
PersPective
https://doi.org/10.1038/s41928-018-0059-3

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

1Department of Computer Science, University of Notre Dame, Notre Dame, IN, USA. 2Department of Computer Science, University of California, Los
Angeles, CA, USA. 3School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China. *e-mail: yshi4@nd.edu

Deep neural networks (DNNs) have recently demonstrated
performance comparable with, and in some cases superior to,
that of human experts in areas such as image recognition1–3

and the game of Go4. As the field develops, DNNs will be instru-
mental in delivering breakthroughs in various disciplines, including
disease diagnosis, real-time language translation and autonomous
driving5–9. Such accomplishments can be largely credited to ever-
increasing computing power and a growing abundance of data. As
larger clusters of faster computing nodes become available at lower
cost and in smaller form factors, more data (assuming abundant
data is readily available for the application of interest) can be used
to train DNNs with more layers and neurons. This should translate
to higher inference accuracy10.

Network sizes have increased drastically over time, reaching
beyond the petascale for some applications. Figure 1 shows, for
example, how the number of parameters in popular deep neu-
ral networks has increased over the last twenty years, and clearly
illustrates an exponential growth. For applications where powerful
computing resources are easily accessible through network con-
nections, large networks such as these may not present substantial
challenges. However, for edge computation on embedded hardware
platforms, where security, privacy and/or latency are critical con-
siderations (such as smart sensors, wearable devices, autonomous
driving and unmanned aerial vehicle tracking), inference must be
performed locally or at the edge of the network, and such computa-
tion is subject to stringent area and power constraints due to the
limited resources available.

To address the computational demands of ever-increasing net-
work sizes, hardware architects have begun exploring techniques to
compress DNNs for efficient edge inference. The ultimate judgment
of such techniques is that lower power and area overheads can be
achieved with minimal loss in inference accuracy. As many data
scientists are focusing on increasing inference accuracy through
designing more complex DNNs, there is a race between data scien-
tists and hardware architects. Complementary metal–oxide semi-
conductor (CMOS) technology scaling based on Moore’s law has
provided hardware designers with a relatively easy path towards
accommodating increasing network sizes. However, with the slow-
down of CMOS scaling trends, novel architectures specifically
designed for neural networks have emerged. In this Perspective,
we demonstrate that gaps exist between Moore’s-law-based CMOS
scaling and the scaling of DNNs for edge inference, and discuss

various architecture and algorithm innovations that could help to
bridge these gaps.

The gaps
We examined recent data on state-of-the-art DNN accuracy and
size, and the capacity of various hardware platforms. The results
show that gaps exist between the pace of data scientists who design
larger DNNs for better accuracy and that of hardware architects
who try to accommodate them. In particular, Fig. 2 shows the top-
five error rate (that is, the rate at which the corresponding class is
not among the top five predictions) of the leading designs in the
ImageNet classification competition11 over recent years. This com-
petition has made a substantial contribution to the sudden explo-
sion of deep learning and has initiated many breakthroughs in
DNN design1,2,11–14. As shown in Fig. 2, the top-five error rate has
decreased exponentially over time, with a drop of approximately
30% each year. However, accompanying this trend is the drastically
increased number of layers, parameters and number of operations,
which can be seen from the theoretical upper and lower bounds
of computation and memory complexity of DNNs with respect to
desired accuracy15–18. The increased network complexity obviously
calls for larger on-chip memory and higher I/O bandwidth for
edge inference. We are particularly interested in whether hardware
scaling can follow this trend in terms of performance and energy
efficiency.

Performance gap. In Fig. 3a, we show the number of operations
needed by the leading designs in the ImageNet classification com-
petition against their top-five error rates. The number of operations
increases exponentially from 1.4 gigaops per image (AlexNet, 2012)
to 38 gigaops per image (VGG-19, 2014) as the top-five error rate
drops from 16.4% to 7.32%. In 2014, GoogLeNet was developed,
which uses parallel structural optimization18,19 to concatenate mul-
tiple paths of different scales for more effective feature extraction.
This innovation dramatically reduces the number of operations
required with little drop in performance. However, the number of
operations continued to increase exponentially as the top-five error
rate further decreased to 3.08% (Inception-v4, 2016).

Graphics processing units (GPUs), field-programmable gate
arrays (FPGAs) and application-specific integrated circuits (ASICs)
are popular hardware platforms for accommodating networks
for edge inference19–33. Figure 3b depicts how the performance

Scaling for edge inference of deep neural networks
Xiaowei Xu   1, Yukun Ding1, Sharon Xiaobo Hu1, Michael Niemier1, Jason Cong2, Yu Hu3 and Yiyu Shi1*

Deep neural networks offer considerable potential across a range of applications, from advanced manufacturing to autonomous
cars. A clear trend in deep neural networks is the exponential growth of network size and the associated increases in compu-
tational complexity and memory consumption. However, the performance and energy efficiency of edge inference, in which
the inference (the application of a trained network to new data) is performed locally on embedded platforms that have limited
area and power budget, is bounded by technology scaling. Here we analyse recent data and show that there are increasing gaps
between the computational complexity and energy efficiency required by data scientists and the hardware capacity made avail-
able by hardware architects. We then discuss various architecture and algorithm innovations that could help to bridge the gaps.

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics216

mailto:yshi4@nd.edu
http://orcid.org/0000-0002-1046-6379
http://www.nature.com/natureelectronics

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PersPectiveNAture electroNics

density – the computation capacity per unit area, in gigaops per
second per square millimetre – has evolved over time for the leading
platforms in industry and academia. We note that the performance
density of high-end GPUs remained flat from 2011 to 2014, as the
architecture and technology remained the same. In 2015 technol-
ogy migrated from 28 nm to 20 nm and, as a result, the perform
ance density improved by about twofold, which is consistent with
Moore’s law. However, when technology scaled down to 12 nm in
2017, a minor drop in performance density appeared. This is due to
the fact that more area is needed to accommodate larger memory
and higher-bandwidth I/O34. However, it then essentially saturated;
we see an exponential growth in performance density between 2011
and 2013, after which point it remained almost constant as no fur-
ther technology scaling or important architectural innovation was
deployed. ASIC designs for efficient DNN computation vary based
on the primary metric of concern, such as performance, power con-
sumption or speed. For instance, Myriad 2, Eyeriss and EIE all target
low-power DNNs for embedded platforms. However, ultimately the
peak performance density attainable by ASICs can easily surpass
that of FPGAs and GPUs due to customization. That being said, all
hardware platforms are generally bounded by Moore’s law35; based
on these trends, the performance density of these techniques will
no longer increase when Moore’s law ends at around 5 nm (ref. 36).

By comparing Fig. 3a and Fig. 3b, it is clear that the performance
density of leading hardware platforms cannot keep up with the
number of operations required for better accuracy. Simply increas-
ing the area to accommodate larger DNNs is not a sustainable
option because of the associated power and cost on the edge.

Energy efficiency gap. Similarly, we can also observe that an
increasing gap exists between the size of a network and the energy
efficiency of the memory required by a hardware platform to accom-
modate it. Figure 4a shows how the number of network parameters
increases with reducing top-five error rate, again from leading DNN
designs in ImageNet classification competition. An exponential
increase can be observed, both before and after the appearance of
parallel structural optimization.

The energy efficiency of static random-access memory (SRAM)
and dynamic random-access memory (DRAM) for leading CPUs,
GPUs and ASICs37,38 is presented in Fig. 4b. We focus on SRAM and
DRAM only because SRAM access is two to three orders of magni-
tude more energy-efficient than DRAM access and ALU operations,
whereas DRAM is much more cost efficient than SRAM and is there-
fore used more27. Recent architectures23 suggest that the overall energy
consumption is balanced between DRAM and SRAM, and together
they dominate the energy consumption of a hardware platform.

From 2012 to 2015, the energy efficiency of DRAM (including
double data rate (DDR), low-power DDR, graphics DDR, and 3D
DRAM such as wide I/O mobile DRAM, high-bandwidth memory
and hybrid memory cubes) increased due to Moore’s-law-based
CMOS scaling. After 2015, CMOS scaling no longer provided
improvements in either energy efficiency or memory density.
Because SRAM is realized with CMOS transistors, its energy effi-
ciency is typically bounded by Moore’s law39. The empirical evi-
dence revealed by Fig. 4 therefore suggests that a memory’s energy
efficiency cannot keep up with the increasing size of a network. This
results in a rising energy demand to process the same task, thus sub-
stantially exceeding the limited energy budget for edge inference.

Recently, some works15–18 have theoretically demonstrated that
the bounds of network size and computation increase exponentially
with the accuracy, which partially supports our observation on the
exponential growth trends above.

Bridge the gaps
CMOS scaling does not offer much help in meeting the increas-
ingly demanding requirements for computation density and energy
efficiency, so innovations in architecture, circuit and device are
required instead. We focus here on innovations from hardware
architects and data scientists that jointly will bridge the gap. Note
that many interesting architectures have been recently proposed,
such as Brainwave40 by Microsoft, but they are not for edge infer-
ence and are thus not included in our discussion.

Architecture innovations. The systolic array architecture41 is a
specialized form of parallel computing in which tightly coupled
processing elements are connected to a small number of nearest-
neighbours in a mesh-like topology. This architecture therefore has
a very low amount of global data transfer and can achieve high clock
frequency. It was recently used to exploit the data movements that
are characteristic of matrix multiplications and convolution compu-
tations, achieving promising performance in hardware designs for
DNNs28,32,42. Google’s TPU28,43 and Cong and colleagues32 explored
this architecture from the perspectives of industry and academia,
both showing a great performance improvement compared with
existing implementations. Zhang et al.42 further improved the
energy efficiency by leveraging voltage-underscaling-based timing
speculation. However, the systolic array architecture suffers from
scalability issues because the shape of a systolic array is fixed in each
particular implementation.

Near-data processing improves the energy efficiency of data
movement by placing computing units near data. Integrating
DRAM on the chip reduces the effort needed to move the data,
thereby resulting in higher energy efficiency. Commercially avail-
able 3D DRAMs, hybrid memory cubes and high-bandwidth
memory have been stacked on chip to reduce the capacitance of

1014

1013

1012

108

107

106

105

N
um

be
r

of
 p

ar
am

et
er

s

1998 2011 2012 2013
Year

2014

Google Brain

VGG-19
VGG-16OverFeat

AlexNet
Clarifai

ResNet110
ResNet50

NIN GoogLeNet

SqueezeNet

ResNet1202
Inception-v4

Baidu Brain
Livermore Brain

Digital
Reasoning

DNNs in academia
DNNs in academia with optimization

DNNs in industry

Nvidia’s network

2016 20172015

LeNet-5

Inception-v3

Fig. 1 | Scale of state-of-the-art DNNs. The parameter number of DNNs
increases exponentially over time. The y axis is in log scale. Data taken
from refs 116–120.

20%

10%

5%

3%

2%

To
p-

fiv
e

er
ro

r

2011 2012 2013 2014 2015 2016

Year

VGG-19
VGG-16

OverFeatAlexNet
Clarifai

ResNet110
ResNet152

ResNet50GoogLeNet

Inception-v4

Inception-v3

Fig. 2 | Top-five error rate of popular DNNs for imageNet classification
competition. The top-five error rate decreases exponentially over time. The
y axis is in log scale. Data taken from refs 119,120.

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics 217

http://www.nature.com/natureelectronics

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PersPective NAture electroNics

the interconnect. Neurocube44 stacked the hybrid memory cube
die on a single-instruction multiple-data processor, while TETRIS45
combined a hybrid memory cube with a spatial architecture. Unlike
general DNN accelerators, near-data processing achieves optimal
efficiency by using more area for computing. In order to achieve
higher efficiency, some works have even moved the DRAM on
chip. DaDianNao23 adopted embedded DRAM for high-density
on-chip memory, which achieves a 150-fold reduction in energy at
the cost of larger chip size. There are also some works that moved
computing units to sensors, thereby further reducing the cost of
memory access. ShiDiannao26 put vision processing in the sensor
with no DRAM, yielding a 63-fold improvement in energy effi-
ciency. RedEye46 even omitted analogue-to-digital conversion and
performed DNN computation in the analogue domain at the sensor.

Non-von Neumann architectures have also been explored to
reduce computation and memory consumption. One such approach
adopts non-volatile resistive memories as programmable resis-
tive elements. Because computation is performed in the analogue
domain, it can be extremely fast with ReRAM arrays47. The approach
also brings high density and high energy efficiency as computation
and memory are packed in the same chip area, thereby involving
minimal data movement. ISAAC48 adopted multicycle approach to
perform high-precision calculations with limited memory using

25.1 million memristors. PRIME49 employed a large memristor
array for multi-level computation. Jain et al.50 and Wang et al.51
proposed the use of spin-transfer torque magnetic RAM for
DNN computation.

Recently, representative array-level demonstrations have been
reported. These include IBM’s 500 × 661 phase change mem-
ory array for handwritten-digit recognition using the Modified
National Institute of Standards and Technology (MNIST) data-
base52, Tsinghua’s 128 × 8 analogue resistive RAM array for face rec-
ognition53, UCSB’s 12 × 12 crossbar array for pattern recognition54,
and UCSB’s floating-gate array for MNIST image recognition55.
Non-von Neumann architectures with memristors have several
drawbacks: a large analogue-to-digital/digital-to-analogue conver-
sion overhead, limited size of the memristor array, and energy and
time overheads for memristor writing. It was recently shown that
the analogue-to-digital conversion overhead can be eliminated by
training the networks in the analogue domain54, and memristor
writing can also be mitigated56. Although non-von Neumann archi-
tectures with non-volatile resistive memories have considerable
potential in both performance and energy efficiency, a number of
requirements are yet to be met: special materials and device engi-
neering to support the requirements of synaptic devices, increased
array size, DNN mapping and EDA tools, and large-scale prototype

N
um

be
r

of
 o

pe
ra

tio
ns

 (
×

10
9)

10

20

5

1

50

20% 10% 4%

Top-five error

AlexNet
(2012)

OverFeat
(2013)

GoogLeNet
(2014)

VGG-16

VGG-19
(2014)

Inception-v1

Inception-v2

Inception-v3

Inception-v4
(2016)

MobileNet

ShuffleNet

Xception

ResNeXt-101 DPN-131

PolyNet

NASNet-A(N=7)

ResNet110

ResNet152
(2015)

ResNet50

NASNet-A(N=5)

NASNet-A(N=4)

NASNet-A(N=7)

2011

Cambricon

DaDianNao

Diannao

NeuFlow

ShiDianNao

Arria II EP2AGZ350

Strati IV EP4SGX230

Stratix 10 GX 2800
Arria V GX660

Year

20

100

200

50

10

500

5

1,000

P
er

fo
rm

an
ce

 d
en

si
ty

(g
ig

ao
ps

 s
–1

 m
m

–2
)

PD of GPUs PD of ASICs PD of FPGAs

Moore’s law trend for
performance according to ref. 35

Moore’s law end

GTX 690 GTX Titan

GTX Titan X

GTX 1080

P100 V100

Eyeriss

TPU

EIE

Park
Moves

Myriad2

Arria V5AGZE7

20172012 2013 2014 2015 2016

65 nm 45 nm 40 nm 28 nm 16 nm 12 nm

DNNs in academia without
structural optimization

DNNs in academia with
structural optimization

GTX Titan Z

a

b

GTX 1080 Ti

Fig. 3 | Gap between required number of operations and performance density. a, Number of operations versus top-five error rate for leading DNN
designs from ImageNet classification competition. b, Performance density (PD) of leading GPU, ASIC and FPGA platforms. To catch up with the required
number of operations, simply increasing the chip area is not feasible. Only the leading DNNs are labelled with a year. The y axis is in log scale. Data taken
from refs 1–31,119,120.

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics218

http://www.nature.com/natureelectronics

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PersPectiveNAture electroNics

demonstrations. Some works have also performed multiply and
accumulate operations in an SRAM array57,58. In particular, a bit-cell
current can be used for computation, providing a 12-fold improve-
ment in energy efficiency over von Neumann architectures.

Spiking neural networks, in contrast, model the behaviour of
biological receptive fields and the human visual system, and have
great potential for improving latency and energy efficiency. They
typically adopt binary ‘spikes’ and low-resolution weights for high
efficiency, but suffer from a lack of effective training algorithms
owing to the non-differentiable nature of asynchronous spike
events. Recently, several works have shed light on this challenge,
including research on learning methods for achieving high accu-
racy in specific applications59–62. Hesham et al.63 proposed an effi-
cient temporal coding method for improving energy efficiency and
reducing response time. Several hardware implementations have
also been proposed, including TrueNorth by IBM64,65, which veri-
fied the high energy efficiency and throughput of spiking neural
networks on hardware. However, effective and generalized learning
methods for large-scale spiking neural networks are still at an early
stage of development.

Algorithm innovations. Because DNNs are both memory- and
computation-intensive (convolutions, for example), many works
have tried to reduce the amount of memory access or number of
convolutional operations.

Sparsity optimization involves connection pruning and exploit-
ing activation sparsity66–68. DNNs are frequently over-parameter-
ized: that is, a large portion of the parameters are redundant and

can be pruned. Recent works show that pruning can reduce 89% of
memory accesses and 67% of computation operations69,70. Exploiting
activation sparsity benefits from the fact that the rectified linear unit
nonlinearity produces a large number of zero outputs, which can
cut memory accesses and computation operations by half24,71. Ulrich
et al.72 explored sparsity with parameter sharing. A Bayesian point of
view has also recently been explored for pruning and compression73.
Hardware with customized data movement and control is required
to support these reductions27,74. Jaderberg et al.75 and Denton et al.76
both used the low-rank approximation (LRA) to obtain a sparse
convolution 2–4.5 times faster than without sparsity optimization
with an accuracy loss of only 1%. However, the LRA suffers from a
large number of hyper-parameters, which are difficult to train. To
solve this problem, Wen et al.77 proposed to obtain a compressed
structure of deep CNNs by group Lasso regularization during the
training, requiring only one hyper-parameter and providing a
3.1–5.1-fold improvement in speed over that without sparsity opti-
mization. Wang et al.78, Huang et al.79 and Luo et al.80 exploited the
redundancy in the feature maps derived from the large number of
filters in a layer. DeepRebirth81 merged the consecutive non-tensor
and tensor layers vertically or horizontally to reduce their number
of layers, while Marc et al.82 took the target domain into account for
more compact LRA. Shufflenet83 proposed two operations: point-
wise group convolution and channel shuffle to reduce computation
cost greatly while maintaining accuracy. Sotoudeh et al.84 combined
rank factorization with a reshaping process that added nonlinearity
to the approximation function based on the LRA, obtaining a 2–14-
fold improvement in speed over that without sparsity optimization.

N
um

be
r

of
 p

ar
am

et
er

s
(×

10
6)

10

20

5

3

50

20 % 10 % 4%

100

200

Top-five error

AlexNet
(2012)

OverFeat
(2013)

GoogLeNet
(2014)

MobileNet
ShuffleNet

DPN-131
PolyNet

ResNet152
(2015)ResNet50

Xception

NASNet-A
(N=4)

E
ne

rg
y

ef
fic

ie
nc

y
of

 m
em

or
y

(b
its

 n
J–1

)

100

30

50

DDR3
in 2007

GDDR4
in 2007

2011 20172012 2013 2014 2015 2016

DDR4

DDR5

LPDDR3

LPDDR4
LPDDR4x

LPDDR5

GDDR5

GDDR6

WIO-2

HMC
HBM-1

HBM-2

SRAM energy efficiency (the same with
Moore’s law trend for energy efficiency35)

90 nm 80nm 30 nm 20 nm 18nm 16nm

Energy efficiency of DRAM

Energy efficiency of SRAM

200

a

b

Year

DNNs in academia without
structural optimization

DNNs in academia with
structural optimization

VGG-19
(2014)

VGG-16

Inception-v2

Inception-v3

Inception-v1

Inception-v4
(2016)

NASNet-A(N=7)

ResNeXt-101

ResNet110

NASNet-A(N=5)

NASNet-A(N=7)

Fig. 4 | a gap exists between the required number of memory accesses and memory energy efficiency. a, Number of parameters (highly correlated
with the number of memory accesses) versus top-five error rate and year for leading DNN designs from ImageNet classification competition. b, Memory
energy efficiency of leading memory solutions. The memory efficiency cannot accommodate the increasing number of memory accesses with a limited
energy budget. Only the leading DNNs are labelled with a year. The y axis is in log scale. Data taken from refs 1–31,34,37–39,119,120.

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics 219

http://www.nature.com/natureelectronics

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PersPective NAture electroNics

Bit-width optimization aims to reduce the bit-width of param-
eters from floating point to fixed point85. Unlike sparsity optimiza-
tion, it reduces the precision in exchange for memory access and
computation operations with higher efficiency. Nonlinear quantiza-
tion and the dynamic fixed point method86–88 achieved four times
less memory access than that without bit-width optimization with
a top-five error rate of only 0.4–0.6% for ImageNet classification.
Ternary weight network89 and binaryConnect90 further reduced the
bit-width of weights to 2 bits or even 1 bit, but at the expense of
a large reduction in accuracy. Recently, trained ternary quantiza-
tion91 and binary weight networks92 have reduced this accuracy loss
to only 0.6–0.8%. Some works have also achieved better accuracy by
using nonlinear quantization to represent the parameter distribu-
tion87,93,94. Some studies also aim to quantize the activations88,92,95–97.
Quantized neural networks88, binarized neural networks95 and
XNOR-net92 achieved a large reduction in memory/computa-
tion cost by reducing the weights to only 1 bit and the activations
to 1–2 bits, although at the cost of substantially lower accuracy.
Hu et al.98 adopted hashing and Leng et al.99 squeezed the last bit out
for training to further improve the accuracy of binary weight net-
works, while Ko et al.100,101 determined the optimal pair of weight/
neuron bit precision by exploring their impact on performance.
Bit-width optimization cannot compress DNNs arbitrarily small
because at least 1 bit is always required. Note that in order to exploit
precision reduction, customized hardware is also needed102–106, such
as Google’s tensor processing units, which use 8 bits for computa-
tion104, and Nvidia’s 8-bit integer instructions for inference105.

Researchers have also explored the computation of DNNs in
other domains to reduce complexity. Motivated by the fact that
complex convolutions in the time domain can be calculated with
simple multiplications in the frequency domain, over the past a few
years a few works have used fast Fourier transform (FFT)-based
fast multiplication for DNNs107,108. Lecun et al.109 applied the FFT
to a single filter in the convolutional layer, with a relatively large
loss in accuracy. Cheng et al.110 calculated FFTs with a single circu-
lant matrix to fully connected layers, resulting in a limited gain in
weight reduction and performance. Cong and Xiao modelled the
convolution computation as a special type of matrix–matrix multi-
plication and applied the Strassen algorithm to reduce the operation
count111. Recently, Ding et al.112 adopted block-circulant matrices
in CirCNN to support both convolutional and fully connected
layers. This system can reduce computation complexity from O(n2)
to O(nlogn) and storage complexity from O(n2) to O(n) with almost
no loss in accuracy. Following the same idea, Lu et al.113 adopted
the Winograd transformation, which is more hardware-friendly
than the FFT.

outlook
The approaches discussed here will only delay the widening of the
gaps between Moore’s-law-based CMOS scaling and DNN scaling
where edge inference is required. To permanently close these gaps,
we need new approaches that are fundamentally different from what
exists today. The human brain is more than five orders of magnitude
more energy efficient than all current DNNs114,115, it does not require
much training data with supervision to achieve high accuracy, nor
does it need separate neural network structures for different tasks.
With biology as our inspiration, it is clear we still have much room
for improvement, and a long way to go.

Received: 11 December 2017; Accepted: 21 March 2018;
Published online: 17 April 2018

references
 1. Krizhevsky, A. et al. ImageNet classification with deep convolutional neural

networks. In Adv. Neural Inf. Proc. Sys. 1097–1105 (2012).
 2. Szegedy, C. et al. Going deeper with convolutions. In Proc. IEEE Conf.

Computer Vision and Pattern Recognition 1–9 (2015).

 3. He, K. et al. Identity mappings in deep residual networks. In Eur. Conf.
Computer Vision 630–645 (Springer, 2016).

 4. Silver, D. et al. Mastering the game of Go with deep neural networks and
tree search. Nature 529, 484–489 (2016).

 5. Zhang, L. et al. Carcinopred-el: Novel models for predicting the
carcinogenicity of chemicals using molecular fingerprints and ensemble
learning methods. Sci. Rep. 7, 2118 (2017).

 6. Ge, G. et al. Quantitative analysis of diffusion-weighted magnetic
resonance images: Differentiation between prostate cancer and normal
tissue based on a computer-aided diagnosis system. Sci. China Life Sci. 60,
37–43 (2017).

 7. Egger, M. & Schoder, D. Consumer-oriented tech mining: Integrating the
consumer perspective into organizational technology intelligence-the case
of autonomous driving. In Proc. 50th Hawaii Int. Conf. System Sciences
1122–1131 (2017).

 8. Rosenberg, C. Improving photo search: A step across the semantic gap.
Google Research Blog (12 June 2013); https://research.googleblog.
com/2013/06/improving-photo-search-step-across.html

 9. Ji, S. et al. 3D convolutional neural networks for human action recognition.
IEEE T. Pattern Anal 35, 221–231 (2013).

 10. Balluru, V., Graham, K. & Hilliard, N. Systems and methods for coreference
resolution using selective feature activation. US Patent 9,633,002 (2017).

 11. Sermanet, P. et al. Overfeat: Integrated recognition, localization and
detection using convolutional networks. Preprint at https://arxiv.org/
abs/1312.6229 (2013).

 12. Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. Preprint at https://arxiv.org/abs/1409.1556
(2014).

 13. He, K. et al. Deep residual learning for image recognition. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition. 770–778 (2016).

 14. Szegedy, C. et al. Rethinking the inception architecture for computer
vision. In Proc. IEEE Conf. Computer Vision and Pattern Recognition.
2818–2826 (2016).

 15. Boris, H. Universal function approximation by deep neural nets with
bounded width and ReLU activations. Preprint at https://arxiv.org/
abs/1708.02691 (2017).

 16. Liang, S. & Srikant, R. Why deep neural networks for function
approximation? Preprint at https://arxiv.org/abs/1610.04161 (2016).

 17. Dmitry, Y. Error bounds for approximations with deep ReLU networks.
Neural Networks. 94, 103–114 (2017).

 18. Ding, Y. et al. On the universal approximability of quantized ReLU neural
networks. Preprint at https://arxiv.org/abs/1802.03646 (2018).

 19. https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
(2017).

 20. Farabet, C. et al. Neuflow: A runtime reconfigurable dataflow processor for
vision. 2011 IEEE Conf. Computer Vision and Pattern Recognition
Workshops 109–116 (2011).

 21. Moloney, D. et al. Myriad 2: Eye of the computational vision storm.
Hot Chips 26 Symp. 1–18 (2014).

 22. Chen, T. et al. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. Proc. 19th Int. Conf. Architectural Support for
Programming Languages and Operating Systems. 269–284 (2014).

 23. Chen, Y. et al. DaDianNao: A machine-learning supercomputer. 2014 47th
Ann. IEEE/ACM Int. Symp. Microarchitecture. 609–622 (2014).

 24. Chen, Y. H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks.
IEEE J. Solid-St. Circ. 52, 127–138 (2017).

 25. Park, S. et al. A 1.93TOPS/W scalable deep learning/inference processor
with tetra-parallel MIMD architecture for big-data applications. 2015 IEEE
Int. Solid-St. Circ. Conf. 1–3 (2015).

 26. Du, Z. et al. ShiDianNao: Shifting vision processing closer to the sensor.
ACM SIGARCH Computer Architecture News 43, 92–104 (2015).

 27. Han, S. et al. EIE: Efficient inference engine on compressed deep neural
network. 2016 ACM/IEEE 43rd Ann. Int. Symp. Computer Architecture
243–254 (2016).

 28. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor
processing unit. 2017 ACM/IEEE 44th Ann. Int. Symp. Computer
Architecture 1–12 (2017).

 29. Moons, B. & Verhelst, M. A 0.3–26 TOPS/W precision-scalable
processor for real-time large-scale ConvNets. IEEE Symp. VLSI Circuits
1–2 (2016).

 30. Liu, S. et al. Cambricon: An instruction set architecture for neural
networks. 2016 ACM/IEEE 43rd Ann. Int. Symp. Computer Architecture
393–405 (2016).

 31. Whatmough, P. N. et al. 14.3 A 28nm SoC with a 1.2 GHz 568nJ/prediction
sparse deep-neural-network engine with 0.1 timing error rate tolerance for
IoT applications. 2017 IEEE Int. Solid-St. Circ. Conf. 242–243 (2017).

 32. Wei, X. et al. Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs. 2017 54th ACM/EDAC/IEEE Design
Automation Conf. 29, 1–6 (2017).

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics220

https://research.googleblog.com/2013/06/improving-photo-search-step-across.html
https://research.googleblog.com/2013/06/improving-photo-search-step-across.html
https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1708.02691
https://arxiv.org/abs/1708.02691
https://arxiv.org/abs/1610.04161
https://arxiv.org/abs/1802.03646
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
http://www.nature.com/natureelectronics

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PersPectiveNAture electroNics

 33. Zhang, C. et al. Optimizing FPGA-based accelerator design for deep
convolutional neural networks. 23rd Int. Symp. Field-Programmable Gate
Arrays https://doi.org/10.1145/2684746.2689060 (2015).

 34. NVIDIA TESLA P100 (NVIDIA, 2017); http://www.nvidia.com/object/
tesla-p100.html

 35. Sutter, H. The free lunch is over: A fundamental turn toward concurrency
in software. Dr Dobb’s J. 30, 202–210 (2005).

 36. Toumey, C. Less is Moore. Nat. Nanotech. 11, 2–3 (2016).
 37. Mutlu, O. Memory scaling: A systems architecture perspective. Proc. 5th Int.

Memory Workshop 21–25 (2013).
 38. Using Next-Generation Memory Technologies: DRAM and Beyond HC28-T1

(HotChips, 2016); available at https://www.youtube.com/watch?v=
61oZhHwBrh8

 39. Dreslinski, R. G., Wieckowski, M., Blaauw, D., Sylvester, D. & Mudge, T.
Near-threshold computing: Reclaiming Moore’s law through energy efficient
integrated circuits. Proc. IEEE. 98, 253–266 (2010).

 40. Microsoft unveils Project Brainwave for real-time AI. Microsoft (22 August
2017); https://www.microsoft.com/en-us/research/blog/microsoft-unveils-
project-brainwave/ (2017).

 41. Kung, H. T. Algorithms for VLSI processor arrays. In Introduction to VLSI
Systems 271–292 (1979).

 42. Zhang, J., Ghodsi, Z., Rangineni, K. & Garg, S. Enabling extreme energy
efficiency via timing speculation for deep neural network accelerators. NYU
Center for Cyber Security (2017); http://cyber.nyu.edu/enabling-extreme-
energy-efficiency-via-timing-speculation-deep-neural-network-accelerators/

 43. Cloud TPUs (2017); https://ai.google/tools/cloud-tpus/
 44. Kim, D., Kung, J., Chai, S., Yalamanchili, S. & Mukhopadhyay, S. Neurocube:

A programmable digital neuromorphic architecture with high-density 3D
memory. 2016 ACM/IEEE 43rd Ann. Int. Symp. Computer Architecture
380–392 (2016).

 45. Gao, M., Pu, J., Yang, X., Horowitz, M. & Kozyrakis, C. TETRIS: Scalable
and efficient neural network acceleration with 3D memory. Proc. 22nd Int.
Conf. Architectural Support for Programming Languages and Operating
Systems 751–764 (2017).

 46. LiKamWa, R., Hou, Y., Gao, J., Polansky, M. & Zhong, L. RedEye: Analog
ConvNet image sensor architecture for continuous mobile vision. 2016
ACM/IEEE 43rd Ann. Int. Symp. Computer Architecture 255–266 (2016).

 47. Li, C. et al. Analogue signal and image processing with large memristor
crossbars. Nat. Electron. 1, 52 (2018).

 48. Ali, S. et al. ISAAC: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. 2016 ACM/IEEE 43rd Ann. Int. Symp.
Computer Architecture 14–26 (2016).

 49. Ping, C. et al. Prime: A novel processing-in-memory architecture for neural
network computation in ReRAM-based main memory. 2016 ACM/IEEE
43rd Ann. Int. Symp. Computer Architecture 27–39 (2016).

 50. Jain, S., Ranjan, A., Roy, K. & Raghunathan, A. Computing in memory with
spin-transfer torque magnetic RAM. Preprint at https://arxiv.org/
abs/1703.02118 (2017).

 51. Kang, W., Wang, H., Wang, Z., Zhang, Y. & Zhao, W. In-memory processing
paradigm for bitwise logic operations in STT–MRAM. IEEE T. Magn. 53,
1–4 (2017).

 52. Burr, G. W. et al. Experimental demonstration and tolerancing of a
large-scale neural network (165,000 synapses), using phase-change memory
as the synaptic weight element. IEEE T. Electron Dev. 62, 3498–3507 (2015).

 53. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8,
15199 (2017).

 54. Prezioso, M. et al. Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 521, 61–64 (2015).

 55. Guo, X. et al. Fast, energy-efficient, robust, and reproducible mixed-signal
neuromorphic classifier based on embedded NOR flash memory
technology. 2017 IEEE Int. Electron. Dev. Meet. 6.5.1–6.5.4 (2017).

 56. Yu, S. et al. Binary neural network with 16 Mb RRAM macro chip for
classification and online training. 2016 IEEE Int. Electron. Dev. Meet.
16.2.1–16.2.4 (2016).

 57. Zhang, J., Wang, Z. & Verma, N. In-memory computation of a machine-
learning classifier in a standard 6T SRAM array. IEEE J. Solid-St. Circ. 52,
915–924 (2017).

 58. Jaiswal, A., Chakraborty, I., Agrawal, A. & Roy, K. 8T SRAM cell as a
multi-bit dot product engine for beyond von-Neumann computing.
Preprint at https://arxiv.org/abs/1802.08601 (2018).

 59. Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks
using backpropagation. Front. Neurosci. 10, 508 (2016).

 60. O’Connor, P. & Max, W. Deep spiking networks. Preprint at https://arxiv.
org/abs/1602.08323 (2016).

 61. Hesham, M. Supervised learning based on temporal coding in spiking neural
networks. IEEE T. Neural Networks and Learning Systems PP, 1–9 (2017).

 62. Wen, W. et al. A new learning method for inference accuracy, core
occupation, and performance co-optimization on TrueNorth chip.
2016 53nd ACM/EDAC/IEEE Design Automation Conf. 1–6 (2016).

 63. Mostafa, H., Pedroni, B. U., Sheik, S. & Cauwenberghs, G. Fast classification
using sparsely active spiking networks. 2017 IEEE Int. Symp. Circuits and
Systems 1–4 (2017).

 64. Qiao, N. et al. A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9,
141 (2015).

 65. Esser, S. K. et al. Convolutional networks for fast, energy-efficient
neuromorphic computing. Proc. Natl Acad. Sci. USA. 113,
11441–11446 (2016).

 66. Yu, R. et al. NISP: Pruning networks using neuron importance score
propagation. Preprint at https://arxiv.org/abs/1711.05908 (2017).

 67. Xu, X. et al. Empowering mobile telemedicine with compressed cellular
neural networks. IEEE/ACM Int. Conf. Computer-Aided Design
880–887 (2017).

 68. Xu, X. et al. Quantization of fully convolutional networks for accurate
biomedical image segmentation. Preprint at https://arxiv.org/abs/1803.04907
(2018).

 69. Han, S., Pool, J., Tran, J. & Dally, W. Learning both weights and
connections for efficient neural network. Proc. 28th Int. Conf. Neural
Information Processing Systems 1135–1143 (2015).

 70. Yang, T. J., Chen, Y. H. & Sze, V. Designing energy-efficient convolutional
neural networks using energy-aware pruning. Preprint at https://arxiv.org/
abs/1611.05128 (2017).

 71. Jorge, A. et al. Cnvlutin: Ineffectual-neuron-free deep neural network
computing. 2016 ACM/IEEE 43rd Ann. Int. Symp. Computer Architecture
1–13 (2016).

 72. Ullrich, K., Meeds, E. & Welling, M. Soft weight-sharing for neural network
compression. Preprint at https://arxiv.org/abs/1702.04008 (2017).

 73. Louizos, C., Ullrich, K. & Welling, M. Bayesian compression for deep
learning. Proc. 30th Int. Conf. Neural Information Processing Systems
3290–3300 (2017).

 74. Brandon, R. et al. Minerva: Enabling low-power, highly-accurate deep
neural network accelerators. 2016 ACM/IEEE 43rd Ann. Int. Symp.
Computer Architecture 267–278 (2016).

 75. Jaderberg, M., Vedaldi, A. & Zisserman, A. Speeding up convolutional
neural networks with low rank expansions. Preprint at https://arxiv.org/
abs/1405.3866 (2014).

 76. Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y. & Fergus, R. Exploiting
linear structure within convolutional networks for efficient evaluation. Proc.
27th Int. Conf. Neural Information Processing Systems 1269–1277 (2014).

 77. Wen, W., Wu, C., Wang, Y., Chen, Y. & Li, H. Learning structured sparsity
in deep neural networks. Proc. 29th Int. Conf. Neural Information Processing
Systems 2074–2082 (2016).

 78. Wang, Y., Xu, C., Xu, C. & Tao, D. Beyond filters: Compact feature map for
portable deep model. Int. Conf. Machine Learning 3703–3711 (2017).

 79. Huang, Q., Zhou, K., You, S. & Neumann, U. Learning to prune filters in
convolutional neural networks. Preprint at https://arxiv.org/abs/1801.07365
(2018).

 80. Luo, J. H., Wu, J. & Lin, W. Thinet: A filter level pruning method for deep
neural network compression. Preprint at https://arxiv.org/abs/1707.06342
(2017).

 81. Li, D., Wang, X. & Kong, D. DeepRebirth: Accelerating deep neural
network execution on mobile devices. Preprint at https://arxiv.org/
abs/1708.04728 (2017).

 82. Masana, M., van de Weijer, J., Herranz, L., Bagdanov, A. D. & Alvarez, J. M.
Domain-adaptive deep network compression. Network 16, 30 (2017).

 83. Zhang, X., Zhou, X., Lin, M. & Sun, J. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. Preprint at https://arxiv.
org/abs/1707.01083 (2017).

 84. Sotoudeh, M. & Sara S. B. DeepThin: A self-compressing library for deep
neural networks. Preprint at https://arxiv.org/abs/1802.06944 (2018).

 85. Hashemi, S., Anthony, N., Tann, H., Bahar, R. I. & Reda, S. Understanding
the impact of precision quantization on the accuracy and energy
of neural networks. 2017 Design, Automation & Test in Europe
1474–1479 (2017).

 86. Jiantao, Q. et al. Going deeper with embedded FPGA platform for
convolutional neural network. Proc. 2016 ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays 26–35 (2016).

 87. Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding.
Preprint at https://arxiv.org/abs/1510.00149 (2016).

 88. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y.
Quantized neural networks: Training neural networks with low precision
weights and activations. Preprint at https://arxiv.org/abs/1609.07061 (2016).

 89. Li, F., Zhang, B. & Liu, B. Ternary weight networks. Preprint at https://arxiv.
org/abs/1605.04711 (2016).

 90. Courbariaux, M., Bengio, Y. & David, J. P. BinaryConnect: Training deep
neural networks with binary weights during propagations. Proc. 28th Int.
Conf. Neural Information Processing Systems 3123–3131 (2015).

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics 221

https://doi.org/10.1145/2684746.2689060
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
https://www.youtube.com/watch?v=61oZhHwBrh8
https://www.youtube.com/watch?v=61oZhHwBrh8
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
http://cyber.nyu.edu/enabling-extreme-energy-efficiency-via-timing-speculation-deep-neural-network-accelerators/
http://cyber.nyu.edu/enabling-extreme-energy-efficiency-via-timing-speculation-deep-neural-network-accelerators/
https://ai.google/tools/cloud-tpus/
https://arxiv.org/abs/1703.02118
https://arxiv.org/abs/1703.02118
https://arxiv.org/abs/1802.08601
https://arxiv.org/abs/1602.08323
https://arxiv.org/abs/1602.08323
https://arxiv.org/abs/1711.05908
https://arxiv.org/abs/1803.04907
https://arxiv.org/abs/1611.05128
https://arxiv.org/abs/1611.05128
https://arxiv.org/abs/1702.04008
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1801.07365
https://arxiv.org/abs/1707.06342
https://arxiv.org/abs/1708.04728
https://arxiv.org/abs/1708.04728
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1802.06944
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
http://www.nature.com/natureelectronics

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PersPective NAture electroNics

 91. Zhu, C., Han, S., Mao, H. & Dally, W. J. Trained ternary quantization.
Preprint at https://arxiv.org/abs/1612.01064 (2016).

 92. Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. XNORNet: ImageNet
classification using binary convolutional neural networks. Eur. Conf.
Computer Vision 525–542 (2016).

 93. Miyashita, D., Lee, E. H. & Murmann, B. Convolutional neural networks
using logarithmic data representation. Preprint at https://arxiv.org/
abs/1603.01025 (2016).

 94. Zhou, A., Yao, A., Guo, Y., Xu, L. & Chen, Y. Incremental network
quantization: Towards lossless CNNs with low-precision weights. Preprint at
https://arxiv.org/abs/1702.03044 (2017).

 95. Courbariaux, M. & Bengio, Y. BinaryNet: Training deep neural networks
with weights and activations constrained to + 1 or –1. Preprint at
https://arxiv.org/abs/1602.02830 (2016).

 96. Zhou, S. et al. DoReFaNet: Training low bitwidth convolutional neural
networks with low bitwidth gradients. Preprint at https://arxiv.org/
abs/1606.06160 (2016).

 97. Cai, Z., He, X., Sun, J. & Vasconcelos, N. Deep learning with low precision
by half-wave Gaussian quantization. 2017 IEEE Conference on Computer
Vision and Pattern Recognition 5918–5926 (2017).

 98. Hu, Q., Wang, P. & Cheng, J. From hashing to CNNs: Training
BinaryWeight networks via hashing. Preprint at https://arxiv.org/
abs/1802.02733 (2018).

 99. Leng, C., Li, H., Zhu, S. & Jin, R. Extremely low bit neural network:
Squeeze the last bit out with ADMM. Preprint at https://arxiv.org/
abs/1707.09870 (2017).

 100. Ko, J. H., Fromm, J., Philipose, M., Tashev, I. & Zarar, S. Precision scaling
of neural networks for efficient audio processing. Preprint at https://arxiv.
org/abs/1712.01340 (2017).

 101. Ko, J. H., Fromm, J., Philipose, M., Tashev, I. & Zarar, S. Adaptive weight
compression for memory-efficient neural networks. 2017 Design,
Automation & Test in Europe 199–204 (2017).

 102. Chakradhar, S., Sankaradas, M., Jakkula, V. & Cadambi, S. A dynamically
configurable coprocessor for convolutional neural networks. Proc. 37th Int.
Symp. Computer Architecture 247–257 (2010).

 103. Gysel, P., Motamedi, M. & Ghiasi, S. Hardware-oriented approximation of
convolutional neural networks. Preprint at https://arxiv.org/abs/1604.03168
(2016).

 104. Higginbotham, S. Google takes unconventional route with homegrown
machine learning chips. The Next Platform (19 May 2016).

 105. Morgan, T. P. Nvidia pushes deep learning inference with new Pascal GPUs.
The Next Platform (13 September 2016).

 106. Judd, P., Albericio, J. & Moshovos, A. Stripes: Bit-serial deep neural
network computing. IEEE Computer Architecture Lett. 16, 80–83 (2016).

 107. Zhang, C. & Prasanna, V. Frequency domain acceleration of convolutional
neural networks on CPU-FPGA shared memory system. Proc. 2017 ACM/
SIGDA Int. Symp. Field-Programmable Gate Arrays 35–44 (2017).

 108. Andrew, K. Reducing deep network complexity with Fourier transform
methods. Preprint at https://arxiv.org/abs/1801.01451 (2017).

 109. Mathieu, M., Henaff, M. & LeCun, Y. Fast training of convolutional
networks through FFTs. Preprint at https://arxiv.org/abs/1312.5851 (2013).

 110. Cheng, Y. et al. An exploration of parameter redundancy in deep networks
with circulant projections. Int. Conf. Computer Vision 2857–2865 (2015).

 111. Cong, J. & Xiao, B. Minimizing computation in convolutional neural
networks. Proc. 24th Int. Conf. Artificial Neural Networks 8681,
281–290 (2014).

 112. Ding, C. et al. CirCNN: Accelerating and compressing deep neural
networks using block-circulant weight matrices. Proc. 50th Ann. IEEE/ACM
Int. Symp. Microarchitecture 395–408 (2017).

 113. Lu, L., Liang, Y., Xiao, Q. & Yan, S. Evaluating fast algorithms for
convolutional neural networks on FPGAs. 25th IEEE Int. Symp. Field-
Programmable Custom Computing Machines 101–108 (2017).

 114. Fischetti, M. Computers versus brains. Scientific American (1 November
2011); https://www.scientificamerican.com/article/computers-vs-brains/.

 115. Meier, K. The brain as computer: Bad at math, good at everything else.
IEEE Spectrum (31 May 2017); https://spectrum.ieee.org/computing/
hardware/the-brain-as-computer-bad-at-math-good-at-everything-else

 116. Hachman, M. Nvidia’s GPU neural network tops Google. PC World
(18 June 2013); https://www.pcworld.com/article/2042339/nvidias-gpu-
neural-network-tops-google.html

 117. Digital reasoning trains world’s largest neural network. HPC Wire
(7 July 2015); https://www.hpcwire.com/off-the-wire/digital-reasoning-
trains-worlds-largest-neural-network/

 118. Wu, H. Y., Wang, F. & Pan, C. Who will win practical artificial intelligence?
AI engineerings in China. Preprint at https://arxiv.org/abs/1702.02461
(2017).

 119. Sze, V., Chen, Y. H., Yang, T. J. & Emer, J. S. Efficient processing of deep
neural networks: A tutorial and survey. Proc. IEEE. 105, 2295–2329 (2017).

 120. Canziani, A., Paszke, A. & Culurciello, E. An analysis of deep neural
network models for practical applications. Preprint at https://arxiv.org/
abs/1605.07678 (2016).

author contributions
X.X. contributed to data collection, analysis and writing. Y.D. contributed to data
collection. S.H., M.N., J.C. and Y.H. contributed to discussion and writing. Y.S.
contributed to project planning, development, discussion and writing.

Competing interests
The authors declare no competing interests.

additional information
Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to Y.S.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

NaTure eleCTroNiCS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics222

https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1702.03044
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1802.02733
https://arxiv.org/abs/1802.02733
https://arxiv.org/abs/1707.09870
https://arxiv.org/abs/1707.09870
https://arxiv.org/abs/1712.01340
https://arxiv.org/abs/1712.01340
https://arxiv.org/abs/1604.03168
https://arxiv.org/abs/1801.01451
https://arxiv.org/abs/1312.5851
https://www.scientificamerican.com/article/computers-vs-brains/
https://spectrum.ieee.org/computing/hardware/the-brain-as-computer-bad-at-math-good-at-everything-else
https://spectrum.ieee.org/computing/hardware/the-brain-as-computer-bad-at-math-good-at-everything-else
https://www.pcworld.com/article/2042339/nvidias-gpu-neural-network-tops-google.html
https://www.pcworld.com/article/2042339/nvidias-gpu-neural-network-tops-google.html
https://www.hpcwire.com/off-the-wire/digital-reasoning-trains-worlds-largest-neural-network/
https://www.hpcwire.com/off-the-wire/digital-reasoning-trains-worlds-largest-neural-network/
https://arxiv.org/abs/1702.02461
https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1605.07678
http://www.nature.com/reprints
http://www.nature.com/natureelectronics

	Scaling for edge inference of deep neural networks
	The gaps
	Performance gap.
	Energy efficiency gap.

	Bridge the gaps
	Architecture innovations.
	Algorithm innovations.

	Outlook
	Fig. 1 Scale of state-of-the-art DNNs.
	Fig. 2 Top-five error rate of popular DNNs for ImageNet classification competition.
	Fig. 3 Gap between required number of operations and performance density.
	Fig. 4 A gap exists between the required number of memory accesses and memory energy efficiency.

