
HLS-Based Optimization and Design Space Exploration for
Applications with Variable Loop Bounds

Young-kyu Choi and Jason Cong
Computer Science Department, University of California, Los Angeles

{ykchoi,cong}@cs.ucla.edu

ABSTRACT
In order to further increase the productivity of field-programmable
gate array (FPGA) programmers, several design space exploration
(DSE) frameworks for high-level synthesis (HLS) tools have been re-
cently proposed to automatically determine the FPGA design param-
eters. However, one of the common limitations found in these tools
is that they cannot find a design point with large speedup for appli-
cations with variable loop bounds. The reason is that loops with
variable loop bounds cannot be efficiently parallelized or pipelined
with simple insertion of HLS directives. Also, making highly accu-
rate prediction of cycles and resource consumption on the entire
design space becomes a challenging task because of the inaccu-
racy of the HLS tool cycle prediction and the wide design space. In
this paper we present an HLS-based FPGA optimization and DSE
framework that produces a high-performance design even in the
presence of variable loop bounds. We propose code transformations
that increase the utilization of the compute resources for variable
loops, including several computation patterns with loop-carried de-
pendency such as floating-point reduction and prefix sum. In order
to rapidly perform DSE with high accuracy, we describe a resource
and cycle estimation model constructed from the information ob-
tained from the actual HLS synthesis. Experiments on applications
with variable loop bounds in Polybench benchmarks with Vivado
HLS show that our framework improves the baseline implementa-
tion by 75X on average and outperforms current state-of-the-art
DSE frameworks.

ACM Reference Format:
Young-kyu Choi and Jason Cong. 2018. HLS-Based Optimization and Design
Space Exploration for Applications with Variable Loop Bounds. In IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD
’18), November 5–8, 2018, San Diego, CA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3240765.3240815

1 INTRODUCTION
Because of its energy efficiency and reconfigurability, the field-
programmable gate array (FPGA) is widely used in computing plat-
forms such as the Amazon Web Service [1] or Microsoft’s Azure
[19]. However, such an advantage comes at the price of programma-
bility. FPGA programmers have had to design and verify cycle-level
logical operations at an RTL level and suffer from the long design
cycle. To solve this problem, high-level synthesis (HLS) tools such
as the Vivado HLS [9] and Intel HLS [13] have been proposed.
These tools automate the transformation from a design written in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240815

a high-level language into a low-level FPGA design and increase
the productivity of FPGA programmers.

But since HLS tools typically consume several minutes to trans-
form high-level code to FPGA implementation for each set of design
parameters, it is difficult to determine the set that will maximize
the performance. This calls for automated design space exploration
(DSE) for HLS. A considerable amount of literature can be found
on this topic (Section 2). However, the previous work has difficul-
ties finding an efficient design for applications with variable loop
bounds in the innermost loops. For example, the average speedups
for Polybench [21] benchmarks with variable loop bounds [21] are
2.3X and 1.0X using AutoAccel [6] and COMBA [27], while the
approach proposed in this paper achieved a 75X speedup.

The main reason for such small speedup in conventional DSE
works is that commonly used HLS directives unroll and pipeline
may not be suitable for this type of application. As will be explained
in Section 3, these common directives would generate processing
elements (PE) with low utilization (<0.2) unless the code is prop-
erly transformed. For this reason, existing DSE tools that simply
insert optimization directives will not be able to fully optimize the
application.

Another reason for the poor optimization is due to the difficulty
in performing cycle analysis. Vivado HLS will provide a very large
range of cycles for variable loops, and the exact performance after
each optimization becomes difficult to predict. It is possible to
estimate the performance of applications with variable bounds
based on the software simulation flow as proposed in HLScope
[3, 4]. However, HLScope requires HLS synthesis of every design
point to extract the loop cycle parameters—which is often infeasible.
Works such as [23, 27, 28] use their own schedulers without the
actual Vivado HLS synthesis; however, the accuracy might not be
very satisfactory for loops with variable bound as will be shown in
the experimental result.

To solve these problems, we present our initial work on an
HLS-based optimization and DSE framework that improves the
performance—even in the presence of variable loop bounds. First,
we will demonstrate the deficiency in commonly used HLS pragma
unroll and pipeline if used on variable loops. As a solution, we will
propose source-to-source HLS code transformations that increase
the utilization of the compute resources for variable loops with
partial unrolling and pipelining in Section 3.2.

Furthermore, we identify the efficiency challenge that originates
from the loop-carried dependency and the variable loop bounds. In
particular, we analyze floating-point variable-loop reduction and

Figure 1: Variable reduction example in Cholesky bench-
mark

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Young-kyu Choi and Jason Cong

Figure 2: Variable loop bound example in LU benchmark

prefix sum patterns that frequently appear in Polybench [21]. We
will present code transformations to optimize these computation
patterns in Sections 3.3 and 3.4.

Next, we present a cycle and resource estimation model for the
variable loops in Section 4. In order to make an accurate resource
estimation for large design spaces in a short time, our model inter-
polates based on a small number of actual HLS synthesis runs and
considers the sharing of operands and arrays for various unrolling
and array partitioning factors. The cycle estimation is based on the
software profiling and the cycle model.

The overall framework and the DSE flow are explained in Sec-
tion 5. Finally, the experimental result and the comparison with
other works on the Polybench benchmark are presented in Sec-
tion 6.

2 PREVIOUS WORK
The automated DSE framework for HLS is described in several
published works. The work in [15] and [22] take high-level parallel
patterns such as map and reduce and generate an FPGA design
based on the predefined templates and the statistical performance
model. Aladdin [23] omits synthesis and RTL generation and reuses
optimization across a large design space for fast exploration among
ASIC accelerators. Lin-analyzer [28] takes a similar approach and
further considers the FPGA-specific resources (e.g., DSP, BRAM)
during its scheduling. Most recently, COMBA [27] and AutoAccel
[6] have been proposed. COMBA explores a comprehensive set
of HLS optimization directives and finds the best configuration
based on their metric-guided search. AutoAccel presents a push-
button flow based on their composable, parallel, and pipeline micro-
architecture. These works, however, do not guarantee finding an
efficient design for applications with variable loop bounds.

Previous published work, such as the work in [8] and ElasticFlow
[24] discuss efficient HLS-based methodologies to distribute the
dynamic workload among coarse-grain PEs. However, many exam-
ples, such as those found in Polybench benchmarks, do not have
coarse-grain parallelism in outer loops (e.g., row-wise parallelism
in sparse matrix-vector multiplication [8, 24]). Instead, there are
several variable loops that are executed in serial, similar to the
examples presented in [17]. Thus, our work is more focused on op-
timizing these innermost loops by exploiting fine-grain parallelism
and pipelining, accurately estimating resource sharing among these
serial loops, and efficiently allocating non-sharable resource for
overall latency minimization. Another difference that we see in
these works is that they require modification of HLS scheduling and
binding kernels—whereas our work is based on source-to-source
transformation to produce HLS codes that can be easily integrated
into existing HLS frameworks.

3 HLS CODE TRANSFORMATION FOR
VARIABLE-BOUND LOOPS

In this section we will first identify the limitation of applying direc-
tives for pipelining and unrolling based on the maximum bound.
Next, we will demonstrate the effectiveness of applying source-
to-source transformation. In Polybench [21] the applications with

Figure 3: Loop unrolling for loop 2 of baseline LU code
(Fig. 2) based on the maximum loop bound found in profil-
ing

variable loop bounds can be classified into three patterns: com-
pletely parallel, reduction, and prefix sum. We will discuss the
transformation for each pattern in the following subsections.

3.1 Loop Pipelining and Loop Unrolling Based
on the Maximum Loop Bound

Since HLS tools cannot unroll the loops with variable bounds, a
common optimization strategy is to pipeline the loop. For illustra-
tion, we optimize loop 2 of the LU baseline code (Fig. 2), which has
matrix size N=512. After pipelining, the loop can be executed in
130,831 cycles (measured using technique described in [4]). How-
ever, pipelining cannot exploit the data-level parallelism that exists
in the loop.

Another intuitive optimization strategy is to unroll based on the
maximum loop bound measured from testbench profiling. The loop
bound is fixed to a constant value as shown in Fig. 3. Condition
(i f (j >= k + 1&&j < N)) is added to invalidate the execution of
iterations where the loop index is not between the upper bound
and the lower bound of the loop.

However, the resulting unrolled architecture suffers from a se-
vere PE efficiency problem. Even if the dividers were all instantiated,
profiling shows that the architecture can process only 130,816 divi-
sions in 4,440,576 cycles—resulting in no speedup. On average, a
divider PE is only performing 0.000057 divisions per cycle. There
are two reasons for such inefficiency: First, many PEs are left idling
when the loop trip count is smaller than the maximum loop bound.
Second, the unrolled PEs are not pipelined. Due to such a low PE
utilization problem, Vivado HLS only instantiates a single divider
and shares it across the loop iterations.

3.2 Partial Unrolling with Pipelining
In order to exploit the loop parallelism while solving the PE ineffi-
ciency problem described in the previous subsection, we apply code
transformations based on partial unrolling and pipelining. The idea
is to place fewer PEs but allow them to proceed to other iterations
in a pipelined fashion so that the effective PE utilization ratio would
be increased.

Vivado HLS-compatible code transformation steps for the LU
benchmark (Fig. 2) are as follows. As a preprocessing step, a com-
mon array reference (e.g., A[k][k]) that is invariant to the loop is
replaced with a temporary scalar variable (lc1) and moved out of
the loop, as shown in line 3 and line 10 of Fig. 4. The reason is
that Vivado HLS will synthesize it to an actual BRAM lookup and
unnecessarily consume additional read port per iteration.

Next, we separate the original loop into two loops L2_1 (line 4)
and L2_2 (line 7). The inner loop bound L2_2 is fixed to a constant
L2_UF (line 7) so that the HLS tool may fully unroll it after inserting
a pipeline directive on the outer loop (line 5). Assuming the original
loop has lower bound lb and upper bound ub, the outer loop’s
lower/upper bound is set to lb/L2_UF and (ub − 1)/L2_UF + 1 (line
4), so that the boundary iterations will be included as well. Arrays
referenced in the loop are partitioned (line 2) to the unrolling factor
(L2_UF) in the array dimension (dim=2) referenced by the unrolled

HLS-Based Optimization and Design Space Exploration for Applications with Variable Loop Bounds ICCAD ’18

Figure 4: Code after applying the proposed partial unrolling
and pipelining techniques to loop 2 of Fig. 2

loop’s index (j). If the loop index exists in more than one dimension
(e.g., A[j][j]), the proposed transformation is not valid. We also
place a conditional statement to exclude iterations that were not
between lb and ub (line 9).

As a last step, if there was no loop-carried dependency before
splitting into two loops, we insert a pragma to declare inter-loop
dependency to f alse (line 6) for better performance [26]. This is
legal because j (= j1 ∗ L2_UF + j2) increases monotonically, and
thusA[k][j]will never reference the same array address in previous
iterations.

The cycle estimation model of the proposed transformation will
be presented in Section 4.2.1. Comparison of the execution cycles
and the PE efficiency (average divisions per cycle per divider PE) is
shown in Table 1. The proposed transformation exploits the loop
parallelism and allows exploring various partial unrolling factors
for wider design space exploration.

Table 1: Comparison of the execution cycles and the PE effi-
ciency for loop pipelining (Section 3.1), loop unrolling based
on the maximum bound (Section 3.1), and the proposed par-
tial unrolling with pipelining (Section 3.2)

Pipeline Max Unr Proposed Transformation
UFT = 2 UFT = 4 UFT = 8

Ex cyc 130,831 4,440,576 81,792 49,088 32,736
PE eff 1.0 0.000057 0.80 0.67 0.50

3.3 Transformation for Variable Reduction
A reduction pattern is detected when a reduction operator [2] (e.g.,
addition or multiplication) is applied on multiple array elements
over a loop, and the result is reduced to a single variable or an
array element. Subtraction can also be computed as a reduction
pattern after replacing subtraction with addition, and the sign of
the final reduction result is flipped. An example can be found in
loop 4 of Polybench’s Cholesky benchmark (Fig. 1). Note that in a
strict sense, a floating-point addition is not a reduction operation
(needs to have commutative and associative property), but it can be
computed as a reduction pattern if some errors are tolerable [2, 5].

Many FPGA designs utilize a binary tree structure when imple-
menting a reduction circuit [20, 29]. In Vivado HLS, this structure
is inferred by specifying directive: “#pragma HLS unroll factor=xxx.”
However, this implementation style is inefficient for floating-point
variable loop reduction. The width of the tree has to be set to half of
the maximum of the loop bound (256 in the example), and the depth
has to be set to the loд2 of the width (8 in the example). If the loop
bound is much smaller than the maximum, many adders will be left
idle. To increase the PE efficiency, Vivado HLS will share the adders
between different levels in the reduction tree. However, the effi-
ciency is still low, because Vivado HLS does not properly pipeline

Figure 5: The computation pattern of variable reduction

Figure 6: HLS code for loop 4 of Fig. 1 after transformation

the PEs when a partial unrolling factor is specified (Section 3.1).
For example, when loop 4 of Cholesky benchmark is unrolled to
the factor of 256 times (could not be fully unrolled to 512 due to
the resource limitation), the floating-point adder (FADD) efficiency
is 0.008 (= 22M adds / 21M cycles / 256 FADDs).

Inserting pipelining directive is also not very efficient for floating-
point reduction. The reason is that there is a true loop-carried
dependency, and the result of the previous iteration cannot be
immediately produced because of the long latency of the floating-
point operations (FADD_LAT). In loop 4 of the Cholesky example,
FADD_LAT is 8 cycles. Thus, the average PE efficiency for pipelin-
ing is only 0.12, and requires 179M cycles to complete. To solve
this problem, the work in [12, 30] proposes using shift registers (of
length that matches FADD_LAT) to remove the dependency. The
average PE efficiency improves to 0.16, but the parallelism is still
limited.

We propose a code transformation to address these problems
and to enable design space exploration. The reduction operation is
divided into two stages (Fig. 5) depending onwhether the number of
elements to be reduced exceeds 2 ∗ L4_UF or not (L4_UF : addition
unrolling factor).

The reduction tree in stage 2 is pipelined across each level. With
L4_UF FADDs, each level can be computed after FADD_LAT (=8)
cycles, because the number of elements to be added per level is

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Young-kyu Choi and Jason Cong

equal to or less than 2∗L4_UF . In order to reduce the tree depth for
a small loop boundTC , we support early termination by pipelining
each level with a variable loop bound (line 21 of Fig. 6). Stage 2 loop
bound (limit = loд2(min(TC, 2 ∗ L4_UF))) is precomputed based on
the table lookup (lines 16–20). Note that Vivado HLS instantiates
only L4_UF/2 FADDs for stage 2, which increases the pipeline
depth of the loop by 1 (FADD_LAT+1 cycles in total).

In the stage 1 of Fig. 5, the computation should be pipelined
within each level since the number of elements to be added ex-
ceeds 2 ∗ L4_UF . In order to increase the efficiency, we adopt the
dependence-free pipelining [12, 30] by allowing a single FADD to
write intermediate results to FADD_LAT registers. This is achieved
by specifying II to FADD_LAT (line 10). For higher performance, we
increase the parallelism of this technique to 2∗L4_UF/FADD_LAT .
In order to reduce the number of iterations for small loop bound,
early termination within a reduction level is allowed by setting the
loop bound of stage 1 to (ub − 1)/(2 ∗ L4_UF)+ 1 to lb/(2 ∗ L4_UF)
(line 9).

The cycle estimation model of the proposed transformation
will be presented in Section 4.2.2. The performance comparison
of the proposed reduction scheme with conventional pipelining,
dependence-free pipelining [12, 30], and conventional unrolling is
presented in Table 2. The DSP efficiency of the proposed scheme is
higher than the conventional unrolling scheme with the same un-
rolling factor by 41X (UF=4) to 29x (UF=16). Similar high efficiency
can be observed in FF and LUT as well. The high efficiency dimin-
ishes with the larger unrolling factor—but nonetheless, the pro-
posed scheme was able to find a final design point that is 14X, 2.2X
and 1.7X faster than the conventional pipelining, dependence-free
pipelining, and conventional unrolling. Also, due to the early ter-
mination functionality for small variable bound across and within
reduction levels, the latency for loop bound of 1 (42 cycles) is smaller
than dependence-free pipelining (56 cycles) and conventional un-
rolling of factor 256 (168 cycles).

Table 2: Comparison of the total execution cycles, resource con-
sumption, and latency of various loop bounds (for cases min=1,
max=512) for the proposed variable-bound reduction scheme with
conventional pipelining, dependence-free pipelining [12, 30], and
conventional unrolling, for loop 4 of the Cholesky benchmark

Unr Total Resource Latency
Fac Cycles DSP FF LUT LB=1 LB=512

Pipe - 179M 5 653 680 15 4103
DPip - 29M 11 3131 2904 56 560

U
nr
ol
lin

g 4 537M 16 1922 1674 4104 4104
8 336M 32 3706 3036 2568 2568
16 202M 64 7234 5691 1544 1544
256 22M 1K 114K 86K 168 168

Pr
op

os
ed 4 30M 7 2016 2911 42 570

8 20M 14 3760 5032 42 322
16 16M 28 7192 9252 42 202
128 13M 224 56K 67K 42 114

3.4 Transformation for Variable Prefix Sum
A prefix sum is a computational pattern where the output array y
contains a running sum of the input array x (yk =

∑k
j=0 x j) [5, 11].

The prefix sum pattern is detected when there exists a loop with
an assignment statement written to an array element y[k] with a
value that is the sum of the array element assigned in the previous
iteration (y[k − 1]) and an element from the input array (x[k]). An
example is presented in loop L2_2 of Fig. 7 for rotated integral image

Figure 7: Baseline code for rotated integral image computa-
tion [18] used in face recognition.

Figure 8: Kogge-Stone prefix sum algorithm [16].

application [18] in face detection. Similar to the reduction pattern
(Section 3.3), the true dependency betweenpsum[k] andpsum[k−1]
prohibits II becoming 1 when the loop is pipelined and psum is a
floating-point variable. Applying an unrolling directive as suggested
in [14] results in a serialized addition due to the dependency and
does not bring any speedup.

In order to increase the performance with parallelization, we
use the Kogge–Stone algorithm [16]. Although the algorithm is not
work-efficient [5, 11], the consecutive and regular memory access
pattern helps simplify the data fetch circuitry between BRAMs and
PEs. The algorithm is presented in Fig. 8. In each level l , addition is
performed with an array element that is d apart:

ylk = y
l−1
k + ((k ≥ d)?yl−1k−d : 0). (1)

Distance d is multiplied by a factor of 2 in each level.
However, direct implementation of Eq. 1 [11] results in a perfor-

mance improvement of only 0.94X, 1.1X, and 1.2X with unrolling
factor 2, 4, and 8, compared to the pipelined version. There are two
reasons for such a small speedup.

The first reason is that Vivado HLS will assume that the memory
access stride would be an arbitrary number when the stride is a
variable (e.g., d in Eq. 1, since d increases in a power of 2). Thus,
Vivado HLS will infer wiring from each adder to all memory par-
titions (M) that results in a large II. However, the actual wiring
required for each adder is only loдM (d=1, 2, 4, ...,M/2).

The second reason is that, as can be seen from Eq. 1, two read
(yl−1k , yl−1k−d) and one write (ylk) ports are required per iteration.
This requirement holds regardless of whether d is a multiple of
the memory partition M . Since Vivado HLS schedules up to two
read or write ports per memory partition each cycle, II=1 cannot
be achieved. Another related problem is that yl−1k of Eq. 1 is later
accessed by the term yl−1k−d when k = d . Thus, overwriting the
content yl−1k with ylk will result in an incorrect behavior. Note that
[11] solves the latter problem with a double buffering technique,
but this requires additional loops to copy the result back from the

HLS-Based Optimization and Design Space Exploration for Applications with Variable Loop Bounds ICCAD ’18

Figure 9: Proposed transformation of variable prefix sum in
loop L2_2 of rotated integral image computation (Fig. 7)

ping-pong buffer when the number of levels is odd. Also, double-
buffering does not reduce the number of ports required.

The first problem is solved by explicitly enumerating all possible
memory access strides. The code transformation for loop L2_2 of
rotated integral image example (Fig. 7) is shown in Fig. 9.We assume
the number of FADD (UF) is same as thememory partitioning factor.
As can be seen in lines 8-18 (d=1) and lines 19-22 (d=2), all levels
with d less thanM are explicitly enumerated. When d is a multiple
of M , all the operands for Eq. 1 can be obtained from the same
memory partition of psum, and thus can be packed into a single
loop, as shown in lines 23-35.

The second problem is solved by making a duplicate copy of y
and traversing the array in a decreasing order. An example is shown
in Fig. 9. Starting from the upper bound of the loop iterator (lines 25
and 28), we perform the addition in Eq. 1 (line 31), with yl−1k−d in
array dpsum (duplicate of y) and yl−1k in array psum. The result ylk
is updated to both arrays psum[k] and dpsum[k] (line 32). Although
yl−lk is now overwritten, this does not cause a problem since this
value is never accessed again with monotonically decreasing loop
iterators k1 and k2. Also, one read and one write per partition
is performed for both psum and dpsum, which allows the loop to
execute with II=1.

Note that the proposed scheme takes advantage of the fact that
the computation and memory access schedule can be controlled
by FPGA HLS programmer. It is not applicable to CUDA GPU
environment [11], because execution in a monotonically decreasing
order cannot be guaranteed among multiple CUDA threads.

The cycle estimation model of the proposed scheme will be pre-
sented in Section 4.2.3. The comparison of the proposed scheme
with the conventional pipelining, unrolling [14], and direct imple-
mentation of Kogge-Stone [11] is shown in Table 3. Both pipelining

and unrolling infers an architecture that lacks parallelism and has
low PE efficiency because of the dependency that exists between
y[k] and y[k − 1]. Direct implementation of Kogge-Stone has a
limited speedup with increasing parallelism due to the large II. The
performance of the proposed scheme is superior, because we were
able to achieve II=1 for all loops. Also, support for early termination
(lines 6, 8, 19, 24 of Fig. 9) reduces the cycle for short loop bounds.
As a result, the proposed scheme allows DSE to find a design point
that is 9.7X faster than the pipelined version.

Table 3: Comparison of the total execution cycles, resource con-
sumption, and latency of various loop bounds (for cases min=1,
max=512) for the proposed variable-bound prefix sum scheme with
conventional pipelining, unrolling [14], andKogge-Stone algorithm
[11] for loop L2_2 of rotated integral image

Unr Total Resource Latency
Fac Cycles DSP FF LUT LB=1 LB=512

Pipe - 917K 0 575 814 9 3586
Unr 4 2.4M 2 877 1372 4637 4637
[14] 8 2.4M 2 1525 3026 4674 4674
K-S 4 974K 6 2876 3911 35 3781
[11] 8 822K 8 5385 7166 35 3141

Pr
op

os
ed 4 331K 8 2679 3820 19 1253

8 198K 16 5299 7590 22 691
16 134K 32 11K 16K 25 417
64 95K 128 43K 71K 31 229

4 CYCLE / RESOURCE ESTIMATION
Vivado HLS provides cycle and resource estimate in its synthesis
report. If the design space is large, generating an HLS report for
every possible space is not feasible since it takes several seconds
to minutes to generate a single design. Aladdin [23], Lin-analyzer
[28], and COMBA [27] solve this problem by estimating cycles with
their own scheduler, but there is no guarantee that the HLS tool
will follow such a schedule, and may possibly result in a large cycle
estimation error, as will be shown in Section 6.

In our framework, we extract basic cycle and resource informa-
tion from the HLS tool for few designs. Based on this information,
we predict the cycle and resource consumption for the entire design
space based on our model.

4.1 Resource Estimation
The resource consumption for pipelined loops is obtained from the
synthesis report of the Vivado HLS tool. For loop unrolling and
array partitioning, however, synthesizing every possible design
with the HLS tool becomes difficult due to the large design space.
Assuming there are L innermost loops that may each be unrolled up
toU times, andA arrays that may each be partitioned up to P times,
a naive approach would be to performU L ∗ PA HLS synthesis.

One alternative approach could be to linearly interpolate from
a few unrolling factors and array partitions for every loop, as-
suming all loops’ resource consumption is independent from one
another. This assumption is not true, however, because of the re-
source sharing between the loops. As explained by Li, et al., [17],
modern HLS tools, including Vivado HLS, will share operators that
exceed certain thresholds across loops for high operator utilization.
Floating-point operators exceed this threshold and will be shared
across loops. Then a new challenge arises to efficiently predict the
resource sharing for many possibilities of unrolling factors and
array partitions.

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Young-kyu Choi and Jason Cong

We propose a resource prediction method that reduces the num-
ber of HLS synthesis and is still based on the actual HLS synthesis
report. The high-level strategy is to separate sharable and non-
sharable operators from a loop and linearly interpolate the non-
sharable resource. The resource for sharable operators is estimated
as a maximum of all loops. Finally, we estimate the mux required
for sharing the operators and the arrays.

For each loop l=(0, ..., L) that is to be unrolled (after applying
transformations described in Sections 3.2, 3.3, and 3.4), we generate
and synthesize a new version of code with R+1 different unrolling
factor for each loop. Then we compute the resource difference
between each version to estimate the increase rate of resource
consumption. By referring to the sharable operator (floating-point
operators) usage report, the resource increment is separated into
sharable resource and non-sharable resource consumption (NSl).
Based on the non-sharable resource consumption for R designs, we
use a linear regression technique to find the slope and the intercept
of the data points. Then the non-sharable resource of a loop can be
estimated for arbitrary unrolling factors.

The estimation error with different R for LU benchmark is shown
in Table 4. Since large R increases the number of synthesis runs, we
have decided to limit R to 3. Our framework generates loops with
unrolling factor 4, 8, and 16 (R=3), since non-linear characteristic is
sometimes observed for small (1, 2) unrolling factors.

Table 4: FF/LUT estimation error rate for various R for LU
benchmark

R=2 R=3 R=4
FF/LUT 1.2% / -6.9% 0.9% / -5.5% 0.5% / -7.2%

To estimate the resource for sharable operators, we find the
maximum of each type k of operators (e.g., floating-point adder
or multiplier) after loop unrolling each loop (Slk). Next, we esti-
mate the resource consumed by mux used for sharing each type
of operator among loops. Likewise for the arrays, we estimate the
mux needed for different loops to have access to the same a arrays.
Then we estimate LUT consumption for the input operands of each
operator and the address/data of arrays based on the bitwidth and
the number of sharing ports. The LUT consumption model for mux
can be found in [7].

The above resource consumption estimation can be summarized
as: ∑

l

NSl +
∑
k

max
l

(Slk) +
∑
k

mux(l ,k) +
∑
a

mux(l ,a) (2)

Since only R + 1 (=4) synthesis are required for each unrolled
loop, the number of HLS synthesis runs to estimate the resource
for various unrolling factors is (R + 1) ∗TL, whereTL is the number
of innermost loops. This is a large improvement over the naive
approach of performingU L ∗ PA synthesis. As a result, the design
space exploration time is reduced to a few hundreds of seconds, as
will be presented in the experimental section.

Our resource estimation method differs from AutoAccel [6] in
that AutoAccel does not model resource sharing among loops. Our
work has more similarity with [17] in a sense that we separate
sharable and non-sharable resource of a loop. The difference is
that [17] does not explore loop unrolling or array partitioning and
thus does not perform any linear regression or function separation.
Instead, they assume that the non-sharable part stays constant
over multiple designs. However, assuming a constant non-sharable
resource increases the LUT/FF estimation error rate from 0.9%/-5.5%
to 32%/-48% in LU because non-sharable resource can increase very
rapidly with loop unrolling.

Figure 10: Overall DSE framework

4.2 Cycle Estimation
4.2.1 Model for Partial Unrolling with Pipelining. For the LU

benchmark in Fig. 4, if the transformed loop’s (L2_1’s) initiation
interval, iteration latency, and unroll factor is I IT , ILT , UFT , the
number of execution cycle is I IT ∗ {(ub − 1)/UFT + 1− (lb/UFT) −
1} + ILT [17]. This is approximated as

≃ I IT ∗ (ub − 1 − lb)/UFT + ILT = I IT ∗ (TC − 1)/UFT + ILT (3)

where TC(= ub − lb) is the trip count of the original loop (loop 2
in Fig. 2).

4.2.2 Model for Variable Reduction. For the Cholesky bench-
mark in Fig. 6, the execution cycles of stage 1 can be directly derived
from Eq. 3: I IL4_1 ∗ (TC − 1)/(2 ∗UFL4/FADD_LAT) + ILL4_1. The
loop in stage 2 will be executed loд2(min(TC, 2 ∗ L4_UF)) times.
Thus the total estimated cycle is

I IL4_1 ∗ (TC − 1)/(2 ∗UFL4/FADD_LAT) + ILL4_1
+ I IL4_2 ∗ (loд2(min(TC, 2 ∗ L4_UF)) − 1) + ILL4_2 (4)

4.2.3 Model for Variable Prefix Sum. The code in Fig. 9 is a
collection of partially unrolled loops modeled in Eq. 3. The number
of levels is lmax = loдTC . Thus, the total estimated cycle is

lmax∑
l=0

(I Il ∗ (TC − 1)/UF + ILl). (5)

4.2.4 Total Cycles. If the trip counts of all variable loops were
available, the total cycle would simply be an accumulated number
of the cycles computed in Eqs. 3, 4, 5. However, since storing all trip
counts is an expensive process, we simplify the computation by first
computing the average of trip counts (AVG_TC) and the number of
loop occurrences (OCC) during the software simulation. Then the
trip counts TC in Eqs. 3, 4, 5 are replaced with AVG_TC , and the
entire equation is multiplied by OCC . Also, we approximate the II,
IL of the unrolled loops based on the value already obtained from
the selected (R=3) synthesis. As will be shown in the experimental
section, these approximations result in a relatively small cycle error
rate of 12%.

5 OVERALL FLOW AND THE DESIGN SPACE
EXPLORATION

The overall flow is shown in Fig. 10. The input code is first profiled
with the Vivado HLS software simulation flow. In this stage, the
loop trip counts TC and the number of loop occurrences OCC are
recorded. Next, possible transformed codes are generated from the
input code discussed in Section 3. Next, R design points for each
loop are synthesized with the HLS tool (Section 4.1). Based on
the synthesized result, cycle count and resource consumption are
estimated as discussed in Section 4. Among possible design points
that satisfy the resource constraint, the one with the least latency
is chosen and presented as the final output.

HLS-Based Optimization and Design Space Exploration for Applications with Variable Loop Bounds ICCAD ’18

Following Lin-analyzer [28], the design parameters evaluated
in the framework are shown in Table 5. Loops can be unrolled to
their maximum loop bound, and the array can be partitioned to
its array size. For simplification, the loop unrolling factor and the
array partitioning factor are explored in power of 2s (1, 2, 4 ...). We
also explore the loop pipelining. As mentioned in Section 2, the
optimization is performed on the innermost loops for fine-grain
parallelization and pipelining.

Table 5: Design parameters evaluated in DSE
Parameter Range

Loop unrolling factor 1 : Max loop bound (pow of 2)
Pipelining True, False

Array partitioning factor 1 : Array size (pow of 2)

In order to reduce the design space, we prune away design spaces
that are not promising. First, we do not consider array partitions
that are larger than the number that can be simultaneously con-
sumed or produced by PEs. Second, we do not consider pairs of
optimizations that require partial partitioning on multiple dimen-
sions of a local memory, because this complicates routing, and the
number of BRAM instances increases rapidly.

6 EXPERIMENTAL RESULT
6.1 Experimental Setup
For evaluation, we use the Polybench benchmark [21] that was
also used in Lin-analyzer [28] and COMBA [27]. To demonstrate
the effectiveness of our framework, five benchmarks with variable
loop bounds have been chosen—Cholesky, LU, Trisolv, Durbin, and
Dynprog. We also constructed rotated integral image benchmarks
from [18]. The matrix size is set to 512, and the variable types are
set to single-precision floating-point for all benchmarks, except
Dynprog which was set to have a matrix size of 128 to fit FPGA.
The design is synthesized using Vivado HLS 2018.2 [26] software.
For the platform, we target the ADM-PCIE-KU3 board [10] with
Xilinx’s Ultrascale KU060 FPGA [25] at 250MHz. The FPGA resource
(DSP/FF/LUT) limit is set to half of the total resource on KU060 to
ease the place-and-route process.

6.2 Performance
The performance after applying the proposed transformations to
the unmodified baseline code is 8.8X to 317X, as shown in Table 6.
LU has a large speedup due to the abundant parallelism; other
applications have loop-carried dependencies (reduction or prefix
sum patterns) that limit performance improvement. On average,
the proposed transformations achieved a 75X speedup.

Table 6: Effect of the proposed code transformations (unit:
cycles)

Baseline +Part Unr +Var Rdct +Var PSum

Cholesky 404M - 14.2M -(1.0X) (28X)

LU 942M 2.96M - -(1.0X) (317X)

Trisolv 2.50M - 63.9K -(1.0X) (39X)

RotIntImg 11.1M 1.61M - 246K
(1.0X) (6.9X) (45X)

Durbin 5.25M - - 522K
(1.0X) (10X)

Dynprog 872M - - 98.8M
(1.0X) (8.8X)

For comparison, we obtained access to the source code for two
of the latest DSE works, AutoAccel [6] and COMBA [27], and pro-
duced the output for the same benchmarks. We adjusted the pa-
rameters in AutoAccel and COMBA to match the characteristics of
the KU060 FPGA. Since COMBA does not provide code on how to
unroll variable bound loops, we applied the conventional unrolling
with maximum bound (Section 3.1) with the unrolling factor in-
structed by the tool. COMBA had a tendency to over-unroll the
loops beyond the given resource threshold—probably because its re-
source estimation is mostly based on the operators only. In this case,
we manually reduced the unrolling factor to fit the given threshold.
For the LU benchmark, Vivado HLS was unable to unroll the loops
(as discussed in Section 3.2), and achieved no speedup when using
the configuration suggested by COMBA. Similarly, for prefix sum
patterns, the unroll directive infers fixed-length serialized addition
(Section 3.4) which does not improve the performance.

The performance comparison is shown in the “Exec Time” col-
umn of Table 7. Our framework outperforms COMBA and AutoAc-
cel by 78X and 32X on average. The main reason is that COMBA
and AutoAccel do not perform code transformation that can solve
the PE efficiency problem of the variable loops (Section 3). Thus,
the design space explored by these tools is limited and results in
a relatively worse performance. Another reason is that their cycle
estimation model does not properly consider variable loop bounds.

6.3 Exploration Speed and Prediction Accuracy
The execution time, DSE result, and the prediction error rates are
shown in Table 7. The execution times of the variable loops are
measured using the method proposed in [4], and the resource usage
is compared to the Vivado HLS synthesized result.

The result shows that the number of HLS synthesis performed
is on average only 23% of the entire design spaces explored. The
performance and the resource consumption of the rest of the design
points are estimated using the model presented in Section 4. Thus,
the exploration time is maintained at a few hundreds of seconds.

The table also shows that the prediction error rate of execution
time, DSP, FF, LUT, with the proposed model is on average 12%,
0%, 5.1%, 5.7%, respectively. Such a low error rate helps the DSE
process find the best design point accurately.

The exploration time and the prediction accuracy for AutoAccel
and COMBA is also shown in Table 7. The execution time error of
COMBA is probably caused by the mispredicted II and IL compared
to the actual Vivado HLS synthesized result. This is due to the fact
that COMBA does not reference the HLS report. On the other hand,
AutoAccel does refer to the HLS report—however, its execution time
is also not very accurate. The reason is that Vivado HLS reports
the cycle based on the maximum of the variable loop. The resource
estimated for AutoAccel is the result given by the HLS tool itself,
and thus has an error rate of 0%.

7 CONCLUSION
Optimization of variable loop bounds with conventional HLS direc-
tives for pipelining and unrolling often leads to a low PE utilization
problem. We have shown that techniques such as partial unrolling
with pipelining or loop early termination will help solve this prob-
lem. HLS-based code transformations were devised to demonstrate
how these techniques can be applied to common computational
patterns. Also, we have proposed a resource estimation method that
models operator sharing with a small number of HLS syntheses.
The experimental result shows that a 75X speedup was achieved
compared to the baseline implementation. As a future work, we

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Young-kyu Choi and Jason Cong

Table 7: Comparison of the performance, design space exploration speed, and the prediction accuracy among proposed,
COMBA, and AutoAccel flows (the performance and the prediction error rates are that of the final output design)

Application Flow Exec Time Design Space Exploration Prediction Error Rates
(cycles) # Design # HLS Runs Expl Time Exec Time DSP FF LUT

Cholesky
Proposed 14.2M 100 11 625s 12% 0% 7.7% 1.3%
COMBA 21.1M NA 0 872s -86% NA NA NA
AutoAccel 180M 32 NA 252s 500% 0% 0% 0%

LU
Proposed 2.96M 100 11 451s -3.7% 0% 0.89% -5.5%
COMBA 1.01B NA 0 416s -99.9% NA NA NA
AutoAccel 403M 16 NA 145s 201% 0% 0% 0%

Trisolv
Proposed 63.9K 10 5 232s 14% 0% -1.7% -0.85%
COMBA 103K NA 0 431s -98% NA NA NA
AutoAccel 2.10M 32 NA 131s 101% 0% 0% 0%

RotIntImg
Proposed 247K 1000 20 1370s -29.0% 0% -18% -20%
COMBA 21.5M NA 0 1,490s -99.9% NA NA NA
AutoAccel 2,13M 32 NA 103s 98% 0% 0% 0%

Durbin
Proposed 522K 10 5 245s -2.5% 0% 1.2% 4.4%
COMBA 8.12M NA 0 2,540s -99% NA NA NA
AutoAccel 1.08M 32 NA 203s 96% 0% 0% 0%

Dynprog
Proposed 98.8M 64 9 436s 10% 0% 0.54% 2.4%
COMBA 1.87B NA 0 2,200s -99.9% NA NA NA
AutoAccel 234M 32 NA 121s 454% 0% 0% 0%

Average
Proposed 1.0X - - - 12% 0% 5.1% 5.7%
COMBA 78X - - - 97% NA NA NA
AutoAccel 32X - - - 241% 0% 0% 0%

are considering to support more patterns for loops with variable
bounds beyond those in the Polybench benchmarks.

ACKNOWLEDGMENTS
This research is partially supported by the NSF/Intel Partnership on
Computer Assisted Programming for Heterogeneous Architectures
(CAPA) Award #1723773 and NSF/Intel InTrans Award #20134321.
We thank Cody Hao Yu (UCLA) and Jieru Zhao (HKUST) for pro-
viding their source code and assisting with the experiments. We
also thank Professor Miryung Kim, Muhammad Gulzar, Peng Wei,
Jie Wang (UCLA), and Dr. Peng Zhang (Falcon Computing) for mo-
tivating this research and the helpful discussions. We also thank
Janice Wheeler for proofreading this manuscript.

REFERENCES
[1] Amazon. 2018. Amazon EC2 F1 Instance. (2018). https://aws.amazon.com/ec2/

instance-types/f1/
[2] R. Chandra, et al. 2001. Parallel Programming in OpenMP. Morgan Kaufmann,

San Francisco, CA.
[3] Y. Choi and J. Cong. 2017. HLScope: High-Level performance debugging for

FPGA designs,. In IEEE Ann. Int. Symp. Field-Programmable Custom Computing
Machines (FCCM’17). 125–128.

[4] Y. Choi, P. Zhang, P. Li, and J. Cong. 2017. HLScope+: Fast and accurate perfor-
mance estimation for FPGA HLS. In Proc. IEEE/ACM Int. Conf. Computer Aided
Design (ICCAD’17). 691–698.

[5] N. Chong, A. Donaldson, and J. Ketema. 2014. A sound and complete abstraction
for reasoning about parallel prefix sums. ACM SIGPLAN Notices 49, 1 (2014),
397–409.

[6] J. Cong, P. Wei, C. Yu, and P. Zhang. 2018. Automated accelerator generation
and optimization with composable, parallel and pipeline architecture. In Proc.
Ann. Design Automat. Conf. (DAC’18). 154–159.

[7] J. Cong, P.Wei, C. Yu, and P. Zhou. 2017. Bandwidth optimization through on-chip
memory restructuring for HLS. In Proc. Ann. Design Automat. Conf. (DAC’17).

[8] J. Cong and Y. Zou. 2010. A comparative study on the architecture templates
for dynamic nested loops. In IEEE Ann. Int. Symp. Field-Programmable Custom
Computing Machines (FCCM’10). 251–254.

[9] J. Cong, et al. 2011. High-level synthesis for FPGAs: From prototyping to deploy-
ment. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 30, 4
(2011), 473–491.

[10] Alpha Data. 2017. Alpha Data ADM-PCIE-KU3 Datasheet. (2017). http://www.
alpha-data.com/pdfs/adm-pcie-ku3.pdf

[11] M. Harris, S. Sengupta, and J. Owens. 2008. Parallel Prefix Sum (Scan) with CUDA.
(2008). https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

[12] Intel. 2018. Intel FPGA SDK for OpenCL Pro Edition. (2018). https://www.altera.
com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

[13] Intel. 2018. Intel HLS Compiler. (2018). https://www.altera.com/products/
design-software/high-level-design/intel-hls-compiler/overview.html

[14] R. Kastner, M. Matai, and S. Neuendorffer. 2018. Parallel Programming for FPGAs.
ArXiv E-prints (2018). http://kastner.ucsd.edu/hlsbook/

[15] D. Koeplinger, et al. 2016. Automatic generation of efficient accelerators for
reconfigurable hardware. In Proc. Int. Symp. Computer Architecture (ISCA’16).
115–127.

[16] P. Kogge and H. Stone. 1973. A parallel algorithm for the efficient solution of
a general class of recurrence equations. IEEE Trans. Computers 100, 8 (1973),
786–793.

[17] P. Li, P. Zhang, L. Pouchet, and J. Cong. 2015. Resource-aware throughput
optimization for high-level synthesis. In Proc. Int. Symp. Field-Programmable Gate
Arrays (FPGA’15). 200–209.

[18] R. Lienhart, A. Kuranov, and V. Pisarevsky. 2003. Empirical analysis of detec-
tion cascades of boosted classifiers for rapid object detection. In Joint Pattern
Recognition Symp. 297–304.

[19] Microsoft. 2018. Microsoft Azure. (2018). https://azure.microsoft.com/
[20] G. Morris and V. Prasanna. 2005. An FPGA-based floating-point Jacobi itera-

tive solver. In Proc. Int. Symp. Parallel Architectures, Algorithms and Networks
(ISPAN’05).

[21] L. Pouchet. 2015. PolyBench/C. (2015). http://web.cse.ohio-state.edu/~pouchet.2/
software/polybench/

[22] R. Prabhakar, et al. 2016. Generating configurable hardware from parallel patterns.
In Proc. Int. Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS’16), Vol. 50. 651–665.

[23] Y. Shao, et al. 2014. Aladdin: A pre-rtl, power-performance accelerator simulator
enabling large design space exploration of customized architectures. In Proc. Int.
Symp. Computer Architecture (ISCA’14). 97–108.

[24] M. Tan, et al. 2015. Elasticflow: A complexity-effective approach for pipelin-
ing irregular loop nests. In Proc. IEEE/ACM Int. Conf. Computer Aided Design
(ICCAD’15). 78–85.

[25] Xilinx. 2018. UltraScale architecture and product data sheet: overview
(DS890). (2018). https://www.xilinx.com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf

[26] Xilinx. 2018. Vivado High-level Synthesis UG902. (2018). https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/
ug902-vivado-high-level-synthesis.pdf

[27] J. Zhao, et al. 2017. COMBA: A comprehensive model-based analysis framework
for high level synthesis of real applications. In Proc. Int. Conf. Computer Aided
Design (ICCAD’17). 430–437.

[28] G. Zhong, et al. 2016. Lin-analyzer: A high-level performance analysis tool for
FPGA-based accelerators. In Proc. Ann. Design Automat. Conf. (DAC’16). 136–141.

[29] L. Zhou and V. Prasanna. 2005. Sparse matrix-Vector multiplication on FPGAs.
In Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA’05). 63–74.

[30] H. Zohouri, et al. 2016. Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs. In Int. Conf. High Performance Computing,
Networking, Storage and Analysis (SC’16). 409–420.

