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Abstract

High-level synthesis (HLS) is a widely used tool in design-
ing Field Programmable Gate Array (FPGA). HLS enables
FPGA design with software programming languages by com-
piling the source code into an FPGA circuit. The source code
includes a program (called “kernel”) and several pragmas that
instruct hardware synthesis, such as parallelization, pipeline,
etc. While it is relatively easy for software developers to de-
sign the program, it heavily relies on hardware knowledge
to design the pragmas, posing a big challenge for software
developers. Recently, different machine learning algorithms,
such as GNNs, have been proposed to automate the pragma
design via performance prediction. However, when applying
the trained model on new kernels, the significant domain shift
often leads to unsatisfactory performance. We propose a more
domain-generalizable model structure: a two-level hierarchi-
cal Mixture of Experts (MoE), that can be flexibly adapted to
any GNN model. Different expert networks can learn to deal
with different regions in the representation space, and they
can utilize similar patterns between the old kernels and new
kernels. In the low-level MoE, we apply MoE on three natural
granularities of a program: node, basic block, and graph. The
high-level MoE learns to aggregate the three granularities for
the final decision. To train the hierarchical MoE stably, we
further propose a two-stage training method to avoid expert
polarization. Extensive experiments verify the effectiveness
of the proposed hierarchical MoE. We publicized our codes
at https://github.com/weikai-li/HierarchicalMoE.

Introduction
With the heated demand for domain-specific accelerators,
field-programmable gate arrays (FPGA) are widely used. It
is, however, labor-intensive to write register-transfer-level
hardware description languages, such as VHDL and Verilog.
High-level synthesis (HLS) provides a much easier solution
by compiling a source code written in a software program-
ming language, such as C and MatLab, into an FPGA cir-
cuit (Cong et al. 2011, 2022; Schafer and Wang 2019).

The source code consists of a program (also called “ker-
nel”) that describes the FPGA’s functional behaviors, and
several pragmas inserted in the program that instruct the
hardware synthesis process, such as parallelization, pipeline,
etc., as illustrated in the code snippets in Fig. 1. While it
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is relatively easy to design the program, it heavily requires
hardware knowledge to design the pragmas, and different
pragma designs can lead to significantly different FPGA
performances, posing a great challenge for software devel-
opers (Sohrabizadeh et al. 2022). Recent works have au-
tomated pragma design for programs, employing heuristics
methods or machine learning methods. The heuristic meth-
ods use bottleneck analysis (Sohrabizadeh et al. 2021) or
non-linear programming based on lower-bound objective
function (Pouget, Pouchet, and Cong 2024a,b). The ma-
chine learning methods train a surrogate model to predict the
FPGA’s performance from the source code, so that we can
rely on the model prediction to find the best pragmas with-
out running time-consuming HLS. Since HLS data is very
scarce, it is difficult to train a large language model, and
graph neural networks (GNNs) that are based on the control
data flow graph (Sohrabizadeh et al. 2022; Bai et al. 2022;
Sohrabizadeh et al. 2023; Ustun et al. 2020; Wu, Xie, and
Hao 2023; Wu et al. 2022a) are widely utilized. Some very
recent work (Qin et al. 2024) explores using both GNN and
lightweight language models.

While machine learning models have better learning abil-
ity than the heuristic methods, they do not generalize well
to unseen kernels. In real-world applications, we often en-
counter new circuit design requirements. The model trained
on existing kernels usually fails to perform well on new ker-
nels. This can be viewed as a domain generalization (Bai
et al. 2022; Kwon and Carloni 2020) problem, where each
kernel is a domain. Note it is very time-consuming to run
HLS to acquire the labels on new kernels, with each run
taking minutes to hours (Sohrabizadeh et al. 2023), thus
data-efficient fine-tuning is required. Domain generaliza-
tion methods for GNN usually employ adversarial train-
ing to align the representation space between different do-
mains (Dai et al. 2019; Zhang et al. 2019; Wu et al. 2020;
Shen et al. 2023), or do data augmentation to learn invari-
ant representation under risk extrapolation (Wu et al. 2022b;
Liu et al. 2023a). However, these approaches are not appli-
cable to the HLS prediction task, as the differences between
kernels are informative for the prediction, so forcing them to
the same distribution does not work.

Nonetheless, a unique opportunity of the HLS prediction
task is that kernels usually share some similar substructures,
as shown in Fig. 1. It could be beneficial if we can leverage
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Previous unique parts

for (j = 0; j < 80; j ++) {
    mean[j] = 0.0;

for (i = 0; i < 100; i++) {
mean[j] += data[i][j];

}
mean[j] /= float_n;

}

Later unique parts

Previous unique parts

for (j = 0; j < 80; j ++) {
    mean[j] = 0.0;
    for (i = 0; i < 100; i++) {

mean[j] += data[i][j];
}
mean[j] /= float_n;

}

Later unique parts

Code snippet from the “Covariance” kernel

Code snippet from the “Correlation” kernel
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Figure 1: Motivation of utilizing MoE. The two kernels share a similar nested loop, while the other parts are different. Similar
parts can utilize similar experts via similar gating, while different parts can utilize different experts. This is just an illustration.
Actually, we do not apply MoE on different granularities in the same model in this way. We aggregate them like Figure 2.

such similarities. We thus propose a two-level hierarchical
mixture of experts (MoE) to address this issue. MoE (Ja-
cobs et al. 1991; Shazeer et al. 2017) uses several expert net-
works instead of a single fixed network, and it computes the
weighted sum of their outputs. Different experts can special-
ize in different regions in the hidden representation space, so
that similar substructures in different domains can be pro-
cessed by the same experts. A gating network computes the
expert assignment, which learns which expert should deal
with which substructure. GraphMETRO (Wu et al. 2024) ap-
plies MoE to improve GNNs’ generalizability by predefin-
ing a set of domain shifts and training each expert to deal
with one type of domain shift by data augmentation. We
take an orthogonal direction, eliminate the need for hard-
ware knowledge to define the domain shifts, and focus on
the model structure rather than data augmentation.

Another unique opportunity for HLS prediction is that the
input graph naturally has three levels of granularity: nodes,
blocks, and the whole graph. MoE can be constructed on ei-
ther of these three granularities. A natural question is which
granularity to use. It is a hard task as different kernels ben-
efit from different granularities. Simply applying MoE on
all three granularities in one model does not work. There-
fore, we propose a higher-level MoE to aggregate the three
low-level MoEs according to the need. Nonetheless, opti-
mization with the hierarchical MoE is challenging. Since the
three low-level MoEs are different, training easily leads to
expert polarization. We propose a two-stage training to sta-
bilize the training. To the best of our knowledge, while some
papers (Shazeer et al. 2017) have studied hierarchical MoE
to improve memory efficiency, this is the first study that
demonstrates the performance gain of hierarchical MoE. We

conduct extensive experiments on the largest HLS bench-
mark dataset, HLSyn (Bai et al. 2023), and the experiment
results reveal the effectiveness of hierarchical MoE. In sum-
mary, we make the following contributions:
• We identify the difficulties of domain generalizable

learning in HLS prediction and formalize this problem.
• We propose hierarchical MoE to address these challenges

and a two-stage training approach to stabilize its training.
• Extensive experiments verify the effectiveness of our

methods, where the average speedup of the FPGA design
is 26.6% higher than that of the baseline method.

Related Work
Machine Learning for HLS Prediction
There are two directions for HLS pragma design automa-
tion. The first direction is heuristic-driven. AutoDSE (Sohra-
bizadeh et al. 2021) uses bottleneck-guided searching based
on the HLS feedback, and it is well-generalizable. Non-
linear programming performs well on affine kernels based
on a lower-bound objective function (Pouget, Pouchet, and
Cong 2024a,b). The second direction is data-driven, which
trains a surrogate machine learning model to predict the
FPGA’s latency and resource utilization. GNNs (Sohra-
bizadeh et al. 2022, 2023; Ustun et al. 2020; Wu et al. 2022a;
Wu, Xie, and Hao 2023, 2021; Qin et al. 2024) are widely
used. While machine learning models could perform better
than heuristic methods with sufficient training data, they suf-
fer from poor generalizability. Several previous works have
tried to solve this issue. (Ferretti et al. 2020) transforms the
best pragma design from the most similar source kernel to
the target kernel, but its transformation is too simple and
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highly limited. (Kwon and Carloni 2020) trains a separate
domain adaptor for each domain, while (Bai et al. 2022)
uses the meta-learning method, MAML (Finn, Abbeel, and
Levine 2017), to find a generalizable parameter initializa-
tion. However, since we have many kernels, it is difficult to
train MAML to get stable results. We only have hundreds
of data for each kernel, so it is difficult to train an adaptor.
Instead, we explore an orthogonal direction: to improve the
model structure’s generalizability.

Domain Generalization for Graph Neural Network
Domain generalization aims to reduce the performance
gap between the source and target domains. Most related
works (Dai et al. 2019; Zhang et al. 2019; Wu et al. 2020;
Shen et al. 2023) employ adversarial training to align the
representation space between the source and target domains.
Some papers (Wu et al. 2022b; Liu et al. 2023a) design
specific data augmentation methods and learn invariant rep-
resentations under risk extrapolation. However, we cannot
directly align the representation space of different kernels
since their difference is large and is useful for the prediction.
GraphMETRO (Wu et al. 2024) predefines several types of
domain shifts and uses MoE to deal with them, where each
expert deals with one type. We take an orthogonal direction
and eliminate the need for hardware knowledge to define the
types of domain shifts, and our model based on the three
granularities is specifically designed for this task.

Mixture of Experts (MoE)
MoE uses several expert networks and calculates the
weighted sum of their outputs (Jacobs et al. 1991; Shazeer
et al. 2017). It is useful in domain transfer learning in com-
puter vision (Li et al. 2023; Zhong et al. 2023). It has also
been utilized in GNN to improve the performance (Wang
et al. 2023; Han et al. 2024), diversify node represen-
tations in fairness-augmented graphs (Liu et al. 2023b),
and deal with class imbalance (Hu et al. 2021). Previ-
ous work (Shazeer et al. 2017) has employed hierarchical
expert routing to improve memory efficiency, enabling a
larger number of experts. However, previous papers have not
shown the performance gain of hierarchical MoEs over reg-
ular MoEs when using the same number of total experts.

Preliminary
Task Definition
HLS prediction is formalized as a graph regression task. Fol-
lowing previous works (Sohrabizadeh et al. 2022, 2023),
we utilize ProGraML (Cummins et al. 2021) graph to rep-
resent a source code, which is a control data flow graph.
Nodes represent instructions, variables, and constant val-
ues, and edges represent the control flow and data flow. A
GNN model is trained to predict the FPGA’s latency and the
utilization of four resources: LUT, FF, DSP, and BRAM.
In the domain generalization setting, we train the model
on N source kernels D(train) = {D1, D2, ..., DN}, where
Di = {(Xi, Ti1, Yi1), (Xi, Ti2, Yi2), ..., (Xi, Tiin , Yiin)} is
the i-th kernel containing in samples, and each sample con-
sists of a program X , a pragma design T , and a label Y .

For a new kernel Dtest, we consider the constraint of data
scarcity where we only use k samples from the dataset
D(k) ⊂ Dtest, |D(k)| = k, to fine-tune the model. After
fine-tuning, there are two ways of evaluation: offline evalua-
tion and online evaluation. In the offline evaluation, we eval-
uate the MSE on the left-out test samples: Dtest \ D(k). In
the online evaluation, we do design space exploration (DSE)
to search for good pragma designs. Based on the fine-tuned
model’s prediction, we select the top M designs to run HLS,
and evaluate the speedup (M is set to 10 in our experiments).

HARP Model
The proposed hierarchical MoE can be adapted to any GNN
model. We use one of the SOTA GNN models for HLS
prediction, HARP (Sohrabizadeh et al. 2023), as the base
model. Since the original ProGraML graph is not good at
modeling long-range dependency, HARP creates a “pseudo
node” for each basic block and connects it with every node
within that basic block. A basic block is a sequence of in-
structions with a single entry point and a single exit point
where the terminator instruction can be a branch, return, etc.
We illustrate HARP’s model structure in the appendix. We
use V to denote the set of all nodes and VB to denote the
set of pseudo nodes. HARP consists of five components: (1)
GNN encoder: it consists of 6 GNN layers and learns node
representation; (2) Pragma MLP: it uses an MLP for each
pragma type to transform the representation of pseudo nodes
that are modified by that pragma type; (3) Another GNN
layer after pragma MLP: it further updates the node repre-
sentations; (4) Graph pooling: it performs graph pooling on
pseudo nodes VB to form one graph representation and on
normal nodes V \VB to form another, then concatenates the
two; (5) Output MLP: it makes the final prediction.

Methods
Low-Level Mixture of Experts
A unique opportunity for the HLS prediction task is that the
input graph has three granularities: normal nodes that repre-
sent data and instructions, pseudo nodes that represent basic
blocks, and the whole graph that represents a source code
file. If a data point from the target kernel shares a similar
statement (node), basic block, or the whole code (graph)
with a data point from the training kernels, MoE could be
helpful. Thus, we consider employing MoE on the three
granularities: MoE on all nodes including normal nodes and
pseudo node (node MoE), MoE only on pseudo nodes (block
MoE), and MoE on the graph (graph MoE). Based on our
pre-exploration, the best practice is to apply MoE in the
components after the pragma MLP, since the experts need
to share the same encoder and pragma MLPs. In our pre-
exploration, we found that the best structure of the gating
network is a linear layer. The model structures are shown in
Figure 2.

Node MoE. For the MoE that operates on all nodes, we
apply it on the GNN layer after the pragma MLP. We train
n GNN layers of the same structure as n experts. We denote
the representation of node vi after the pragma MLP as hi ∈
Rd. The node MoE is formulated as:
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Figure 2: Illustration of hierarchical MoE. The three low-level models are aggregated via the high-level gating network.

h′
i =

n∑
j=1

softmax(Wnode
G hi)j ·GNNj(hi, {hj , j ∈ N(vi)}),

(1)
where Wnode

G ∈ Rn×d is the parameter of the gating net-
work, N(vi) is the neighbors of vi, and GNNj(·) is the j-th
expert. The softmax function is a commonly-used normal-
ization method that ensures the weights of all experts sum up
to 1. The expert weights can be seen as “attention”. We cal-
culate the expert weights (attention scores) using the gating
network based on the node embeddings hi. By employing
the MoE layer, different nodes can utilize different parame-
ters for message passing and message aggregation.

Block MoE. We have tried applying MoE on the pragma
MLP, but the performance has decreased. It might be be-
cause each pragma type has a separate pragma MLP, so the
training data for each pragma MLP is already limited. If
we apply MoE, it will dilute the training data even more.
Instead, we add an additional MoE layer on the pseudo
nodes’ representations after the pragma MLP, so that we
can increase the expressiveness of the pseudo nodes’ rep-
resentations before graph pooling. The representation space
of the pseudo nodes after the block MoE could be differ-
ent from normal nodes, so it is no longer suitable to have
another GNN layer after the pragma MLP to do message-
passing between pseudo nodes and normal nodes. We have
also tried applying an additional layer for normal nodes af-
ter the pragma MLP, but the performance is unsatisfactory.
It might be because the normal nodes lack a global view,
so it is not useful to further transform its representation. Af-
ter having the block MoE, performing graph pooling only on
the pseudo nodes performs better than graph pooling on both
pseudo nodes and normal nodes. Therefore, we do not uti-
lize normal nodes after the GNN encoder in the block MoE
model. Ablation study of various designs is in the appendix.

We use n linear layers as n expert networks. We denote

the representation of pseudo node vi after the pragma MLP
as hi ∈ Rd. The block MoE is formulated as:

h′
i =

n∑
j=1

softmax(W block
G hi)j ·Wjhi (vi ∈ VB), (2)

where W block
G ∈ Rn×d is the parameter of the gating net-

work, and Wj ∈ Rd×d is the j-th expert network.
Graph MoE. We apply the graph MoE on the output

MLP. We denote the graph representation after graph pool-
ing as hG. Different from the block MoE structure, here we
use the original pragma MLP and graph pooling structures
as HARP. We employ the output MLP as the expert network.
The graph MoE is formulated as:

Ŷ (t) =

n∑
j=1

softmax(W graph
G hG)j ·MLP

(t)
j (hG), (3)

where W graph
G ∈ Rn×d is the parameter of the gating net-

work, MLP
(t)
j (·) is the j-th expert for predicting the objec-

tive t (t could be latency or a certain resource’s utilization).
The expert assignment is the same for all prediction objec-
tives. The MLP contains four linear layers and the ELU ac-
tivation function in between. Different design points can uti-
lize different experts to make the final prediction.

Regularization term. As discovered in many litera-
ture (Shazeer et al. 2017; Wang et al. 2023; Li et al. 2023),
expert polarization is a common problem of MoE. Due to
the random initialization of expert networks, different ex-
perts initially perform differently. The gating network learns
to assign higher weights to better experts. It results in more
training of the initial better experts, leading to their even
better performance, which forms a cycle. As training con-
tinues, the MoE model might collapse and only use the best
expert. To avoid this issue, we apply a regularization term
commonly used in MoE (Shazeer et al. 2017):
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LR = CV (I(WG)), I(WG) =

M∑
i=1

softmax(WGhi), (4)

where CV (·) is the coefficient of variation. We calculate
the importance score I(WG) ∈ Rn for gating network WG

as the total weights assigned to each expert. For node/block
MoE, M is the total number of nodes/pseudo nodes in all
graphs; for graph MoE, M is the number of graphs. This
regularization encourages balanced expert assignments.

High-Level Mixture of Experts
Now we have three MoE models operating on different gran-
ularities. A simple approach to combining them is to use all
of them together in one model. However, our ablation study
verifies that the performance will be worse. This demon-
strates that we only need MoE on one granularity in one
model. However, the best granularity greatly varies for dif-
ferent kernels, and it is difficult to discover a pattern. There-
fore, we propose a high-level MoE to aggregate them. It cal-
culates the weighted sum of the outputs of the three low-
level MoE models.

We propose two designs of the high-level gating network,
as illustrated in Figure 2. The first design is to perform graph
pooling on the input node features to form a graph represen-
tation as the input to the high-level gating network. We use
the self-attention graph pooling. Denoting the input feature
of node vi as xi, the graph pooling is formalized as:

xG =
∑
i∈V

softmax(MLP (xi)) · xi (5)

where XG is the aggregated input feature, and V is the set
of all nodes. The second design is to concatenate the graph
representation in the three low-level MoE models. The sec-
ond design performs better in our experiments, since the hid-
den representations are more expressive than the input fea-
tures. Nonetheless, when we use a sparse MoE where only
one or two experts are selected, the first design will be more
memory efficient. It can determine the expert assignment
before the computation of three expert models, thus reduc-
ing unnecessary computation. However, the best-performing
method is to utilize all the experts, and in this case, the two
designs are similar in efficiency. We utilize all the experts in
our main experiments. We also apply the regularization term
for the high-level gating network.

Two-Stage Training Strategy
Optimizing the hierarchical MoE is challenging. Different
from previous MoE studies where expert networks have the
same structures, our three low-level MoEs are very different
and thus have different convergence speeds. The graph MoE
model converges the fastest, since its MoE operates on the
graph representation and has the least computation. Thus,
the high-level gating network suffers more severely from ex-
pert polarization. It learns to assign nearly all the weights to
the graph MoE model. If we simply increase the weight of
the regularization term, the high-level gating network will
learn to assign about 1

3 weight to each expert, but the graph

MoE model still converges the fastest. As a result, the graph
MoE model will learn to output three times the prediction,
while node and block MoE models will learn to output zero.

To address this unique challenge, we design a two-stage
training strategy to encourage every expert model to per-
form well. In the first stage containing T epochs (warmup),
we train the three expert models individually. In the second
stage, we take turns training the whole model end-to-end and
the three expert models individually. If we denote the label
as Y , the prediction made by the i-th expert model as Ŷi, and
the MSE loss function as L(Y, Ŷi), then we define the loss
function at epoch t as:

L =


1

3
[L(Y, Ŷ1) + L(Y, Ŷ2) + L(Y, Ŷ3)] + αLR, if t < T or 2 | t

L(Y,
3∑

i=1

gi · Ŷi) + αLR + βLRh, otherwise.

(6)

Here, LR = 1
3 (LR1 + LR2 + LR3), where LRi is the

regularization term of the i-th low-level MoE. LRh is the
regularization term of the high-level MoE. gi is the weight
assigned by the high-level gating network.

This two-stage training strategy does not increase the
training time and is easy to implement. We only need to
disable the high-level gating network and change the loss
function in certain epochs. This strategy is only used during
training. When we fine-tune a trained model on target ker-
nels, we directly use the end-to-end joint training, since all
the experts can already perform well and there is no risk of
polarization. Besides, we initialize the high-level gating net-
work to assign the same weights to the expert models, which
can further prevent expert polarization. For low-level MoEs,
we use the normal random initialization.

Experiments
Experiment Settings
Datasets. We use one of the most comprehensive bench-
mark datasets, HLSyn (Bai et al. 2023). It contains 42 ker-
nels covering various categories: linear algebra of vectors
and matrices, data mining, stencil operations, etc. We uti-
lize the AMD/Xilinx HLS tool, Vitis 2021.1 (AMD/Xilinx
2020), to run HLS targeting the Xilinx Alveo U200 FPGA
with a working frequency of 250MHz. We select 6 kernels
as the target kernels that span representative categories in-
cluding linear algebra, data mining, and stencil. The other
kernels are source kernels. Table 2 shows the dataset statis-
tics. We introduce their details in the appendix. The HLSyn
dataset was generated by running the heuristics method,
AutoDSE (Sohrabizadeh et al. 2021), for 24 hours. Many
designs explored by AutoDSE are unavailable in HLS, so
we collect this information to train a HARP classification
model. Since its accuracy already exceeds 95%, there is no
need to employ MoE on the classification model. We use the
available designs in the dataset to train the regression model,
and we employ MoE on the regression model.

Models. Based on our pre-explorations, we use 4 experts
in the low-level MoEs, and we set the regularization terms’
weights of both low-level and high-level MoEs to 5e-3. Our
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Offline evaluation Online evaluation (FPGA speedup compared to AutoDSE)
MoE category Model Total MSE Fd Gemv Sy Gemm Ja Tr Average Geo mean

No MoE
HARP 0.202±0.013 1.03 1.29 1 1 1.08 1.18 1.10 1.09

HARP+MAML 0.732±0.167 1 1 1 1 1 1 1 1
ProgSG 0.486±0.059 1 1 1 1 1 1.22 1.04 1.03

Single MoE
Node MoE 0.160±0.035 1.13 1.03 1.00 1 1 1.15 1.05 1.05
Block MoE 0.171±0.019 1.43 1.11 1 1 1 1.07 1.10 1.09
Graph MoE 0.216±0.046 1 1.28 1.01 1 1.08 1.33 1.12 1.11

Hierarchical MoE 0.143±0.028 3.85 1.46 1 1.01 1 1.23 1.59 1.38

Table 1: Domain generalization performance. “Geo mean” is the geometric mean speedup.

Source Fd Gemv Sy Gemm Ja Tr

#Class 37697 418 428 526 1421 1837 1651
#Regre 9418 77 231 121 348 257 103

Table 2: Dataset statistics. “#Class” and “#Regre” denote
the number of classification and regression data. The ker-
nel acronyms represent “fdtd-2d-large”, “gemver-medium”,
“syr2k”, “gemm-p”, “jacobi-2d”, and “trmm-opt”.

baselines include the SOTA GNN model, HARP (Sohra-
bizadeh et al. 2023); HARP+MAML (Bai et al. 2022), which
applies meta-learning method MAML (Finn, Abbeel, and
Levine 2017) on HARP inspired by (Bai et al. 2022) to
learn a more generalizable initialization of parameters; and
ProgSG (Qin et al. 2024), which combines HARP and lan-
guage model. Although hierarchical MoE brings many more
parameters, it needs about 32 GB of memory and can still
fit into a single GPU. HARP and our model contain 359,370
and 1,329,403 parameters respectively.

Evaluation. We train the regression and classification
models on the source kernels. We want to mimic the domain
transfer situation of having scarce but representative labeled
data on the target kernels, so we use 50 data points per ker-
nel to fine-tune our regression model, and roughly the same
ratio of data points, 265 samples per kernel, to fine-tune the
classification model. To select representative data points, we
use K-means based on the graph representation. We conduct
both offline and online evaluations. In offline evaluation, we
calculate the fine-tuned regression model’s mean squared er-
ror (MSE) on the left-out data points in the target kernels
for each regression objective and sum up the five objec-
tives’ MSE. In the online evaluation, we use the DFS search
used in previous studies (Sohrabizadeh et al. 2022, 2023)
to search for pragma designs. We limit our search range to
75,000 pragma designs, since it typically takes an hour. We
use the fine-tuned classification model to predict the valid-
ity and the fine-tuned regression model to predict the latency
and resource utilization. From designs that are predicted to
be valid and satisfy resource constraints, we choose the top
10 designs with the lowest predicted latencies to run HLS.
We report the best design from the selected top-10 and the
training dataset of the target kernels during fine-tuning, since
these are all labeled data points, and we calculate its speedup
compared to the best design in the dataset. We run the offline

HARP HARP+MAML Hierarchical MoE

MSE 0.426 3.227 0.401

Table 3: Offline evaluation results on more complex kernels.

evaluation five times and the online evaluation three times,
then we report the mean results.

Experiment Results
Table 1 shows the main results. In the main experiments,
we use the second design of the high-level gating network
as it performs better. MAML could not perform well in this
setting. It might be because we have many more source ker-
nels compared to the paper that proposes to use MAML on
this task (Bai et al. 2022). Different kernels might result in
different directions of the meta gradient, leading to unsta-
ble training. ProgSG which combines GNN and language
models has a strong ability when the training data is suffi-
cient, but it overfits in the data-scarce setting. During fine-
tuning, the training loss is lower than 0.05, but the test loss is
high. Comparatively, the hierarchical MoE is more general-
izable. In the online evaluation, on most kernels, the best of
three single MoE models outperforms HARP. However, dif-
ferent kernels favor different low-level MoEs. For example,
the block is the best granularity for “Fd”, while the graph is
the best granularity for “Gemv”, “Ja”, and “Tr”. By aggre-
gating them together, hierarchical MoE performs the best or
close to the best on almost every kernel.

Complex kernels. Kernels in the HLSyn dataset are gen-
erally small. We further test the models on 5 more complex
kernels, including ”3d-rendering” and ”spam-filter” from
the Rosetta benchmark (Zhou et al. 2018) and three self-
constructed kernels, which are introduced in the appendix.
They are closer to real-world applications. Following pre-
vious settings, we train the regression model on all HLSyn
kernels and finetune it on 50 points per kernel on the new
kernels. The results are shown in Table 3. It is challenging
for all models to perform well, while the hierarchical MoE
model performs the best. It remains a future work to gener-
ally enhance model capacity on complex kernels.

Ablation Study
To verify the effectiveness of our model design, we run ex-
tensive experiments on various model structures as abla-
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Data split N+B N+G B+G N+B+G Hierarchy

K-means 0.341 0.213 0.188 0.174 0.143
Random 0.893 0.562 3.126 0.984 0.452

Table 4: Using MoE on various granularities in a single
model. “N”, “B”, and “G” represent node, block, and graph.

Metric Node Block Graph All

Offline (MSE) 0.164 0.177 0.279 0.143
Online (geo mean speedup) 1.34 1.13 1.35 1.38

Table 5: Using MoE on a single granularity in the hierarchi-
cal MoE. “Node/Block/Graph” means only using MoE on
the node/block/graph granularity in the hierarchical MoE.

tion studies. First, instead of aggregating the three low-level
MoEs, can we apply MoE on the three granularities together
in a single model? We specify the detailed structure design
in the appendix. Table 4 shows the results. When we use
MoE on two or three granularities in a single model, the loss
is usually higher than the lowest loss when only using MoE
on one granularity. Apart from selecting 50 representative
data points by K-means for fine-tuning, we also experiment
with random data split. We use the same random split for all
models to ensure fair comparison. Hierarchical MoE is the
most stable model when it faces low-quality fine-tuning data
in the random split. If we stack MoE on various granularities
in the same model, the structure might be too complex and
thus unstable to train on a small dataset.

Second, does the hierarchical MoE benefit from combin-
ing the three granularities? To answer it, we still use the
hierarchical MoE structure, but we use the same low-level
MoE model as the three experts of the high-level MoE. Ta-
ble 5 shows the results. It verifies that aggregating the three
granularities performs the best. Using only the node MoE
or graph MoE also performs well in the online evaluation,
and this might be due to the increased number of experts.
Nonetheless, aggregating the three granularities could fur-
ther improve the performance.

Third, we conduct an ablation study on the two-stage
training and the high-level gating network’s design, and the
results are listed in Table 6. There are two components in the
two-stage training: the warmup epochs, and training three
experts jointly and separately in turn after the warmup. We
either disable the alternative training or the warmup. The
lowest MSE is achieved when we use both of them. Also,
the high-level gating network based on hidden representa-
tions is better than that based on input features.

More ablation studies are in the appendix. They verify that

Two-stage training W/o alternative train W/o warmup
Gating Input Hidden Input Hidden Input Hidden

MSE 0.149 0.143 0.193 0.159 0.152 0.184

Table 6: Ablation study of two-stage training and high-level
gating network. “Input” is the first design of the high-level
gating network, while “Hidden” is the second design.

Expert Fd Gemv Sy Gemm Ja Tr

Node MoE 37% 29% 36% 37% 46% 27%
Block MoE 49% 28% 26% 40% 32% 37%
Graph MoE 14% 43% 38% 23% 22% 36%

Table 7: Average assigned weights of the high-level MoE.

Expert No pragma Loop tiling Pipeline 0<Parallel≤4 Parallel>4

1 32% 6% 6% 4% 2%
2 18% 8% 13% 41% 81%
3 22% 64% 60% 43% 8%
4 28% 22% 21% 12% 10%

Table 8: Average assigned weights of the block MoE. Each
column shows the expert weights for pseudo nodes modified
by a certain pragma type.

the hierarchical MoE’s performance is not due to increased
parameter size or expert number, but the hierarchical struc-
ture and combination of three granularities.

Analysis of Expert Assignment
We want to unveil the mystery of the gating networks. We
show the average assigned weights by the high-level gating
network in Table 7. According to Table 1, “Fd”, “Gemv”
and “Tr” have a strong preference for a certain granularity,
while the other three kernels do not. Among them, the block
MoE performs the best for “Fd”, and it is also assigned the
highest weight; graph MoE is the best expert for “Gemv”
and “Tr”, and it is also assigned the highest or nearly the
highest weight. The weights are partially explainable.

We pick the best hierarchical MoE model based on the
previous five repeated offline evaluation experiments to do a
case study on the low-level MoE. Due to the limited space,
here we only analyze the block MoE, and we analyze the
node and graph MoEs in the appendix. The pragmas modify
the pseudo nodes, so block MoE is a window for us to ana-
lyze the pragmas. We summarize the weights of each expert
for each pragma type in Table 8. There are three types of
pragmas: loop tiling, pipeline, and parallelization. The third
expert is good at dealing with loop tiling, pipeline, and small
parallel factors; the second expert is good at dealing with
large parallel factors; the other two experts deal more with
pseudo nodes that do not have pragmas. Different experts
diversify their roles, which improves generalizability.

Conclusion
Domain generalization is a big challenge for HLS prediction
models. Based on the unique challenges and opportunities,
we propose the hierarchical MoE structure. In the low-level
MoE, we apply MoE on one of the three natural granularities
of the graph: node, basic block, or graph. In the high-level
MoE, we aggregate the three low-level MoE models, so that
different data points can flexibly decide which one to use.
To address the severe expert polarization, we propose a two-
stage training strategy. Extensive experiments have verified
its effectiveness. Nonetheless, the generalizability of HLS
prediction models still remains a big challenge, and future
works can further improve the performance.
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