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Abstract: The rise of the Internet of Things has led to an explosion of new sensor computing plat-
forms. The complexity and application domains of [oT devices range from simple self-monitoring
devices in vending machines to complex interactive devices with artificial intelligence in smart
vehicles and drones. As IoT developers wish to meet more aggressive platform objectives and
protect market share through feature differentiation, they must choose between low-cost, and low-
performance CPU-based commercial-off-the-shelf (COTS) systems, and high-performance custom
platforms with hardware accelerators such as GPU and FPGA. Both COTS and custom platform
designs introduce a variety of design challenges — the extreme pressures on time-to-market, de-
sign cost, and development risk are also driving a voracious demand for new CAD technologies to
enable rapid, low cost design of effective 10T platforms with smaller design teams and lower risk.

In this article, we present a generic IoT device design flow and discuss platform choices avail-
able for IoT devices to efficiently tradeoff cost, power, performance and volume constraints: CPU-
based systems, and custom platforms that contain hardware accelerators such as FPGA and embed-
ded GPUs. We demonstrate this design process through a driving application in computer vision.
We also present current critical design automation needs for IoT development and demonstrate
how our prior work in CAD for FPGAs and SoCs begin to address these needs.

1. Introduction

The Internet of Things is driving an explosion in sensor computing platforms in consumer, com-
mercial, and industrial domains. IoT devices span a wide range of application domains including
fitness trackers, drones, cameras, health monitors, and home automation for personal use, and
smart grid, transportation, logistics, manufacturing and agriculture applications for commercial or
industrial use. IoT devices are transformative — sensors, local computation, and integration with
cloud computing moves intelligence to edge devices and allows global decision-making based on
detailed, local sensor measurements. Through these applications, improved operational intelli-
gence can improve safety, and efficiency as well as directly improve functionality.

Market study and analysis for IoT applications predict substantial growth in both device sales
and cloud computing services. 1oT application spaces are poised to become the largest electronics
market for the semiconductor industry, and the wide range of application domains spans from
simple applications that may need only an 8-bit microprocessor to high-end systems that may
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Fig. 1. Typical IoT Device Design Flow

need a combination of high-performance local computing with offloaded cloud computing. This
wide variety in application complexity corresponds to multiple dimensions: 10T devices may be
battery operated and power-constrained, or operating on wired power; devices may be performance
constrained or latency (and performance) insensitive; devices may be size and weight constrained
or have size flexibility in installation size and location; devices may be cost constrained to compete
in consumer markets or (comparatively) cost-insensitive due to application value-add.

Although many standardized, low-performance and low-power IoT platforms exist [1, 2, 3, 4,
5], there is still a significant need for high-performance platforms in order to meet computational
needs of data-intensive applications moving intelligence into edge devices. Generally, these high-
performance platforms consist of graphics processors (GPUs) or fixed-function implementations
in FPGA or ASIC implementations. These options improve performance and power consumption,
but IoT applications must balance power, performance, size, and cost through the use of embedded
GPUs [6, 7, 8, 9, 10] and FPGA-based SoCs [11, 12], which can achieve even better energy effi-
ciency [13, 14, 15]. Recent advances in high-level synthesis [16, 17, 18, 19, 20, 21] have improved
the ease of FPGA programming, which simplifies use of FPGAs in IoT applications.

To date, most IoT devices are based on existing platforms, primarily CPU-based platforms [1,
2, 3,4, 5], but also including embedded GPU [22, 23], or FPGA [24] platforms. When application
development identifies needs for custom computation, feature differentiation, and improved effi-
ciency in computation latency, power/energy, or physical device size, application developers will
need to meet these more aggressive platform objectives with custom platforms. However, custom
platform designs introduce a variety of challenges in design and design cost; design automation
plays a key role in making these designs feasible with lower development risk and costs. Despite
the advantages of custom platforms, complex and challenging design flows remain a barrier to
adoption of custom platforms, especially with integrated hardware accelerators. In the design of
these platforms, computer aided design (CAD) plays an important role in supporting design space
exploration and meeting design objectives while simultaneously reducing time-to-market, design
cost, and development risk to ensure both technical and commercial success.

Designing custom platforms will thus be a required for many future IoT devices; custom plat-
forms can be several orders of magnitude faster and more power/energy efficient than CPU-based
alternatives [25]. These custom platforms can more effectively integrate security, privacy and reli-
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ability features, as well as application-specific acceleration for key feature differentiation. Feature
differentiation can be critical for capturing and retaining market share, and custom platforms play
an important role in preventing competitors from simply reproducing copies of the same 10T plat-
form. Design pressure for custom platforms drives demand new design automation technologies,
with critical needs in system-level integration, IP integration, and verification.

In this article, we present the generic IoT device design flow and discuss platform choices
available for IoT devices to efficiently tradeoff cost, power, performance and volume constraints:
CPU-based systems and custom platforms that contain hardware accelerators such as FPGA and
embedded GPUs. We demonstrate this design process through a driving application in computer
vision. As computer vision algorithms become mature, the application of advanced vision algo-
rithms becomes a key driver for intelligence in edge devices. However, vision applications are
highly data-intensive; the costs in latency, communications, and computation to move video data
to centralized cloud computing would quickly become a limiting factor in the scalability of these
vision solutions. Vision systems are increasingly expanding into IoT applications: analysts pre-
dict connected imaging equipment will grow by 17% annually to 2020 [26]. Computer vision
IoT applications will require local computation in order to achieve the performance and scalability
objectives for large scale deployments in body cameras, surveillance systems, building entry, and
public transport systems.

Through the example of facial detection and recognition, we detail the design process and com-
puter aided design challenges and describe the trends and demands for computer aided design for
IoT systems. Starting with standardized CPU, GPU and FPGA platforms, we describe imple-
mentation platforms, examine current critical design automation needs for both COTS-based and
custom platform devices. We discuss both current missing pieces for design automation as well
as our ongoing work targeting these gaps; together, CAD promises to reduce design time, cost
and risk to serve as the bridge that makes design and implementation of custom platforms for loT
devices effective and timely.

2. Vision-Based loT Systems

Computer vision is a particularly compelling application domain for sensor computing systems.
In general IoT sensor computing systems have analog sensors to monitor a local environment and
either notify a remote server of conditions or locally perform decision making based on sensor val-
ues. Image sensors can provide detailed sensor information for complex decision making: drones
use vision to detect and avoid obstacles during flight, factories monitor machine conditions, diffi-
cult to reach mechanical parts, and manufactured parts, highways monitor traffic congestion and
detect unsafe or illegal behavior, surveillance systems can monitor playgrounds and swimming
pools, monitor livestock in agriculture or search for people for access control systems or terrorism
avoidance.

Scalability of vision applications is a key driving concern in terms of both initial cost as well
as ongoing operations cost. Although a single camera with the vision software is valuable, the
true value of the system is when many cameras can be deployed to monitor large areas and au-
tomatically detect and respond to or send alerts. With many cameras, the individual cost of each
camera must remain reasonable, but the cost of operating many cameras must also be considered.
Simple cameras that send large video streams to the cloud for computation require significant,
ongoing costs in both bandwidth use for data upload as well as computation costs in the cloud.
In contrast, localized computation can reduce upload bandwidth and cloud computation demand
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which improves scalability. Thus, vision 10T systems must balance between low-cost local sys-
tems with large cloud communication and compute demand and high(er) cost local systems that
localize computation in order to reduce communication and compute requirements in the cloud.

2.1. Face Recognition

Face recognition is a key example of vision applications for [oT; recognizing individuals in surveil-
lance footage is a key technology that enables many end-use applications including building access
control, mass transit entry, and criminal suspect identification among others. As recognition algo-
rithms mature, there is significant demand to integrate the recognition capability into edge-device
cameras.

Face recognition systems start by identifying high quality video frames and detecting faces
within the frame. Ideally, faces have consistent lighting, head position, size, and pose, but in prac-
tice systems must be trained to handle a variety of face orientations with varying picture quality.
Every face has about 80 distinguishable landmarks called nodal points that comprise facial fea-
tures. The recognition system translates nodal-point measurements into a faceprint representing
the combined features that can be compared to faces in a database for identification. An overview
of face recognition systems is shown in Figure 2.

Face recognition is emerging as a forensic tool of substantial importance. It is increasingly
used in law enforcement in products such as body cameras to identify suspects in the line of duty.
However, face recognition in such critical applications is time sensitive; for the recognition result
to be useful, it must also be timely, and thus the system must be able to recognize subjects in real
time. However, CPU implementations, particularly in embedded systems, do not achieve real time
performance [27] even for face detection for resolutions higher than 480p and face recognition
is significantly more complex than detection alone. Current commercial face recognition systems
use high-end server class machines [28, 29, 30] coupled with hardware accelerators including high-
performance GPUs to achieve real-time performance for face recognition systems. However, these
high-end implementations cannot be directly used with body cameras: the form factor, power, and
cost of these systems limit deployment.

Through local acceleration of the algorithm and partitioning of the algorithm between local
and cloud compute resources, an IoT system that meets cost, size, and performance goals can
be deployed. In the following sections we will describe the process of prototyping the software
system and specifying local platform characteristics in order to select a CPU, GPU or FPGA-based
local platform. Then, we will discuss CAD demands for platform design of a custom platform that
targets cost, power, performance, and size constraints.



3. loT Device Design Flow

IoT device design consists of software development for CPU implementation, interface drivers,
and, when application demands dictate, hardware design for custom accelerators, CPU customiza-
tion, and board-designs. In order to minimize time-to-market, software and hardware are often
developed in parallel, with a software team concentrating on software features, embedded compi-
lation, device drivers and integration with cloud computation services. In parallel, the hardware
team performs system level modeling, component selection, design implementation, integration
and verification. Despite the generally parallel development processes, the software and hardware
design flows influence each other; software algorithm demands may alter hardware performance
objectives, and hardware implementation choices can influence how software is designed and im-
plemented. Indeed, if a hardware implementation is created, there may be no need for design and
optimization of the software version.

Many IoT applications begin with prototyping entirely in software on existing embedded plat-
forms. To minimize design and development costs, application providers prefer to reuse existing
platforms if possible, so initial prototypes are typically designed on existing CPU-based platforms.
With the initial implementation, designers can evaluate performance and quality to determine
whether a CPU-only, GPU-based or FPGA-based platform is necessary to achieve goals. Many
simple applications may meet all cost, performance and power goals when implemented on exist-
ing platforms, yet applications such as vision systems typically need higher performance and thus
either GPU or FPGA-based systems in order to meet design objectives.

In this article, we primarily concentrate on design automation for the hardware portion of a
device design flow, and thus we assume that the application has already identified a need for a
customized platform whether the platform is a customized CPU, a GPU-based platform, FPGA-
based platform or a hybrid offering multiple computation devices. An overview of a typical IoT
device design flow is shown in Figure 1. At a high-level, the design flow consists of three phases:
system-level design, software-hardware co-development and system integration and implementa-
tion. Though the three phases generally happen in a feed-forward manner, a feedback path exists
between the cosimulation and system design phase to evaluate and regenerate a system design and
software hardware partitioning that can meet design objectives. There are key challenges in the
design cycle and thus key needs for design automation in modeling (Sections 5.1, 6.1.2, 6.2.1),
device driver generation (4.1), CPU customization (6.1), circuit design (6.2.2), verification and
debug (6.2.3), prototyping (4.2) and IP and system integration (6.2.2) in this paper. The design
flow in Figure 1 details the steps required across typical [oT platforms, but certain steps of the flow
may not be applicable depending on the target platform. For example, circuit design steps are not
applicable to COTS-based IoT flow.

Although we primarily concentrate on design automation for the hardware portion of the device
design flow, automation also plays a critical role in software design processes, and integration of
hardware design automation with analysis of the embedded software together with automated cre-
ation of embedded compilers (for customized CPUs), and device drivers (for integrating standard
analog/RF/digital accelerator components) is critical so that software design can effectively use the
hardware platform, and the hardware design can effectively evaluate platform objectives based on
up-to-date software needs. We will discuss these automations in further detail in Section 5.
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4. loT Prototyping Platforms

Development typically begins with application and device prototyping. As discussed above, the
first prototypes assist in identifying platform computation needs, and the feasibility of meeting
quality goals within the performance, power, and size limitations of existing platforms. After this
pre-prototyping, a designer has specified the platform characteristics of the desired target, and can
now begin by prototyping the solution on a platform that more closely matches the expected final
platform characteristics.

As discussed above, in this article, we assume that the initial prototyping identified a need for
some platform customization. Thus, a first step for IoT development for custom platforms is to
begin prototyping using a platform or combination of platforms that matches the desired target as
closely as possible. This may be an existing CPU platform [1, 2, 3, 4, 5], a GPU platform such
as the Tegra K1 or X1 [7, 6], or FPGA platforms such as the Xilinx Zyng-based Parallela [24]
as shown in Figure 3. These platforms contain standard communications, sensor interfaces, and
general purpose I/0O connections so that the user can integrate sensors, actuators, communications,
and MEMS chips to prototype the system. Although these prototypes will not be used for pro-
duction releases, they play an important role in demonstrating a proof-of-concept and evaluating
overall feasibility. Prototypes may have limited modeling fidelity to the final product characteris-
tics, yet even rough estimates of size, performance, power/energy, and reliability can be important
demonstrations of expected product feasibility.

In our driving application, the initial pre-prototype quickly identifies a need for greater perfor-
mance than a CPU-only embedded system can provide, and thus we identify the need for a GPU-
or FPGA-based system in order to meet performance goals. For the purposes of this article we de-
fer the decision between GPU and FPGA- systems in order to demonstrate the design automation
demands of both cases, but in a typical case the user would select either the GPU or FPGA-based
system depending on the cost, performance and power constraints of the target system.

4.1. Device Driver Generation

IoT prototypes integrate a variety of additional chips for application-specific computations (e.g.
AES encryption), sensors, actuators, RF communications, and MEMS devices. Although the pro-
totyping platform is designed to make it easy to physically connect these chips, the user is still
responsible for developing a software infrastructure and set of device drivers to integrate the chips
into the IoT solution. Designing and integrating device drivers can be a major challenge even
though chips use standard communications channels. Thus, automatic generation of platform de-



vice drivers for the software can significantly accelerate the prototyping process, allowing design-
ers to concentrate on implementing software features. Manually written drivers often intermingle
interactions with the OS and the device and thus complicate coding, maintenance, and require ad-
ditional testing in the development cycle. However, specifications to interface with a device are
OS-independent and can be auto-generated based on the manufacturer device and programming
specifications. Furthermore, automatically generated drivers can also use generated test patterns to
facilitate easier testing and verification of drivers.

4.2. FPGA-based Prototypes

IoT prototypes may use FPGA-based platforms for two similar and yet distinct purposes: a de-
signer may target an FPGA with the intention of deploying an FPGA-based platform in the final
product, or they may target an FPGA as a prototype of an expected full-custom SoC implemen-
tation of the application. Prototyping of an SoC allows full, real-time functional verification and
timing verification. The FPGA-based prototype is critical for producing an inexpensive early val-
idation of the platform design, but design automation is necessary for modeling, component se-
lection, design space exploration, design entry and verification. Furthermore, prototyping of SoCs
must consider that the achieved performance, power and size may not be as efficient as the final
SoC. Automation in all of the design processes is important to make prototyping fast and efficient,
and to simplify the process of translating the prototype into a design of the final SoC. Because the
design automation needs are similar for both FPGA-based prototypes and custom SoCs, we will
discuss these needs in further detail in Section 6.

5. loT Design with Commercial Off-the-Shelf Components

IoT production device development with commercial off-the-shelf (COTS) components follows
a similar process to prototyping, but with extra complexity in component selection, and more
demands on modeling and evaluation of design objectives. A production device will optimize
the physical size with packaging and a custom printed circuit board (PCB), but optimization for
performance, power/energy, or other device features is based largely on component selection. The
main custom feature of COTS-based devices is the PCB, and component selection, modeling and
evaluation of potential system designs are key limiting factors in quickly and effectively designing
platforms that meet device objectives.

5.1.  High-level Modeling and Component Selection

Although a prior prototype may have served as a proof-of-concept, modeling of potential system
level designs is important to evaluate whether a chosen components meet the device objectives. In
particular, transaction-level modeling (TLM) in SystemC has become a popular approach for sys-
tem modeling with high simulation speed. However, SystemC TLM models are often unavailable
for components; when such models exist, it is important that they provide accurate power and per-
formance estimates to maintain high fidelity between model estimates and achieved performance.
Design automation can create SystemC TLM models from C-level specifications [31]; power and
performance estimates may be based on manufacturer data, but may also require automation to
generate estimates.

IoT systems may require modeling of not just digital components, but also the analog sensors,
actuators, RF and MEMS components. These components not only require functional SystemC
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models but also detailed compatibility analysis. Whereas high-level modeling typically abstracts
communication interface details, these components may require more detailed analysis to deter-
mine whether the components can be integrated. Analog sensor chips may have digital interfaces
or require integration with Analog/Digital convertors before interfacing with a CPU; similarly
other components may require verification of interface compatibility.

High-level modeling for IoT systems will be used to explore a variety of alternative system
designs, with differing components and features. To reflect performance and power of the system, it
is important to integrate with automated mapping of application software to the hardware platform,;
a system with a dedicated encryption chip may offload significant workload from the CPU, yielding
either improved performance, more opportunity to turn off the CPU, or both. Design automation
can track which resource(s) are suitable for each portion of the application and explore mapping
decisions to determine the optimal mapping for a particular system. Automating this mapping
is critical to allowing extensive design space exploration, as manual mapping would render the
exploration too costly.

When high level modeling and automated software mapping are paired with design space ex-
ploration using a library of potential components, design automation can facilitate exploration of
potential systems together with generation of a pareto-optimal set of designs with different com-
binations of design objectives. From this set of pareto-optimal designs, the user can more easily
select a system that balances performance, power/energy, and cost of components. The selected
design would include both a system-level design and an optimized mapping between application
source and the system components.

High-level modeling and design space exploration plays a vital role in complex applications
such as face recognition to identify the performance gap with CPU execution and selection of
appropriate hardware accelerators. High-level models can also assist in software hardware parti-
tioning decisions and also modeling and testing the interface between the CPU and the accelerator.

5.2. PCB Design

Although high level modeling typically abstracts communication details, C-level and SystemC
models can be used to automatically generate detailed information on chip interconnect. When
paired with chip specifications and automated PCB layout tools, design automation can be used to
quickly generate initial PCB designs that can be refined and optimized. The complexity of PCBs in
area, density, power dissipation, and total nets routed has been steadily increasing, placing pressure
on design automation to assist in design and verification of board layouts.

6. Custom Platforms

IoT device development based on commercial off-the-shelf chips quickly reaches limits in perfor-
mance, power/energy, and device size. In order to design more efficient IoT devices with tightly
integrated chips, smaller printed circuit boards (PCBs), and lower overall cost per-device, produc-
ers turn towards custom platforms.

Custom Platform can either be System-in-Package (SiP) solution or a System-on-Chip (SoC)
device. System-in-Package may refer to a variety of packaging technologies that tightly integrate
multiple chip dies into a single package. The tight integration of multiple dies reduces power and
energy of the devices, reduces the PCB size by integrating multiple chips into a single package, and
can improve performance by reducing intercommunication latency. System-in-package designs



may also include designs where the IoT device designer creates full-custom dies as part of the
system design, it will then be an SiP that contains a custom SoC. However, we focus only the
custom SoC in this section.

COTS and SiP-based systems allow comparatively fast development, primarily concentrating
on software design and component selection when designing the 10T device. To achieve perfor-
mance and power/energy efficiency infeasible with standard or existing platforms, developers turn
to custom System-on-Chip solutions. In addition to improved features, performance and power,
SoC-based solutions have the advantage of lower per-unit costs at volume.

System-on-chip devices have a variety of levels of customization, from lightly customized pro-
cessors or IP-based design that integrates previously verified components to full custom designs
that design entirely new CPU extensions or custom compute hardware. Although the level of
customization does have an impact on the complexity of the design, and in turn the design au-
tomation needs, system-on-chip design in general increases required CAD complexity compared
to demands of COTS-based systems. We generally classify SoC-based designs into two groups:
CPU customizations that extend the instruction set of a CPU, and full custom designs that create
standalone application specific hardware — sometimes with a CPU to handle control, error process-
ing or interfacing. We will now talk about the design automation demands for these two strategies
in detail.

6.1. CPU Customization

CPU customization retains compatibility with a prior instruction set but adds additional instruc-
tions to improve the performance and power efficiency of particular computations. For example,
CPUs now commonly contain media or cryptographic extensions to make those styles of data-
parallel processing more efficient. Custom CPUs not only improve performance and power effi-
ciency, but also create feature differentiation and IP protection: a competitor cannot simply copy
platform software because the ISA extensions require the custom CPU implementation.

6.1.1. Workload Analysis: In COTS-based systems, automated mapping of software to hard-
ware platforms was needed to effectively perform system-level modeling and determine optimal
performance and power/energy mapping the application to candidate system designs. However,
here the workload analysis is orders of magnitude more complex; instead of mapping software
at the granularity of large functions, we may develop instruction set extensions at the granular-
ity of only a few instructions. Furthermore, to effectively use an ISA extension, we may require
transformation of the application code for better loop organization, memory access patterns, or
communications and data locality.

The process of CPU customization identifies not only a single ISA extension, but must select
and evaluate multiple extensions considering both independent and joint benefit of a set of exten-
sions as well as the benefits and costs of the extensions, which we will discuss in further detail in
the following subsections. The enormous design space for CPU customizations makes it infeasible
to evaluate more than a small subset of possible extensions, which places emphasis on effective
design automation to analyse application source, identify potential extensions, and estimate bene-
fit. Design automation in compilation techniques can find common repeated computation patterns
to identify candidate extensions; when paired with polyhedral models that can transform loops,
memory access patterns, and inter-iteration dependencies, this automation can play a key role in
estimating the potential impact of an instruction set extension.



6.1.2. Modeling: Workload analysis is important to determine candidate extensions with maxi-
mal impact on the application source, but modeling of the performance and power/energy benefits
of an extension is critical for decision making. An extension with high application coverage but
little opportunity for performance improvement must be discarded. Conversely, even extensions
with high potential for speedup must be evaluated relative to other extensions (or sets of exten-
sions) that have lower cost in chip area or additional power. However, it is not feasible to perform
detailed implementation of every candidate extension in order to perform decision making. CAD
to automatically translate high level descriptions of extensions and generate area, performance,
and power estimates are critical; these estimates must be fast and inexpensive to produce, yet have
sufficient correlation with real implementation results to accurately guide decision making.

Automation in modeling must integrate synthesis of hardware for the extensions to generate
area, performance and power estimates, evaluate what percentage of that area or power is design
overhead (e.g. an extension that modifies the ALU should only consider area overhead, not total
area), use automated mapping and compilation to estimate usage patterns, and estimate efficacy of
power- and clock-gating on unused portions of the CPU (which may reduce total power instead of
increasing). This represents the integration of multiple individually complex automation tasks, yet
a necessary requirement for effectively determining which subset of ISA extensions represents the
optimal tradeoff of area, performance, and power/energy for the IoT application.

In our driving face recognition application, the initial pre-prototype would have identified a
need for greater performance than a CPU-only embedded system. Though ISA extensions can
work well for certain compute-intensive but comparatively simple applications such as security
(AES encryption), workload analysis and modeling of face recognition will point towards necessity
of hardware acceleration with GPU or FPGAs.

6.1.3. HW Implementation: Workload analysis together with modeling determines a chosen set
of CPU customizations; however, during implementation, it is critical that automation can assist in
implementing the low level details so that area, performance, and power estimates can be achieved
or improved on. High-level synthesis [32, 33] and automated IP- and system-integration [34] can
fill an important role in performing detailed implementation. Many integration details are complex
yet tedious and error prone. Automated integration can both improve design time and reduce
verification effort as we will discuss next.

6.1.4. Verification and Debug: Verification and debug of customized CPUs can retain the ver-
ification/test vectors of the original design as an initial set. However, the CPU customizations not
only create a new set of instructions that must also be verified in the hardware implementation,
but also many potential corner cases depending on the complexity of modifications to any com-
munications interfaces between existing and new (or modified) functional units. Furthermore, in
IoT systems, integration with analog, RF, and MEMS components is a major component of verifi-
cation. Instead of a simple set of instruction sequences, verification and debug must also explore
possible cases of communication with these peripherals including A/D timing, interrupt handling
corner cases, and verification of correct behavior under faulty external input.

Detecting, localizing and fixing any potential errors in this behavior can be extremely chal-
lenging. Detailed analysis of program execution with intermediate checksums can help discover
implementation bugs and corner cases [35, 36]. However, these techniques can require exhaustive
creation and comparison of checksums in large application code. Automation is thus critical to
make the technique of detecting and localizing implementation bugs feasible.
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6.2. Full Custom System-on-Chip loTs

A custom SoC implementation delivering a powerful single silicon solution for an IoT device offers
the best performance with significantly better energy efficiency than other platforms due to smaller
form factors and lower power consumption. In addition, 10T product differentiation is possible by
developing custom hardware for the proprietary features of the manufacturer, improved security
and privacy by including accelerators for full-fledged encryption standards. However, one of the
key challenges in development of IoT SoC devices is the long and iterative design cycle and is a
bottleneck to meet stringent time-to-market requirements. The extensive design cycle also directly
translates to higher NRE costs for design and development. Yet, custom SoCs present the best
opportunity for designs with lowest per-unit cost at higher volume despite the challenges in the
design flow. Thus, design automation of the SoC IoT flow is a critical need to reduce NRE costs
and time-to-market in order to reduce risk and improve break-even point for IoT device volume.

We briefly introduced the challenges in developing a custom SoC IoT in our prior work [37].
Here, we expand and discuss in detail the design process and automation opportunities in the SoC
IoT flow. The SoC design flow includes aggregating all requirements to create a specification,
performing a high-level modeling to explore design space at module- and system-level, followed
by a long and cumbersome process of implementation and an even longer verification and debug
process.

6.2.1. SoC Modeling and Design Space Exploration: IoTs integrate multiple components
including various analog sensors, actuators, digital and MEMS technologies, privacy and security
modules, and communication components. It is important to perform system level evaluation of
the proposed IoT device using high-level models and explore the design space to choose the design
option that meets platform goals.

Design automation to model the entire SoC as a virtual platform using high-level languages is
already a reality. In particular, transaction-level modeling (TLM) together with SystemC language
has become a popular approach for SoC modeling, such high-level modeling improves simulation
speed compared to RTL simulation and provides functional verification as well as early system
modeling and analysis. A typical SoC modeling flow takes the system specification as input, which
is often produced in C or C++ by software engineers. Then usually a manual hardware/software
partitioning process is carried out, and the hardware portions are reimplemented using SystemC to
work together with microprocessor IPs that target the software portion of the specification. Fast
high-level accelerator modeling with accurate power and performance information is one critical
building block in SoC modeling. The challenge is to obtain accurate power/performance informa-
tion at early design stages without detailed implementation details. Accurate power information
is usually not available until after logic synthesis or even physical design, which is too late for
system-level modeling and analysis. The hardware design space is too vast to be explored thor-
oughly. Additionally, high-level models are typically written to achieve fast simulation speed, and
not all of the parts are efficient or even feasible for high-level synthesis. To this end, an automated
SystemC 3-stage modeling and synthesis framework [31] generates a high-level SystemC model
annotated with power and latency estimations for accurate high-level performance and power mod-
eling and another synthesizable SystemC model to enable HLS solutions. The framework also
generates an analytical model providing power and latency information for all points in the design
space and finally performs a fast design space exploration to generate pareto curves to guide effec-
tive low-power design. Custom SoCs with an embedded CPU create additional complexity with
HW/SW codesign and partitioning and significantly increase the possible design space.
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HW/SW Partitioning: Automation of HW/SW codesign is a pressing need for an efficient
IoT design process. Although existing frameworks help to automate some of the profiling, de-
sign space exploration, and hardware characterization processes, IoT devices present additional
challenges. First, IoT devices have extreme low power requirements; most devices will require
and use clock-gating, power-gating, and DVES as low-level mechanisms. Next, IoT devices have
reliability, privacy and security requirements. These requirements may not be explicitly part of
the high-level language specification; such specifications may be qualitative in nature or highly
dependent on computation platform, thus requiring substantial effort to translate between software
and hardware. These challenges significantly complicate the modeling and estimation of perfor-
mance, power and area on both CPU and custom platforms, which can affect HW/SW codesign
decisions. Thus, it will be important to develop fast and accurate estimation models that can in-
corporate both quantitative goals for area, performance, and power with reliability, privacy and
security constraints.

The SoC modeling and hardware/software partitioning can accurately determine the application
component that needs acceleration in our driving face recognition application. The components of
face detection and creation of templates are most suited for hardware acceleration. The SystemC
models will also help explore and identify the best interface for communication between the CPU
and accelerator.

6.2.2. Circuit Implementation: Design automation for SoC implementation phase is possible by
using HLS techniques that enable automated translation of high-level language descriptions such
as C/C++, SystemC and CUDA to RTL [32, 33, 14] and/or by automated integration of several IP
blocks including register transfer level (RTL) blocks.

High-Level Synthesis: The automatic translation to RTL through HLS substantially reduces
design effort and expand design space exploration [38, 31], allowing fast and easy design of custom
compute units. [oT devices commonly require small but efficient computation units to implement
processing and analysis of data inputs from sensors. HLS is important not only to design such
custom compute quickly, but also to allow designers to iteratively optimize algorithms and imple-
mentations quickly.

HLS has previously explored low-power design for control-flow intensive and data-dominated
circuits, and activity reduction [39]. However, HLS for ultra-low power IoT designs requires
automated application of clock-gating, power gating and DVFS technologies. These optimizations
must also be balanced with performance and area in order to meet overall design constraints.

Privacy and security are critical for IoT devices to ensure that sensitive data is kept private and
that IoT devices are secure from malicious remote control of such devices. HLS offers the ability to
automatically integrate encryption IPs that secure input and output data streams, analyze input and
output interfaces to ensure that every interface is secured, and allow the user to use software-tools
to analyse the security of the system.

IP and System-level Integration: Custom hardware for IoT devices must be integrated into
a system with sensors, actuators, CPU cores, and communications IPs. Through the use of stan-
dardized interfaces and protocols, custom hardware core integration can be fully automated so that
a system-level design is produced through automated connection of IPs and custom components,
substantially reducing manual effort to produce system level designs, control state machines, com-
munication protocols, and testing infrastructure.
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Furthermore, within the HLS produced core, a user may wish to use pre-defined, well optimized
RTL IPs for important sub-functions. The use of these IPs accelerates the design process and
ensures that the designer can meet system-level design goals in power, performance, area, privacy,
and security; however, IP integration can be complex, time-consuming and error-prone as a manual
process. Thus, HLS requires automation to effectively integrate IPs both within HLS-generated
cores as well as through standardized interfaces at the system level. Prior HLS tools typically
limit IP integration to a small set of provider defined IP cores; the user cannot specify custom IPs
(either HLS-generated or RTL) to be integrated during HLS. Although HLS-produced cores often
have standardized top-level interfaces, system-level integration is also left as a manual process. As
a result, HLS-produced cores must be instantiated and connected with other system components
manually, and designers must design appropriate control and glue logic to create the system level
implementation.

Design automation should automate the process of instantiating, connecting and creating con-
trol and glue logic so that system level designs are quickly produced. Eliminating manual system
integration can substantially improve design productivity and enable rapid system-level design
space exploration.

As a solution to address the need of integration method in IoT design tools, IP integration within
the HLS-generated core is proposed in [34], which, by directly specifying the IPs for implementing
functions/instructions in high-level language specifications, effectively automates the processes
involved in IP integration. IP integration within HLS-produced cores can substantially improve
the design process. Instead of partitioning code so that IPs can be integrated at the system level,
the HLS core directly integrates the IPs internally.

Furthermore, because system-level interfaces are commonly standardized, the HLS tool can
assist in instantiating, connecting system level IPs and creating appropriate control state machines
and glue logic between the system-level cores. Automation of IP integration within HLS cores and
at the system level substantially improves the design process, and is a critical need for effective
design of 10T devices.

In our driving face recognition application, if there exists a predesigned and verified face detec-
tion IP, it can be reused so that design effort can be focused on nodal analysis and template creation
component.

6.2.3. Verification and debug: Although the initial design process is critical in the design flow,
debug and verification time can be even more critical to time-to-market. The fraction of verification
time as a percentage of the design flow has surpassed design time [40]. Verification effort is often
a significant, labor intensive process. When a design is functionally incorrect, the engineer must
manually identify the erroneous signal and trace backwards through simulations to find the source
of the functional bug. Although HLS helps accelerate design time, the produced RTL code is
not intended to be human readable or manually edited further exacerbating a manual verification
process.

For these reasons it is critical to automate portions of the verification process in order to assist
engineers in more quickly identifying functional errors. Automated instrumentation of HLS pro-
duced RTL is an active area of research, and helps users to gather trace data from executions on
prototyping platforms. Although this assistance helps, these approaches still leave the problem of
selecting which signals to trace to the user. Thus, although automated to help gather data, the more
challenging tasks of selecting signals and identifying which signals are the source of functional
error remains.

13



We develop a method [41] that automatically instruments applications, generates traces for
every relevant operation type and inserts appropriate verification code into the output RTL such that
simulations will automatically identify functional errors, pinpointed to the erroneous instruction,
timestamp, and exact difference in expected value. This automation significantly aids engineers in
quickly identifying the simulation source of functional error, which can be used to identify bugs in
input source code more rapidly.

Furthermore, aside from functional debug, assistance in performance debugging is also critical.
As an example, if a design is not meeting the throughput target (say II is not 1, or a FIFO is
frequently full), it is usually challenging to pinpoint the underlying reasons in the source code.
It 1s important for the HLS tool to localize the function, set of statements or coding styles that
hinders meeting the performance constraints and in addition, assist the user with guidelines for
restructuring the source code.

Verification and debug of a complex system such as face recognition is feasible only through
design automation and effective CAD tools will enable faster design and creation of such premium
and complex [oT systems.

7. Conclusions

In this article, we have highlighted the trends, demands and critical steps of the [oT design flow
that requires CAD support for design of IoT devices. We described the development process of
IoT devices in general, and then we examined current critical design automation needs for COTS-
based, and custom platform devices. We also discussed both current missing needs for design
automation as well as our ongoing work targeting these needs. Overall, CAD promises to reduce
design time, cost and risk to serve as the bridge that makes design and implementation of custom
platforms for IoT devices effective and timely.
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