
A Scalable, High-Performance Customized Priority Queue

Muhuan Huang,* Kevin Lim+ and Jason Cong*

*University of California, Los Angeles +Hewlett Packard Labs
Computer Science Department
{mhhuang, cong}@cs.ucla.edu kevin.lim@hp.com

Abstract—Priority queues are abstract data structures where each
element is associated with a priority, and the highest priority element
is always retrieved first from the queue. The data structure is widely
used within databases, including the last stage of a merge-sort,
forecasting read-ahead I/O to stream data for the merge-sort, and
replacement selection sort. Typical software implementations use a
balanced binary tree-based structure, providing O(log N) time for
both enqueue and dequeue operations.

To improve the performance, we propose several scalable and
high-speed FPGA-based implementations of a priority queue. Our
insight is that the above listed applications primarily use priority
queues through “replace” operations, which remove the highest
priority element and place a new element into the queue. Thus, our
designs are customized for this operation, allowing for a simple and
scalable architecture. We implement three priority queue designs,
including use of a register-based array, register-based tree, and
BRAM-based tree, which have different benefits and trade-offs of
throughput, frequency, and maximum size. More importantly, all
designs achieve O(1) time between replace operations.

To incorporate the best aspects of our designs, we propose a
Hybrid Priority Queue (H-PQ), which combines a register-based
array with multiple BRAM-based trees. This design provides, on
average, very fast access times to the top items in the queue (through
the register-based array), while scaling to large priority queue sizes
(through the BRAM-based trees). In our evaluations, we find that
H-PQ achieves 4.3x speedup and 21.5x energy efficiency, compared
with the Xeon CPU implementations.

I. INTRODUCTION

In this paper we demonstrate the design of a scalable high-
speed FPGA-based priority queue. A priority queue is an abstract
data structure which returns elements in the order of their
associated priority. In database systems, such a data structure
is widely used for many purposes: for example, generating the
initial sorted runs, merging cache-sized runs in memory, merging
disk-based runs and forecasting the most effective read-ahead I/O
[1]. It is thus worthwhile to thoroughly profile and optimize the
priority queue implementations.

Priority queues have two basic operations: dequeue and en-
queue. Dequeue returns the element that has the highest priority
and removes it from the queue; enqueue inserts an element, with
its specific priority, into the queue. Sometimes a dequeue-enqueue
operation, or a replace operation, is also considered as the third
basic operation.

To allow for quick (constant time) identification of the highest-
priority element, priority queue implementations usually main-
tain a partially ordered internal structure, if not fully ordered.
Traditional software implementations use a heap to implement
a priority queue. While a heap takes O(1) time to check for
the highest-priority element, it takes O(logN) time to insert or
remove elements, since upon insertion/removal, it must fix the
binary tree to regain the properties of a heap. Thus, tasks that
repeatedly insert and remove elements from the priority queue
will be bounded by this O(logN) time.

Several hardware priority queue implementations have been
proposed in prior work; these are based on either a pipelined

*Muhuan Huang worked on this research project while she was a summer
intern at Hewlett Packard Labs.

heap [2, 3] or a systolic array [4]. These approaches have several
limitations:

(1) These designs use on-chip memories to store the data node.
Since an on-chip memory access takes at least one clock cycle,
many of the pipelined stages — which include fetching data from
the on-chip memory, comparing the data and writing data back
to memory — end up taking multiple clock cycles. To speed up
the implementation, complicated logics and wide-port memories
have to be introduced so as to overlap the successive operations.

(2) These designs aim to support all three priority queue
operations, enqueue, dequeue and replace. However, we find only
the replace operation is needed when a priority queue is used in
a database system, motivating us to design a customized priority
queue.

Our work makes the following contributions:
(1) We propose three priority queue implementations based

on FPGAs: register-array, register-tree and BRAM-tree. Unlike a
traditional priority queue implementation, we aim to only support
replace and dequeue operations. By eliminating the enqueue
operation, we have a simplified but faster design. For example,
a register-array needs half the storage and half the number of
comparators when compared to the systolic array-based imple-
mentations. Major priority queue applications in database systems
only use replace operations.

(2) We evaluate the design trade-offs of the proposed priority
queue implementations. The register-array is the best design
choice for small priority queues, the size of which is on the order
of tens of elements. However, the register-array consumes logic
for O(N) comparators which makes it unable to fit on-chip when
N is large. The BRAM-tree only consumes logic for O(logN)
comparators, but at the cost of slower throughput.

(3) We propose a hybrid priority queue (H-PQ) implementation
that combines the best parts of both worlds — register-array and
BRAM-tree. Unlike previous BRAM-based pipelined heap imple-
mentations, our BRAM-tree design is simple enough that it only
needs single-entry-wide ports. We show that H-PQ can support
a large-sized priority queue at a reasonably fast throughput.

The remainder of this paper is organized as follows. We
highlight the practical considerations of designing priority queues
for databases in Section II. Section III proposes three different
priority queue architectures and provides architecture benchmark-
ing. Section IV proposes a hybrid priority queue architecture.
Experimental results and discussions are shown in Section V.
And we conclude in Section VI.

Readers are referred to [5] for more extensive discussions on
related work, priority queue applications in databases, proposed
architectures and experimental results.

II. PRIORITY QUEUE IN DATABASE SYSTEMS

In database systems, a priority queue can be used for several
purposes: (1) It provides a natural way to implement an N-way
merge as the last stage of merge-sort, and serves to merge N
sorted runs into a single sorted run. (2) N-way merge requires
proper I/O handling if the initial runs reside in external devices.
We can effectively predict which sorted runs to prefetch by using



160

90 120 130

140

100

150

lev 0

20 10 30 40 80 60 50 70

lev 1

lev 2

lev 3

Figure 1. Register-tree.

a priority queue. (3) Replacement selection sort, also known
as tournament sort, is one of the most commonly used run
generation techniques for external sorting [1, 6]. The replace-
ment selection performs the in-memory sort by passing the data
through a large priority queue.

We summarize the practical design considerations as follows:
(1) The priority queues in these applications primarily need

replace operations. Enqueue operations only occur at the initial-
ization stage. Thus enqueue operations can be implemented using
the replace operations. To initialize the priority queue with the
replace operation, the priority queue can be designed to have all
entries initialized to +∞ (−∞) for the max (min) priority queue.
Then the replace operation can be used to fill up the queue; +∞
(−∞) will always be shifted to the top of the queue, guaranteeing
that the replace operations will remove only those special values.
Similarly, dequeue can be implemented as a replacement of the
top element with −∞ (+∞) for a max (min) priority queue.

(2) The size of priority queues needed in database systems
can be very large. Replacement selection sort prefers a priority
queue that is as large as possible. The size of the priority queue
in the merge phase and read-ahead I/Os forecast is application-
dependent.

Therefore, in this work, we seek to design a scalable, high-
speed specialized priority queue which can support replace op-
erations.

III. PRIORITY QUEUE ARCHITECTURES

In this section we first discuss the traditional heap-based pri-
ority queue implementation in software. Then we propose three
different FPGA-based priority queue architectures: register-tree,
register-array and BRAM-tree. Their cost-performance trade-offs
are also evaluated at the end of this section.

A. Software Implementation
In a typical software implementation, the priority queue is

implemented using a binary heap. An enqueue operation inserts
the new item at the leftmost empty node, and then possibly
swaps the new item with the parent node and continues upwards
(heapify-up) to regain the heap property. A dequeue operation
will select the maximum item at the root, and replace it with
the rightmost non-empty node in the last level. The item that is
displaced continues downwards (heapify-down), and is compared
against the next level until it finds its proper place in the tree. It
takes up to O(logN) time to dequeue or enqueue an item because
in the worst case, an item must traverse the entire tree to move
to its proper position. A replace is implemented as a dequeue-
enqueue which also takes up to O(logN) time.

The following three proposed architectures, however, allow an
operation following a replacement in O(1) time.

B. Register-Tree
As its name indicates, this design uses a tree of registers.

Similar to a software-based priority queue implementation, it
orders the nodes with respect to the heap property.

160 90120130140 100150

0 61 2 53 4
step

0

1.0

replace(75)

1.1

1.2

2.0

replace(95)

2.1

2.2

150 90120130140 10075

150 9012013075 100140

140 9012075130 10095

140 907512095 100130

75 90120130140 100150

95 9012013075 100140

Figure 2. Register-array. The array is laid out horizontally while time progresses
vertically downward.

The tree is first fully loaded with entries (e.g., 2N − 1 entries
in a N-level priority queue). For this example we will describe a
max priority queue which returns the largest item in the queue;
an example using a min priority queue is identical, replacing the
comparison of largest with smallest.

Upon a replace operation, in one cycle the top item is removed
and returned to the user. In that same cycle, all the entries at the
even levels are compare-and-swapped with the entries at the odd
levels (e.g., a parent node in level 2 gets swapped with the larger
of its two children in level 3 if the parent node is smaller than
that child). Following that, all the entries at the odd levels are
compare-and-swapped with the entries at the even levels (e.g., a
parent node in level 1 gets swapped with the larger of its two
children in level 2 if the parent node is smaller than that child).
The compare-and-swap operation tries to regain the heap property
wherein if the parent node is not larger than both the child nodes,
the parent node will swap with the larger of the child nodes.

Fig. 1 is an example of a max priority queue, where a parent
node is larger than the two child nodes. Each trio denotes a
compare-and-swap operation. The compare-and-swap logics in
the same color operate together at the same time.

This design leverages the parallel nature of FPGAs, allowing
each of these level comparisons to take place in parallel across
the entire tree (e.g., level 0, 2, and 4 occur in parallel, and level
1 and 3 occur in parallel). By allowing the swaps to complete in
one cycle, the register-tree can sustain a replace operation every
cycle, compared to a replace operation taking O(logN) time in
the software heap case.

C. Register-Array
The second proposed implementation is to organize the reg-

isters in an array-like structure, which we call a register-array.
The replace operation propagates to the next node in a fashion
similar to the register-tree. Upon a replace operation, in one cycle
the leftmost node is replaced with a new item, then the array
pulsates twice — all the even entries in the array are swapped
with the odd entries, and then all the odd entries are swapped
with the even entries. Fig. 2 provides an illustrative example of
the register-array. Note that if we adopt a “single child” policy
in implementing the register tree, it becomes exactly the same as
the register-array.

The register-array has two advantages over the register-tree: (1)
the number of compare-and-swap logics is N-1, compared with
1.5N in the register-tree; and (2) the register-array is much easier
to place and route on FPGAs than the register-tree. The clock
frequency of the register-tree drops quickly as the priority queue



160

90 120 130

140

100

150

lev 0

20 10 30 40 80 60 50 70

lev 1

lev 2

lev 3

idx_0

idx_1

idx_2

idx_3

Figure 3. BRAM-tree.

size increases. A more formal explanation that can be found in
[7] states that when embedding a complete binary tree into a
two-dimensional plane, the maximum distance between adjacent
nodes (dilation) has a lower bound of Ω(

√
N

logN ).

D. BRAM-Tree

We transform a register-tree into a BRAM-tree by packing
registers at each tree level into BRAMs. In addition, each level
maintains an index indicating which item in the BRAM has just
been displaced. Compare-and-swap logic first reads the index and
then calculates the indexes of the two child nodes in the next
level. This is illustrated in Fig. 3. The comparator logics between
level 0 and level 1 calculate the child node indexes as 2 ∗ idx 0
and 2 ∗ idx 0 + 1.

The BRAM-tree is scalable with respect to the priority queue
size in two aspects: (1) the comparator logic is on the order of
O(logN), and (2) registers are packed into BRAMs, and thus we
are no longer facing the problem of embedding a large binary
tree into a two-dimensional plane.

However, due to manipulations on BRAMs rather than on
registers, two compare-and-swap operations now take multiple
clock cycles. In our experiment, the resulting throughput is 4
clock cycles between replace operations.

E. Architecture Comparisons

Table I
PERFORMANCE AREA TRADEOFFS OF THREE PRIORITY QUEUE

IMPLEMENTATIONS

number of throughput
comparator BRAM (cycles between

logics replace op.)
register-tree 1.5N 0 1

register-array N 0 1
BRAM-tree logN ∼N/B 4

Here we summarize the three proposed priority queue imple-
mentations in Table. I. B is the size of a BRAM. Throughput
is measured as how often the priority queue can accept a new
replace operation.

In terms of resource consumptions, the register-array and the
BRAM-tree are the two most effective architectures. The register-
array is more sensitive to comparator logic, while the BRAM-tree
is more sensitive to the on-chip BRAM size.

As we experiment with our FPGA board, the largest priority
queue that can fit on the FPGA uses the BRAM-tree architecture.

IV. A HYBIRD PRIORITY QUEUE ARCHITECTURE

Each of the described approaches has shortcomings that limit
their applicability. Thus, we propose a hybrid approach that we
call Hybrid Priority Queue (H-PQ). H-PQ combines the best of
both the register-array and BRAM-tree. It can both support a
large priority queue size and can achieve an average throughput
close to 1 cycle between replace operations .

at can fit on a FPGA (ZC706) chip lev 1

lev 0

lev 1

(size: 1)

lev 3 (size: 4)

lev 2 

(size: 2)

lev 4 (size: 8)

BRAM-based tree 0

lev 1

lev 0

lev 1

lev 0

lev 1

lev 0

register-
based arrayvalid valid valid valid

tag0 tag1 tag2 tag3

lev 1

(size: 1)

lev 3 (size: 4)

lev 2 

(size: 2)

lev 4 (size: 8)

lev 1

(size: 1)

lev 3 (size: 4)

lev 2 

(size: 2)

lev 4 (size: 8)

lev 1

(size: 1)

lev 3 (size: 4)

lev 2 

(size: 2)

lev 4 (size: 8)

BRAM-based tree 1 BRAM-based tree 2 BRAM-based tree 3

Figure 4. Hybrid priority queue (H-PQ).

A. Architecture

The design strategy is simple — we keep multiple BRAM-trees
and use a register-array to sort the root nodes of the trees. The
new item replaces the largest root and propagates downward in
the tree to regain heap property. And then the register-array also
pulsates to regain the order. The insight here is that if consecutive
new items are propagating down different trees, we can then hide
the slow individual throughput of the trees.

Fig. 4 is an example of four BRAM-trees with a 4-entry
register-array. The register-array is slightly modified in H-PQ to
maintain the following additional information: (1) a tree tag that
denotes which tree the register belongs to; (2) a buffered level 1
node of the tree (marked in dashed rectangles). The buffered node
helps the comparator logic to quickly identify whether the new
item needs to swap with the level 1 node without communicating
with the BRAM-tree module; and (3) a valid bit of the level 1
node of the tree. Once it is determined that the new item needs to
swap with the level 1 node of the tree, the new item is propagated
down to the BRAM-tree module and invokes the compare-and-
swap logics in the BRAM-tree module. The valid bit is marked as
0 until the new level 1 node is determined within the BRAM-tree
and sent back to the register-array.

The register-array in a max H-PQ works as follows. First,
the leftmost register is replaced with the new item. Based on
the tree tag, the new item is locally compared with the level 1
node of the corresponding tree. If the node is marked as invalid,
the comparison operation stalls until the valid bit is set to 1.
In the case of a max priority queue, if the new item is larger
than the level 1 node, then the new item stays at the left-most
register; otherwise, the new item is sent to the corresponding
tree and the leftmost register is updated with the level 1 node’s
value. After the leftmost register gets updated, the register array
pulsates twice: compare-and-swap even entries with odd entries
and compare-and-swap odd entries with even entries. The tree
tags also swap together with the entries.

B. Performance Analysis

Our hybrid priority queue can achieve a throughput close to 1
cycle between replace operations for two important reasons: (1)
as we have mentioned, it hides the slow individual throughput of
the tree when consecutive new items are dropping down different
trees; and (2) the compare-and-swap between level 0 nodes and
level 1 nodes are now separated into two stages: compare and,
only if necessary, swap. Only swap will invoke the BRAM-trees.
As more items pass through a max (min) priority queue, the items
that remain in the priority queue tend to be smaller (larger). Then
the new item is more likely to be larger (smaller) than the existing



0

5

10

15

20

25

0 2 4 6 8 10

P
e

rc
e

n
ta

n
g

e
 (

%
)

number of BRAM-trees in H-PQ

SLICE BRAM

Figure 5. Resource consumptions of H-PQ. Each BRAM-tree size is 1024. Entry
size is 64-bits.

0

5

10

15

20

25

30

0 2 4 6 8 10

number of BRAM-tress in H-PQ

Ave. number of cycles per replace op.

clock period (ns)

Ave. time (ns) per replace op.

Figure 6. Design space explorations of hybrid priority queue (H-PQ).

items in the BRAM-trees, and would thus only affect the entries
in the register-array. The BRAM-trees are invoked less frequently,
thereby are less likely to stall the whole system.

V. EXPERIMENTS

A. Experimental Setup

We use the Xilinx Zynq ZC706 FPGA board for our experi-
ment. We first design C++ templates that can adapt to different
priority queue sizes and entry sizes. Then we use the Vivado HLS
(version 2013.2) to synthesize the design from C++. The Xilinx
PlanAhead (version 14.3) performs the low-level synthesis. We
tried different clock frequencies in PlanAhead to find the highest
frequency sustained by our design. The software implementation
(using STL) runs on a 2.33GHz Intel Xeon machine. The power
of the FPGA and the ARM is measured from the power buses on
the ZC706 board using the Texas Instruments fusion technology,
which monitors real-time voltage and current data.

B. Hybrid Priority Queue (H-PQ)

Fig. 5 shows the resource consumption of H-PQ when its size
varies from 1024 (1 BRAM-tree) to 8192 (8 BRAM-trees). Fig. 6
shows the design space explorations of the average throughput
of our H-PQ. We use a random input data set that has 2N 64-bit
items. As the number of BRAM-trees increases, the probability
that the consecutive new items will fall into the same tree
decreases. Thus, average throughput (number of cycles between
replace operations) gets very close to 1 when the number of
BRAM-trees is larger than 4. The register-array experiences a
slight increase in clock period when the array gets larger. This
increase is due to the indexing of the tree-tag, where a multiplexer
is used. Overall, the best throughput (13.1ns between replace
operations) is achieved when the number of BRAM-trees is 4.

The largest H-PQ that can fit on our FPGAs has about 120,000
entries. It uses 4 BRAM-trees and each tree contains about 30,000
64-bit entries.

C. Energy Efficiency Comparisons

Table II
METRICS OF A SINGLE REPLACE OPERATION ON DIFFERENT PLATFORMS

FPGA Xeon ARM
(H-PQ) (STL) (STL)

latency (ns) 13 56 204
dynamic power (watt) 1.8 15 1.0

dynamic + static power (watt) 9.0 45 8.2
dynamic energy (nJ) 23.4 840 204

dynamic + static energy(nJ) 117 2520 1672

We compare the energy efficiency of the replace operation with
the CPU implementations in Table. II. The size of the priority
queue is 4096 and input is an 8192 random data set. The FPGA
implementation uses an H-PQ that contains four BRAM-trees.
The CPU implementations that run on Xeon and the embedded
ARM processor on the Zynq board use the STL priority queue
and are all compiled with -O3. As we can see from Table. II,
H-PQ on FPGAs has the highest throughput and highest energy
efficiency.

VI. CONCLUSION

We demonstrated the design of several FPGA-based priority
queues, which are specialized to support the commonly used
replace operation. Through this specialization, our designs are
able to achieve a higher throughput than traditional software-
based designs, and better scalability and resource utilization
than previously proposed FPGA-based designs. In particular, our
Hybrid Priority Queue combines the best aspects of all our
designs, and it is fast and supports a large queue. The use of
high-level synthesis enabled us to rapidly design and evaluate
all of our priority queue implementations. Our priority queue
designs can be applied to many database cases, and illustrate
how FPGAs can effectively be used to improve the performance
of many important systems.

VII. ACKNOWLEDGEMENT

We would like to thank Brad Morrey, Kimberly Keeton and
Harumi Kuno for their helpful input early on, and Janice Wheeler,
for helping to shepherd the paper. We also thank anonymous
reviewers for valuable feedback. This work is partially supported
by the Center for Domain-Specific Computing under the NSF
Expedition in Computing Award CCF-0926127.

REFERENCES
[1] G. Graefe, “Implementing sorting in database systems,” ACM Com-

puting Surveys (CSUR), vol. 38, no. 3, p. 10, 2006.
[2] R. Bhagwan and B. Lin, “Fast and scalable priority queue ar-

chitecture for high-speed network switches,” in INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2. IEEE, 2000,
pp. 538–547.

[3] A. Ioannou and M. G. Katevenis, “Pipelined heap (priority queue)
management for advanced scheduling in high-speed networks,”
IEEE/ACM Transactions on Networking (ToN), vol. 15, no. 2, pp.
450–461, 2007.

[4] C. E. Leiserson, “Systolic priority queues,” 1979.
[5] M. Huang, K. Lim, and J. Cong, “A scalable, high performance

customized priority queue,” Computer Science Department, UCLA,
TR140013, Tech. Rep., 2014. [Online]. Available: http://fmdb.cs.
ucla.edu/Treports/140013.pdf

[6] X. Martinez-Palau, D. Dominguez-Sal, and J. L. Larriba-Pey, “Two-
way replacement selection,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 871–881, 2010.

[7] J. D. Ullman, Computational aspects of VLSI. Computer Science
Press Rockville, MD, 1984, vol. 11.


