoding an effective method to accelerate the
inference process of LLMs. Moreover, it has been proven
that each token xt generated by speculative sampling fol-
lows the identical sampling distribution as multinomial sam-
pling.

3 Methodology
The primary goal of our method is to enhance the efficiency
and effectiveness of large language model (LLM) inference
by combining the speed advantages of speculative decoding
with the accuracy and diversity benefits of beam sampling.
We first introduce a novel draft and verification scheme that
keeps identical distribution as beam sampling. Then, we de-
scribe an adaptive beam management strategy. Next, we il-
lustrate a forest-based parallel verification mechanism. Fi-
nally, we discuss how to resolve the additional memory cost
inherent in beam sampling.

25057



h

a

e

p p y

l l o

y d s

0.2

0.8

1 1 1

0.6 0.6 0.6

0.1 0.1 0.1

(a) Multinomial sampling.
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(b) Beam sampling with 2 beams.

Figure 1: Examples of greedy and beam sampling. Some nodes are omitted in the figures. Assume the sampling probability is
warped to always sample the tokens with the largest probabilities. Given prefix “h”, multinomial sampling generates “hello”
with an average perplexity of 1.55. Beam sampling generates “happy” with an average perplexity of 1.49.
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(a) Draft forest from the small model.
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(b) Verification result of the 1st draft layer.
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(c) Verification result of the 2nd draft layer.

Figure 2: Illustration of one iteration of Speculative Beam Decoding. (a) Draft Stage: given the input beams “who” and “why”,
the small model first generates a trace of beam sampling. (b)(c): Verification Stage. When verify the first draft layer, “who
are” and “why do” are accepted, while “why is” is rejected. When verify the second draft layer, “why is it” is directly rejected
because its parent is rejected. Then “who are they” is accepted, while “who are it” is rejected. And another beam “who are you”
is sampled from the residual distribution.

3.1 Draft and Verification Scheme
Overview As illustrated in Figure 2, the core idea of our
method is to leverage a smaller, auxiliary model to generate
multiple draft sequences, referred to as draft beams, which
are then verified and refined by the larger model. This ap-
proach enables us to maintain multiple candidate sequences
throughout the decoding process, thereby achieving better
output quality than multinomial sampling, while improving
the overall efficiency of beam sampling.

For now, assume that the number of beams (also referred
to as the width, denoted as WL) is fixed. In each iteration
of our method, the input consists of the beams generated in
the previous iteration. For the first iteration, the input is the
initial input context. At each iteration, our method first uses
the small model to perform beam sampling with a width of
WS for γ steps. Notice that we want WS > WL because
some draft beams might be rejected later. As illustrated in
Figure 2a, it generates a trajectory that can be represented
as a forest consisting of WL trees, which we refer to as the
“draft forest”. In this forest, each tree originates from an in-
put beam, with the maximum depth of each tree being γ+1.
Starting from the second layer, each layer of the forest con-
tains WS nodes, representing the intermediate beams at each
step of the beam sampling process.

Once the draft forest is generated, our method leverages
the large model to predict the distribution for the next token
of each node (beam) in parallel. Using these distributions,
DSBD then verifies each layer of the draft forest sequen-

tially. For each layer, it calculates the joint probability of
the beams and sequentially determines whether each beam
should be accepted. If WL beams are accepted in a given
layer, the remaining beams are discarded, and the method is
moved on to verify the next layer. If fewer than WL beams
are accepted in layer l, the method rejects this layer and ter-
minates the verification process.

When verification ends, either because it is terminated
or because there are no more layers to verify, our method
samples an additional layer with WL beams. This additional
layer either corrects the first rejected layer or adds a new
layer if all draft layers are accepted. The output beams from
this additional layer then serve as the input beams for the
next iteration, continuing until the stopping criteria are met
(e.g., reaching the maximum number of tokens).

This approach allows each run of the large model to pro-
duce at least one, and possibly multiple, steps of beam sam-
pling. Previous studies have shown that memory operations
during LLM runs contribute significantly to both runtime
and energy consumption (Leviathan, Kalman, and Matias
2023; Allen and Ge 2016; Chen et al. 2011). By generating
multiple tokens in a single run, DSBD reduces the number
of memory operations required, which in turn improves both
the speed and the energy efficiency of LLM inference.

Details Let p denote the output distribution of the large
model and q denote the distribution of the small model. We
will start by explaining how to verify the first draft layer
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(which is the second layer of the draft forest) during each
iteration.

Let I = {x(1)
1:t , · · · , x

(WL)
1:t } represent the input beams,

and S = {x(1)
1:t+1, · · · , x

(WS)
1:t+1} represent the draft beams

in the first layer of the draft forest. Note that x
(i)
1:t+1

is sampled from the distribution qbeam(x
(i)
1:t+1) = T ◦

q(x
(i)
1:t+1)

Q , where T denotes the warping operation and
Q =

∑
x1:t+1∈I×V q(x1:t+1). Similarly, let pbeam de-

note the beam sampling distribution of the large model,

we have pbeam(x
(i)
1:t+1) = T ◦ p(x

(i)
1:t+1)

P , where P =∑
x1:t+1∈I×V p(x1:t+1).
During verification, our method starts by setting p′ =

pbeam. For each draft beam x
(i)
1:t, DSBD accepts it with prob-

ability min(1,
qbeam(x

(i)
1:t)

p′(x
(i)
1:t)

). If x(i)
1:t is rejected, the method up-

dates p′ by setting it to norm(max(0, p′ − qbeam)), where
norm denotes the normalization operation. Then it contin-
ues to verify the next draft beam with the updated p′. If the
beam is accepted, p′ is reset to pbeam. If WL draft beams
have already been accepted in this layer, the method will re-
ject all remaining beams.

Now we illustrate how to verify the second draft layer.
The difference is that some beams in the first layer have al-
ready been rejected. In this case, all the beams stem from
the rejected beams are directly rejected. For the remain-
ing beams, DSBD applies the same verification process as
above.

If all layers in the draft forest have WL accepted beams,
the method proceeds to sample an additional layer with WL

beams directly from pbeam. However, if at any layer l fewer
than WL beams are accepted, the method will first sample
one beam from the adjusted distribution p′. If the number of
accepted beams still falls short of WL, additional beams will
be sampled from the original distribution pbeam to meet the
required number.

Theorem 3.1. Correctness of Draft and Verification
Scheme. Let I = {x(1)

1:t , · · · , x
(WL)
1:t } denote input beams,

S = {x(1)
1:t+1, · · · , x

(WS)
1:t+1} denote draft beams, and O =

{x̃(1)
1:t+1, · · · , x̃

(WL)
1:t+1} denote the output beams obtained

by our algorithm. We have x̃
(i)
1:t+1

iid∼ pbeam (∀i =

1, . . . ,WL), where pbeam(x
(i)
1:t+1) = T ◦ (p(x(i)

1:t+1)/P),
P =

∑
x1:t+1∈I×V p(x1:t+1).

The proof is illustrated in (Qin et al. 2024).

3.2 Dynamic-Width Speculative Beam Decoding
The draft and verification scheme described above ensures
that our method matches the sampling distribution of beam
sampling. However, it has a limitation: the beam width WL

remains fixed across all layers. While this fixed width works
well for standard beam sampling, it is not suitable for our
method. The key challenge is that the discrepancy between
the small model’s predictions (qbeam) and the large model’s
true distribution (pbeam) vary from token to token. In some

Algorithm 1: Draft and Verification for Speculative Beam
Sampling

1: Input: Draft Forest with γ draft layers, Small model
distribution q, Large model distribution p, Beam width
WL, WS .

2: Output: Verified beams for the next iteration
3: llast ← γ + 1
4: for l = 1, . . . , γ do
5: // I(l) is the beams of layer l − 1 in the forest.
6: I(l) ←input beams of layer l.
7: // S(l) is the beams of layer l in the forest.
8: S(l) ←draft beams of layer l.
9: // remove beams stem from beams rejected in the last

layer
10: S(l) ← {x(l,i)

1:t+1|x
(l,i)
1:t+1 ∈ S(l), x

(l,i)
1:t is not rejected}

11: // t+ 1 is the length of sequence in S(l), t = l − 1.
12: compute p

(l)
beam based on next-token distributions p

13: p′ ← p
(l)
beam

14: Compute W
(l)
L based on Eq 2 - Eq. 6

15: for x
(l,i)
1:t+1 ∈ S(l) do

16: r ← U(0, 1)

17: if r ≤ q
(l)
beam(x

(i)
1:t+1)

p′(x
(i)
1:t+1)

then

18: accept x(l,i)
1:t+1

19: p′ ← p
(l)
beam

20: else
21: reject x(l,i)

1:t+1

22: p′ ← norm(max(0, p′ − q
(l)
beam))

23: if W (l)
L beams are accepted then

24: reject remaining beams
25: break
26: if less than W

(l)
L beams are accepted then

27: sample x1:t+1 ∼ p′ and add it to accepted beams
28: while less than W

(l)
L beams are accepted do

29: sample x1:t+1 ∼ p
(l)
beam and add it to accepted

beams
30: llast ← l
31: break
32: if llast == γ + 1 then
33: compute p

(γ+1)
beam

34: sample WL beams from p
(γ+1)
beam

35:
36: return accepted beams at the layer llast

layers, qbeam closely aligns with pbeam, resulting in a high
acceptance rate. In other layers, the gap is much wider, lead-
ing to a lower acceptance rate.

To address this variability, the decoding algorithm should
dynamically adjust the number of beams it expects to accept
based on the alignment between qbeam and pbeam. By doing
so, it can (1) reduce the target width for challenging lay-
ers, preventing the entire layer from being rejected and thus
maintaining progress, and (2) increase the target width for

25059



easier layers, enhancing the exploration of diverse sequences
and reducing the risk of getting trapped in local optima. This
adaptive approach would optimize the balance between ef-
ficiency and accuracy, making the decoding process more
robust and effective. So we propose a self-adjusting method
where the target width W

(l)
L for layer l is determined based

on the context of that layer.
Let P (l)

p,q(m, k) represent the probability that k out of m
draft beams are accepted at the l-th layer. This probability is
computed using the following recursive equation:

P (l)
p,q(m, k) =

m∑
i=1

P̃ (l)
p,q(m, i)Pp,q(m− i, k − 1)) (2)

Here, P̃ (l)
p,q(m, i) is the probability that the i-th beam is the

first to be accepted among the m draft beams:

P̃ (l)
p,q(m, i) = α

(l)
i

i−1∏
j=1

(1− α
(l)
j ) (3)

where α
(l)
j is the probability that the j-th beam is accepted,

given that all previous beams (from the 1st to the (j− 1)-th)
were rejected.

α
(l)
j =

∑
qbeam min(p

(l)
j /q

(l)
beam, 1) (4)

where p
(l)
1 = p

(l)
beam, p(l)k = norm(max(p

(l)
k−1 − q

(l)
beam, 0)).

Using these equations and the fact that P (l)
p,q(m, k) = 0 if

k > m and P
(l)
p,q(0, 0) = 1, we can calculate the probability

that at least K beams are accepted at the l-th layer as:

1−
K−1∑
k=1

P (l)
p,q(MS , k) (5)

Finally, the width W
(l)
L for the l-th layer is set based on Eq

5, ensuring that it is not less than a minimum width Wmin:

W
(l)
L = max(Wmin, W̃

(l)
L (t)) (6)

In this expression, t ∈ [0, 1] is a pre-defined threshold. The
value of W̃ (l)

L (t) is computed as follows:

W̃
(l)
L (t) = max{K ∈ N|1−

K−1∑
k=0

P (l)
p,q(MS , k) ≥ t} (7)

This formula gives us the maximum width W̃
(l)
L (t) such that

the probability of accepting at least W̃ (l)
L (t) beams at the l-th

layer is greater than or equal to the threshold t. Eq 6 ensures
that the width is dynamically adjusted to maintain a high
likelihood of accepting a sufficient number of beams, while
also ensuring that it does not fall below the minimum width
Wmin. Algorithm 1 illustrates the pseudocode for the draft
and verification scheme.

Let β
(l)
Wmin

=
∑WS

k=Wmin
P

(l)
p,q(WS , k)), which is the

probability that at least Wmin beams are accepted at layer
l. Based on the definition of W (l)

L , the probability that layer

L is accepted is min(t, β
(l)
Wmin

). So t and Wmin both control
the average acceptance rate of our algorithm, and hence de-
termine efficiency. Let β̄ = Eβ(l)

Wmin
, we have the following

theorem for the efficiency of DSBD.

Theorem 3.2. The expected number of steps generated per
iteration is 1−min(t,β)γ+1

1−min(t,β) .

Proof. As described above, the average acceptance rate is
min(t, β). With the Theorems in (Leviathan, Kalman, and
Matias 2023), we can calculate the average number of gen-
erated layers as 1−min(t,β)γ+1

1−min(t,β) .

3.3 Forest-based Parallel Decoding
As noted in (Miao et al. 2023), efficient management of
the key-value cache is crucial to avoid redundant compu-
tations when running the large model during verification,
which affects overall efficiency. SpecInfer (Miao et al. 2023)
introduced tree-based parallel decoding, which reuses the
same key-value cache and employs a topology-aware causal
mask to accelerate the computation of the large model. How-
ever, this tree-based parallel decoding approach cannot be
directly applied to our algorithm because, unlike SpecInfer,
our method retains multiple beams as inputs at each itera-
tion. Although these beams share the same initial input, the
tokens generated in each beam can differ significantly as the
sequence length increases. As a result, the draft tokens in
DSBD form not a single tree but a forest.

So we propose forest-based parallel decoding, an exten-
sion of tree-based parallel decoding that accommodates mul-
tiple trees. As shown in Figure 3, DSBD maintains a sepa-
rate key-value cache for each input beam. For each beam,
we apply tree-based parallel decoding to compute the tree
attention across all tokens. Finally, after the iteration ends,
DSBD updates the key-value caches according to the output
beams. For example, if the output beams in Figure 3 are b5
and b6, which both originate from b1, then the caches for b5
and b6 are kept for the next iteration.

3.4 Reducing Memory Cost
In practice, key-value caches take up a large portion of mem-
ory cost for LLM inference (Kang et al. 2024). A critical dis-
advantage of beam sampling is that it has to maintain a sep-
arate key-value cache for each beam, significantly increas-
ing the memory cost. But our method can mitigate this issue
with a simple modification. Notice that with the forest-based
parallel decoding, the number of key-value caches kept dur-
ing generation equals the number of input beams. So an ef-
fective way to reduce the memory cost of our method is to
limit the number of input beams. This can be achieved by
selecting only the output beam with the lowest perplexity as
the input beam for the next iteration. In this way, only one
key-value cache is needed during generation, so the mem-
ory cost will be similar to the cost of multinomial sampling
and speculative decoding. Notice that although there is only
one input beam, more than one beam can be accepted at each
layer of the draft forest. Hence, it will be more effective than
multinomial sampling.
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b1 b3
b5
b6

b2 b4

b2 b4
b1 b3 b5 b6

b2 b4

b2 √ √

b4 √

b1 b3 b5 b6

b1 √ √ √ √

b3 √ √ √

b5 √

b6 √Draft Forest
Forest-based Topology-Aware Causal Mask

Figure 3: Illustration of forest-based parallel decoding.
Given the draft forest, the large model converts the two trees
into sequences in depth-first search order and verifies them
in parallel with the topology-aware attention mask. Empty
cells in the matrices indicate that attention is masked.

4 Experiments
4.1 Experiment Setups
LLMs. We evaluate our method using three publicly avail-
able LLM families: OPT (Zhang et al. 2022), Llama-2 and
Llama-3 (Touvron et al. 2023; AI@Meta 2024). We use
Llama-2-13B, Llama-3.1-8B, and OPT-13B as the large
models as they are the largest models our GPU could run.
And we use Llama-68M (Miao et al. 2023) , Llama-3.2-1B,
and OPT-125M as the small models.

Datasets. We use public datasets: SQuAD (Rajpurkar,
Jia, and Liang 2018), Spider (Yu et al. 2018), and MT-
Bench (Zheng et al. 2023). SQuAD is a natural language
QA dataset using exact match (EM) as the evaluation met-
ric. Spider is a text-to-SQL code dataset that uses execu-
tion accuracy (EA) as the metric. MT-bench covers various
tasks including writing, roleplay, extraction, stem, humani-
ties, reasoning, math, and coding. It uses GPT-4 to rate the
output quality on a scale of 1-10 (the higher the better).2

4.2 Comparison with Beam Sampling
We begin by comparing DSBD with beam sampling, focus-
ing on the relationship between efficiency (e.g., energy con-
sumption and throughput) and effectiveness. The width of
beam sampling ranges from 1 to 4. When width equals 1,
beam sampling is equivalent to multinomial sampling. In
addition, we observe the improvement in downstream ef-
fectiveness and output perplexity begins to converge when
the width reaches around 4. For our method, we vary the
draft beam width WS ∈ {2, 3, 4, 5, 6}, the threshold t ∈
{0.7, 0.9}, and set Wmin ∈ {1, 2, 3}. We also include
speculative decoding (Leviathan, Kalman, and Matias 2023)
(SpD) and SpecInfer (Miao et al. 2023) (SI) as references.

Figure 4 and Figure 5 illustrate the points that mark the
performance of different methods under different parame-
ter settings on SQUAD and Spider datasets, respectively.
SpD and SpecInfer each have only one point in the fig-
ures because they do not offer a trade-off between efficiency
and effectiveness. We plot the curves of beam sampling
and the Pareto fronts of DSBD. Notably, we omit the re-
sults of the OPT model on the Spider dataset as its execu-

2Additional experiments and reproduction details are available
in our arXiv version (Qin et al. 2024).

(a) Throughput vs EM Score
(Llama-2)

(b) Energy vs EM Score
(Llama-2)

(c) Throughput vs EM Score
(Llama-3)

(d) Energy vs EM Score
(Llama-3)

(e) Throughput vs EM Score
(OPT)

(f) Energy vs EM Score
(OPT)

Figure 4: Evaluation on SQuAD. Exact match (EM) is
higher the better. The blue points represent performances
of DSBD under different parameter settings (γ,WS , t). The
blue and yellow lines mark the Pareto fronts of DSBD and
beam sampling. (SpD: SpecDecode, SI: SpecInfer)

tion accuracy remains consistently close to zero, rendering
it uninformative for this analysis. The figures demonstrate
that DSBD consistently outperforms beam sampling, signi-
fying that it achieves higher quality at any given level of
throughput or energy consumption. More importantly, when
the effectiveness is fixed, DSBD can be 1.5-1.9× faster than
beam sampling, while reducing energy consumption by 1.8-
2.5×, as demonstrated by the Pareto fronts of DSBD. Ta-
ble 1 presents the results on MT-Bench. Due to the cost and
time of GPT-4 evaluations, we report results for SpecInfer,
beam sampling (W = 5), and DSBD. DSBD achieves com-
parable efficiency to SpecInfer while significantly improv-
ing output quality. It is also 1.53× faster and 1.54× more
energy-efficient than beam sampling. These results highlight
DSBD’s advantages in efficiency and effectiveness, making
it ideal for real-world applications.

4.3 Comparison under Memory Constraint
As discussed in Section 3.4, DSBD can mitigate the mem-
ory issue of beam sampling by selecting only one output
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(a) Speed vs EA Score
(Llama-2)

(b) Energy vs EA Score
(Llama-2)

(c) Speed vs EA Score
(Llama-3)

(d) Energy vs EA Score
(Llama-3)

Figure 5: Evaluation on Spider. Execution accuracy (EA) is
higher the better. The blue points represent performances
of DSBD under different parameter settings (γ,WS , t). The
blue and yellow lines mark the Pareto fronts of DSBD and
beam sampling. (SpD: SpecDecode, SI: SpecInfer)

Model Method Score Token/s J/token

SpecInfer 2.86 21.8 21.2
Llama-2-13B Beam (W=5) 3.51 12.1 26.3

DSBD 3.52 16.5 16.1
SpecInfer 3.46 20.2 19.8

Llama-3-8B Beam (W=5) 4.10 10.5 33.3
DSBD 4.11 17.8 22.9

Table 1: Evaluation on MT-Bench with SpecInfer, beam
sampling and DSBD.

beam for the next iteration. It allows DSBD to only keep
one sequence of key-value cache and to achieve memory
usage comparable to that of multinomial sampling. To as-
sess the performance of DSBD under memory constraints
(i.e., only keeps one sequence of key-value cache), we com-
pare it with multinomial sampling, SpD, and SpecInfer, as
shown in Table 2. In addition, the DSBD in Table 1 also
only keeps one sequence of key-value cache. The results
show that DSBD achieves speed and energy efficiency close
to that of SpD. Moreover, DSBD delivers a significant im-
provement in output quality, far surpassing the baselines in
downstream scores.

5 Related Work
EFFICIENT LLM INFERENCE. Numerous studies have
focused on improving the efficiency of large model infer-
ence, including model quantization (Frantar et al. 2022; Lin
et al. 2023), model pruning (Gale, Elsen, and Hooker 2019;

Method EM/EA tokens/s J/token

Multinomial 74 21.14 12.36
Llama-2 SpD 75 27.11 8.34
SQuAD SpecInfer 74 27.15 9.22

DSBD 86 26.67 8.75

Multinomial 20 21.98 11.14
Llama-2 SpD 19 31.74 7.06
Spider SpecInfer 19 32.00 8.01

DSBD 31 30.30 7.17

Table 2: Comparison under memory constraints: each
method stores key-value caches for only one sequence.

Sanh, Wolf, and Rush 2020), and model distillation (Hinton,
Vinyals, and Dean 2015). While these techniques achieve
significant speed-ups, they often sacrifice the model’s over-
all effectiveness. A closely related direction to our work is
non-autoregressive decoding, enabling parallel generation of
multiple tokens (Gu et al. 2017; Wang et al. 2019; Sun et al.
2019; Ghazvininejad et al. 2019; Lee, Mansimov, and Cho
2018; Guo, Xu, and Chen 2020). However, these methods
typically require extensive retraining of the model and often
face challenges in either maintaining model effectiveness or
achieving comparable performance without relying on task-
specific techniques (Kim et al. 2023).

SPECULATIVE DECODING. Speculative decoding is ini-
tially introduced in (Leviathan, Kalman, and Matias 2023;
Chen et al. 2023). More recent works (Sun et al. 2023; Miao
et al. 2023; Yang et al. 2024) extend this concept by allow-
ing the small model to generate multiple draft sequences. All
these methods only maintains a single sequence during gen-
eration, making them prone to sub-optimal results. Recently,
Andronov et al. (Andronov et al. 2024) proposed a decoding
method called “speculative beam search”. While it retains
multiple candidate sequences to handle the chemical synthe-
sis planning task, it does not preserve the same distribution
as either beam sampling or multinomial sampling, and their
method is fundamentally different from ours. Another com-
plementary direction to enhance speculative decoding is to
improve the effectiveness of the small draft model. A more
effective draft model leads to a higher acceptance rate of
draft tokens, which in turn accelerates the overall inference
process (Kim et al. 2023; Liu et al. 2023; He et al. 2023).
EAGLE (Li et al. 2024) and MEDUSA (Cai et al. 2024) train
additional heads in the target model to generate draft tokens
and achieve better acceptance rate. These works are orthog-
onal to our work because our algorithm can be directly ap-
plied to their draft models.

6 Conclusion
This work introduces a novel method that integrates spec-
ulative decoding with beam sampling to enhance the effi-
ciency and effectiveness of large language model (LLM) in-
ference. Experimental results show that DSBD outperforms
beam sampling, achieving a significant speed-up and energy
reduction without compromising downstream task perfor-
mance. This work enhances the effectiveness of speculative
decoding and opens new avenues for exploration.
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