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Deep neural networks (DNNs) have recently demonstrated 
performance comparable with, and in some cases superior to, 
that of human experts in areas such as image recognition1–3 

and the game of Go4. As the field develops, DNNs will be instru-
mental in delivering breakthroughs in various disciplines, including 
disease diagnosis, real-time language translation and autonomous 
driving5–9. Such accomplishments can be largely credited to ever-
increasing computing power and a growing abundance of data. As 
larger clusters of faster computing nodes become available at lower 
cost and in smaller form factors, more data (assuming abundant 
data is readily available for the application of interest) can be used 
to train DNNs with more layers and neurons. This should translate 
to higher inference accuracy10.

Network sizes have increased drastically over time, reaching 
beyond the petascale for some applications. Figure 1 shows, for 
example, how the number of parameters in popular deep neu-
ral networks has increased over the last twenty years, and clearly 
illustrates an exponential growth. For applications where powerful 
computing resources are easily accessible through network con-
nections, large networks such as these may not present substantial 
challenges. However, for edge computation on embedded hardware 
platforms, where security, privacy and/or latency are critical con-
siderations (such as smart sensors, wearable devices, autonomous 
driving and unmanned aerial vehicle tracking), inference must be 
performed locally or at the edge of the network, and such computa-
tion is subject to stringent area and power constraints due to the 
limited resources available.

To address the computational demands of ever-increasing net-
work sizes, hardware architects have begun exploring techniques to 
compress DNNs for efficient edge inference. The ultimate judgment 
of such techniques is that lower power and area overheads can be 
achieved with minimal loss in inference accuracy. As many data 
scientists are focusing on increasing inference accuracy through 
designing more complex DNNs, there is a race between data scien-
tists and hardware architects. Complementary metal–oxide semi-
conductor (CMOS) technology scaling based on Moore’s law has 
provided hardware designers with a relatively easy path towards 
accommodating increasing network sizes. However, with the slow-
down of CMOS scaling trends, novel architectures specifically 
designed for neural networks have emerged. In this Perspective, 
we demonstrate that gaps exist between Moore’s-law-based CMOS 
scaling and the scaling of DNNs for edge inference, and discuss 

various architecture and algorithm innovations that could help to 
bridge these gaps.

The gaps
We examined recent data on state-of-the-art DNN accuracy and 
size, and the capacity of various hardware platforms. The results 
show that gaps exist between the pace of data scientists who design 
larger DNNs for better accuracy and that of hardware architects 
who try to accommodate them. In particular, Fig. 2 shows the top-
five error rate (that is, the rate at which the corresponding class is 
not among the top five predictions) of the leading designs in the 
ImageNet classification competition11 over recent years. This com-
petition has made a substantial contribution to the sudden explo-
sion of deep learning and has initiated many breakthroughs in 
DNN design1,2,11–14. As shown in Fig. 2, the top-five error rate has 
decreased exponentially over time, with a drop of approximately 
30% each year. However, accompanying this trend is the drastically 
increased number of layers, parameters and number of operations, 
which can be seen from the theoretical upper and lower bounds 
of computation and memory complexity of DNNs with respect to 
desired accuracy15–18. The increased network complexity obviously 
calls for larger on-chip memory and higher I/O bandwidth for 
edge inference. We are particularly interested in whether hardware  
scaling can follow this trend in terms of performance and energy 
efficiency.

Performance gap. In Fig. 3a, we show the number of operations 
needed by the leading designs in the ImageNet classification com-
petition against their top-five error rates. The number of operations 
increases exponentially from 1.4 gigaops per image (AlexNet, 2012) 
to 38 gigaops per image (VGG-19, 2014) as the top-five error rate 
drops from 16.4% to 7.32%. In 2014, GoogLeNet was developed, 
which uses parallel structural optimization18,19 to concatenate mul-
tiple paths of different scales for more effective feature extraction. 
This innovation dramatically reduces the number of operations 
required with little drop in performance. However, the number of 
operations continued to increase exponentially as the top-five error 
rate further decreased to 3.08% (Inception-v4, 2016).

Graphics processing units (GPUs), field-programmable gate 
arrays (FPGAs) and application-specific integrated circuits (ASICs) 
are popular hardware platforms for accommodating networks 
for edge inference19–33. Figure 3b depicts how the performance  
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density – the computation capacity per unit area, in gigaops per  
second per square millimetre – has evolved over time for the leading 
platforms in industry and academia. We note that the performance 
density of high-end GPUs remained flat from 2011 to 2014, as the 
architecture and technology remained the same. In 2015 technol-
ogy migrated from 28 nm to 20 nm and, as a result, the perform 
ance density improved by about twofold, which is consistent with 
Moore’s law. However, when technology scaled down to 12 nm in 
2017, a minor drop in performance density appeared. This is due to 
the fact that more area is needed to accommodate larger memory 
and higher-bandwidth I/O34. However, it then essentially saturated; 
we see an exponential growth in performance density between 2011 
and 2013, after which point it remained almost constant as no fur-
ther technology scaling or important architectural innovation was 
deployed. ASIC designs for efficient DNN computation vary based 
on the primary metric of concern, such as performance, power con-
sumption or speed. For instance, Myriad 2, Eyeriss and EIE all target 
low-power DNNs for embedded platforms. However, ultimately the 
peak performance density attainable by ASICs can easily surpass 
that of FPGAs and GPUs due to customization. That being said, all 
hardware platforms are generally bounded by Moore’s law35; based 
on these trends, the performance density of these techniques will 
no longer increase when Moore’s law ends at around 5 nm (ref. 36).

By comparing Fig. 3a and Fig. 3b, it is clear that the performance 
density of leading hardware platforms cannot keep up with the 
number of operations required for better accuracy. Simply increas-
ing the area to accommodate larger DNNs is not a sustainable 
option because of the associated power and cost on the edge.

Energy efficiency gap. Similarly, we can also observe that an 
increasing gap exists between the size of a network and the energy 
efficiency of the memory required by a hardware platform to accom-
modate it. Figure 4a shows how the number of network parameters 
increases with reducing top-five error rate, again from leading DNN 
designs in ImageNet classification competition. An exponential 
increase can be observed, both before and after the appearance of 
parallel structural optimization.

The energy efficiency of static random-access memory (SRAM) 
and dynamic random-access memory (DRAM) for leading CPUs, 
GPUs and ASICs37,38 is presented in Fig. 4b. We focus on SRAM and 
DRAM only because SRAM access is two to three orders of magni-
tude more energy-efficient than DRAM access and ALU operations, 
whereas DRAM is much more cost efficient than SRAM and is there-
fore used more27. Recent architectures23 suggest that the overall energy 
consumption is balanced between DRAM and SRAM, and together 
they dominate the energy consumption of a hardware platform.

From 2012 to 2015, the energy efficiency of DRAM (including 
double data rate (DDR), low-power DDR, graphics DDR, and 3D 
DRAM such as wide I/O mobile DRAM, high-bandwidth memory 
and hybrid memory cubes) increased due to Moore’s-law-based 
CMOS scaling. After 2015, CMOS scaling no longer provided 
improvements in either energy efficiency or memory density. 
Because SRAM is realized with CMOS transistors, its energy effi-
ciency is typically bounded by Moore’s law39. The empirical evi-
dence revealed by Fig. 4 therefore suggests that a memory’s energy 
efficiency cannot keep up with the increasing size of a network. This 
results in a rising energy demand to process the same task, thus sub-
stantially exceeding the limited energy budget for edge inference.

Recently, some works15–18 have theoretically demonstrated that 
the bounds of network size and computation increase exponentially 
with the accuracy, which partially supports our observation on the 
exponential growth trends above.

Bridge the gaps
CMOS scaling does not offer much help in meeting the increas-
ingly demanding requirements for computation density and energy 
efficiency, so innovations in architecture, circuit and device are 
required instead. We focus here on innovations from hardware 
architects and data scientists that jointly will bridge the gap. Note 
that many interesting architectures have been recently proposed, 
such as Brainwave40 by Microsoft, but they are not for edge infer-
ence and are thus not included in our discussion.

Architecture innovations. The systolic array architecture41 is a 
specialized form of parallel computing in which tightly coupled 
processing elements are connected to a small number of nearest-
neighbours in a mesh-like topology. This architecture therefore has 
a very low amount of global data transfer and can achieve high clock 
frequency. It was recently used to exploit the data movements that 
are characteristic of matrix multiplications and convolution compu-
tations, achieving promising performance in hardware designs for 
DNNs28,32,42. Google’s TPU28,43 and Cong and colleagues32 explored 
this architecture from the perspectives of industry and academia, 
both showing a great performance improvement compared with 
existing implementations. Zhang et al.42 further improved the 
energy efficiency by leveraging voltage-underscaling-based timing 
speculation. However, the systolic array architecture suffers from 
scalability issues because the shape of a systolic array is fixed in each 
particular implementation.

Near-data processing improves the energy efficiency of data 
movement by placing computing units near data. Integrating 
DRAM on the chip reduces the effort needed to move the data, 
thereby resulting in higher energy efficiency. Commercially avail-
able 3D DRAMs, hybrid memory cubes and high-bandwidth 
memory have been stacked on chip to reduce the capacitance of 
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the interconnect. Neurocube44 stacked the hybrid memory cube 
die on a single-instruction multiple-data processor, while TETRIS45 
combined a hybrid memory cube with a spatial architecture. Unlike 
general DNN accelerators, near-data processing achieves optimal 
efficiency by using more area for computing. In order to achieve 
higher efficiency, some works have even moved the DRAM on 
chip. DaDianNao23 adopted embedded DRAM for high-density 
on-chip memory, which achieves a 150-fold reduction in energy at 
the cost of larger chip size. There are also some works that moved 
computing units to sensors, thereby further reducing the cost of 
memory access. ShiDiannao26 put vision processing in the sensor 
with no DRAM, yielding a 63-fold improvement in energy effi-
ciency. RedEye46 even omitted analogue-to-digital conversion and 
performed DNN computation in the analogue domain at the sensor.

Non-von Neumann architectures have also been explored to 
reduce computation and memory consumption. One such approach 
adopts non-volatile resistive memories as programmable resis-
tive elements. Because computation is performed in the analogue 
domain, it can be extremely fast with ReRAM arrays47. The approach 
also brings high density and high energy efficiency as computation 
and memory are packed in the same chip area, thereby involving 
minimal data movement. ISAAC48 adopted multicycle approach to 
perform high-precision calculations with limited memory using 

25.1 million memristors. PRIME49 employed a large memristor 
array for multi-level computation. Jain et al.50 and Wang et al.51  
proposed the use of spin-transfer torque magnetic RAM for  
DNN computation.

Recently, representative array-level demonstrations have been 
reported. These include IBM’s 500 ×​ 661 phase change mem-
ory array for handwritten-digit recognition using the Modified 
National Institute of Standards and Technology (MNIST) data-
base52, Tsinghua’s 128 ×​ 8 analogue resistive RAM array for face rec-
ognition53, UCSB’s 12 ×​ 12 crossbar array for pattern recognition54, 
and UCSB’s floating-gate array for MNIST image recognition55. 
Non-von Neumann architectures with memristors have several 
drawbacks: a large analogue-to-digital/digital-to-analogue conver-
sion overhead, limited size of the memristor array, and energy and 
time overheads for memristor writing. It was recently shown that 
the analogue-to-digital conversion overhead can be eliminated by 
training the networks in the analogue domain54, and memristor 
writing can also be mitigated56. Although non-von Neumann archi-
tectures with non-volatile resistive memories have considerable 
potential in both performance and energy efficiency, a number of 
requirements are yet to be met: special materials and device engi-
neering to support the requirements of synaptic devices, increased 
array size, DNN mapping and EDA tools, and large-scale prototype 
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demonstrations. Some works have also performed multiply and 
accumulate operations in an SRAM array57,58. In particular, a bit-cell 
current can be used for computation, providing a 12-fold improve-
ment in energy efficiency over von Neumann architectures.

Spiking neural networks, in contrast, model the behaviour of 
biological receptive fields and the human visual system, and have 
great potential for improving latency and energy efficiency. They 
typically adopt binary ‘spikes’ and low-resolution weights for high 
efficiency, but suffer from a lack of effective training algorithms 
owing to the non-differentiable nature of asynchronous spike 
events. Recently, several works have shed light on this challenge, 
including research on learning methods for achieving high accu-
racy in specific applications59–62. Hesham et al.63 proposed an effi-
cient temporal coding method for improving energy efficiency and 
reducing response time. Several hardware implementations have 
also been proposed, including TrueNorth by IBM64,65, which veri-
fied the high energy efficiency and throughput of spiking neural 
networks on hardware. However, effective and generalized learning 
methods for large-scale spiking neural networks are still at an early 
stage of development.

Algorithm innovations. Because DNNs are both memory- and 
computation-intensive (convolutions, for example), many works 
have tried to reduce the amount of memory access or number of 
convolutional operations.

Sparsity optimization involves connection pruning and exploit-
ing activation sparsity66–68. DNNs are frequently over-parameter-
ized: that is, a large portion of the parameters are redundant and 

can be pruned. Recent works show that pruning can reduce 89% of 
memory accesses and 67% of computation operations69,70. Exploiting 
activation sparsity benefits from the fact that the rectified linear unit 
nonlinearity produces a large number of zero outputs, which can 
cut memory accesses and computation operations by half24,71. Ulrich  
et al.72 explored sparsity with parameter sharing. A Bayesian point of 
view has also recently been explored for pruning and compression73. 
Hardware with customized data movement and control is required 
to support these reductions27,74. Jaderberg et al.75 and Denton et al.76 
both used the low-rank approximation (LRA) to obtain a sparse 
convolution 2–4.5 times faster than without sparsity optimization 
with an accuracy loss of only 1%. However, the LRA suffers from a 
large number of hyper-parameters, which are difficult to train. To 
solve this problem, Wen et al.77 proposed to obtain a compressed 
structure of deep CNNs by group Lasso regularization during the 
training, requiring only one hyper-parameter and providing a  
3.1–5.1-fold improvement in speed over that without sparsity opti-
mization. Wang et al.78, Huang et al.79 and Luo et al.80 exploited the 
redundancy in the feature maps derived from the large number of 
filters in a layer. DeepRebirth81 merged the consecutive non-tensor 
and tensor layers vertically or horizontally to reduce their number 
of layers, while Marc et al.82 took the target domain into account for 
more compact LRA. Shufflenet83 proposed two operations: point-
wise group convolution and channel shuffle to reduce computation 
cost greatly while maintaining accuracy. Sotoudeh et al.84 combined 
rank factorization with a reshaping process that added nonlinearity 
to the approximation function based on the LRA, obtaining a 2–14-
fold improvement in speed over that without sparsity optimization.
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Bit-width optimization aims to reduce the bit-width of param-
eters from floating point to fixed point85. Unlike sparsity optimiza-
tion, it reduces the precision in exchange for memory access and 
computation operations with higher efficiency. Nonlinear quantiza-
tion and the dynamic fixed point method86–88 achieved four times 
less memory access than that without bit-width optimization with 
a top-five error rate of only 0.4–0.6% for ImageNet classification. 
Ternary weight network89 and binaryConnect90 further reduced the 
bit-width of weights to 2 bits or even 1 bit, but at the expense of 
a large reduction in accuracy. Recently, trained ternary quantiza-
tion91 and binary weight networks92 have reduced this accuracy loss 
to only 0.6–0.8%. Some works have also achieved better accuracy by 
using nonlinear quantization to represent the parameter distribu-
tion87,93,94. Some studies also aim to quantize the activations88,92,95–97. 
Quantized neural networks88, binarized neural networks95 and 
XNOR-net92 achieved a large reduction in memory/computa-
tion cost by reducing the weights to only 1 bit and the activations 
to 1–2 bits, although at the cost of substantially lower accuracy.  
Hu et al.98 adopted hashing and Leng et al.99 squeezed the last bit out 
for training to further improve the accuracy of binary weight net-
works, while Ko et al.100,101 determined the optimal pair of weight/
neuron bit precision by exploring their impact on performance. 
Bit-width optimization cannot compress DNNs arbitrarily small 
because at least 1 bit is always required. Note that in order to exploit 
precision reduction, customized hardware is also needed102–106, such 
as Google’s tensor processing units, which use 8 bits for computa-
tion104, and Nvidia’s 8-bit integer instructions for inference105.

Researchers have also explored the computation of DNNs in 
other domains to reduce complexity. Motivated by the fact that 
complex convolutions in the time domain can be calculated with 
simple multiplications in the frequency domain, over the past a few 
years a few works have used fast Fourier transform (FFT)-based 
fast multiplication for DNNs107,108. Lecun et al.109 applied the FFT 
to a single filter in the convolutional layer, with a relatively large 
loss in accuracy. Cheng et al.110 calculated FFTs with a single circu-
lant matrix to fully connected layers, resulting in a limited gain in 
weight reduction and performance. Cong and Xiao modelled the 
convolution computation as a special type of matrix–matrix multi-
plication and applied the Strassen algorithm to reduce the operation 
count111. Recently, Ding et al.112 adopted block-circulant matrices 
in CirCNN to support both convolutional and fully connected  
layers. This system can reduce computation complexity from O(n2) 
to O(nlogn) and storage complexity from O(n2) to O(n) with almost 
no loss in accuracy. Following the same idea, Lu et al.113 adopted 
the Winograd transformation, which is more hardware-friendly  
than the FFT.

Outlook
The approaches discussed here will only delay the widening of the 
gaps between Moore’s-law-based CMOS scaling and DNN scaling 
where edge inference is required. To permanently close these gaps, 
we need new approaches that are fundamentally different from what 
exists today. The human brain is more than five orders of magnitude 
more energy efficient than all current DNNs114,115, it does not require 
much training data with supervision to achieve high accuracy, nor 
does it need separate neural network structures for different tasks. 
With biology as our inspiration, it is clear we still have much room 
for improvement, and a long way to go.
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