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ABSTRACT

FPGAs are more and more widely used as reconfigurable hardware
accelerators for applications leveraging convolutional neural net-
works (CNNis) in recent years. Previous designs normally adopt
a uniform accelerator architecture that processes all layers of a
given CNN model one after another. This homogeneous design
methodology usually has dynamic resource underutilization issue
due to the tensor shape diversity of different layers. As a result,
designs equipped with heterogeneous accelerators specific for dif-
ferent layers were proposed to resolve this issue. However, existing
heterogeneous designs sacrifice latency for throughput by concur-
rent execution of multiple input images on different accelerators. In
this paper, we propose an architecture named Tile-Grained Pipeline
Architecture (TGPA) for low latency CNN inference. TGPA adopts a
heterogeneous design which supports pipelining execution of mul-
tiple tiles within a single input image on multiple heterogeneous
accelerators. The accelerators are partitioned onto different FPGA
dies to guarantee high frequency. A partition strategy is designd to
maximize on-chip resource utilization. Experiment results show
that TGPA designs for different CNN models achieve up to 40% per-
formance improvement than homogeneous designs, and 3X latency
reduction over state-of-the-art designs.

1 INTRODUCTION

CNNs (Convolutional Neural Networks) are compute-intensive
learning models with growing applicability in a wide range of
domains in recent years. With the trend of CNN development
for higher accuracy, CNN models are becoming much deeper and
more complex in terms of the number of layers and data dependen-
cies [5, 7, 10, 20]. Considering the diversity of CNN models and high
inference accuracy using low bit-width data types, FPGAs have
become a particularly attractive accelerator option due to their high
performance, energy efficiency and high reconfigurability when
compared to GPUs and ASICs. By integrating multiple dies, the lat-
est FPGAs incorporate much more resources including high volume
of DSPs, on-chip memory and off-chip bandwidth than previous
generations, which provides more design spaces and chances to
further boost CNN performance.
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Previous CNN accelerator designs [2, 15, 23, 27, 29] adopt a ho-
mogeneous design methodology that uses a uniform accelerator
architecture and executes all layers of a model on the same hard-
ware sequentially. All resources contribute to the execution of each
individual layer of a given model. So the optimization target of ho-
mogeneous designs is the latency of a single input image or a small
batch. However, different layers in a CNN model have different in-
put data shapes in terms of the number of input or output channels,
feature map row and column, and kernel sizes. As a result, the
homogeneous design may cause dynamic resource inefficiency for
some layers. In order to solve this problem, a heterogeneous design
methodology is proposed in several previous works [12, 19, 21, 28].
A heterogeneous design incorporates multiple convolutional layer
accelerators on a single FPGA. Each of them is optimized specifically
for one or a set of layers that are executed on it. In contrary to the
homogeneous design, a heterogeneous design mainly aims to opti-
mize throughput rather than latency by concurrently executing
multiple input images in pipelining on different accelerators. How-
ever, from the perspective of a single image processing, different
layers still execute in sequential order on different accelerators with
less resource consumption compared with a homogeneous design,
resulting in long latency. Thus the existing heterogeneous designs
cannot meet the latency requirement well despite they have ideal
resource efficiency for the services where demand for low response
time is much tighter than throughput [9]. Moreover, the latest FP-
GAs contain more on-chip resources than previous generations by
integrating multiple dies. But crossing-die paths would have long
delay and then cause frequency degradation [25]. In addition, each
die has its own resource volume. As a result, when designing a het-
erogeneous architecture for a multi-die FPGA, crossing-die timing
critical paths should be limited as much as possible. Placement of
multiple accelerators on multiple dies must be considered in order
to achieve resource utilization balancing.

In this paper we propose a heterogeneous design named tile-
grained pipeline architecture (TGPA) for low latency inference of
CNN models. TGPA benefits from three features in terms of la-
tency reduction. First, TGPA has high efficiency of both arithmetic
units and on-chip memory in terms of layer specific structures
for different accelerators. Second, to save off-chip memory data
transferring, TGPA has on-chip buffers external to accelerators in
order to support pipelining execution of multiple accelerators at
the granularity of tile. Apart from the external buffers, within each
accelerator, internal buffers are tightly coupled with computation
units for data reuse within a tile. Third, TGPA has higher frequency
than homogeneous designs by delicate placement of multiple accel-
erators that constrains timing critical paths within dies. With the
decoupled buffer design, timing critical datapaths between compu-
tation units and data communication with local buffers could be
constrained within a single die. In order to generate a TGPA design
with minimal latency for a given CNN model, we design analytical
models and an algorithm to make the following two decisions. It not



only determines the number of accelerators, the structure for each

accelerator and to which die each accelerator should be assigned.

But also it determines the amounts of on-chip memory portions for

internal buffers and external buffers and interfaces for each acceler-

ator. Finally, we implement an automation flow to perform TGPA
generation from high-level model descriptions to FPGA bitstreams
so that underlying hardware considerations are unnecessary for
end users. In summary, our contributions are three-folds as follows.

e Alow latency CNN accelerator design. We propose a hetero-
geneous accelerator architecture for low latency CNN inference.
It has a higher resource efficiency than previous designs, and is
easier to achieve higher operating frequency.

e An algorithm to partition CNN model graphs and map ac-
celerators on multiple FPGA dies. The algorithm is efficient
to determine the number of accelerators and their assignment
on multiple dies, as well as on-chip memory allocation for each
accelerator.

e Anend-to-end automation flow. We also design a push-button
end-to-end automation flow to generate the accelerator from
high level CNN model descriptions.

Experiment results show that the TGPA is able to achieve up
to 90% of the resource efficiency for different CNN models, and
the end-to-end performance with our generated designs are able to
achieve up to 1.5 Tops with 210 MHz frequency on Amazon EC2 F1
instances.

2 BACKGROUND AND MOTIVATION
2.1 State-of-the-art CNN Accelerator Designs
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Figure 1: State-of-the-art CNN accelerator designs

A typical CNN model consists of a number of consecutive layers
that work in a feedforward process for inference. Modern CNN
models are becoming more and more complex in terms of network
topology and layer shape diversity. The state-of-the-art CNN ac-
celerator designs on FPGA could be divided into two categories.
The first design methodology uses one uniform accelerator archi-
tecture to process all layers of a model in order. We name this
design as homogeneous design which has been used in many prior
works [2, 15, 23, 27, 29]. As shown in Fig. 1(a), the homogeneous
design takes one input image at a time for processing by all layers.
After the inference of the current image is finished, the next image is
fetched for processing, and so on. For a single layer’s inference, due
to the limited FPGA resources compared with the huge volume of
computation and bandwidth requirement of CNN models, a homo-
geneous design firstly divides an input feature map into tiles. Then
it repeatedly loads the tiles one after another from off-chip memory
to on-chip memory, and then processes the tiles in sequence by a
jointly optimized accelerator design for all convolutional layers. All
resources on the FPGA board are used to process each layer. Hence
the homogeneous designs are helpful for latency reduction. As dif-
ferent layers have various dimensions of input/output feature maps,
kernel sizes and feature map height and width, the same tile size

Time

of homogeneous design will lead to dynamic resource inefficiency
for some layers. Even though, currently dynamic reconfiguring
FPGA for different layers’ processing is not considered. Because the
reconfiguration overhead is not negligible compared with the total
inference latency. We make statistics on the DSP efficiency for the
first 50 layers from three latest CNN models. The results are shown
in Fig. 2. We could see obvious resource efficiency diversities from
the three models, resulting in average 44%, 81% and 59% efficiency.
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Figure 2: Arithmetic unit utilization

An effective way to alleviate the dynamic resource inefficiency
problem is to design multiple accelerators, each of which is specifi-
cally optimized for each individual convolution layer, in order to
maximize resource efficiency on a single FPGA board. This design
methodology is referred to as heterogeneous design which is used
in [12, 19, 21]. In a heterogeneous design, the accelerators have
different resource efficiency from each other in terms of the num-
ber and size of process elements, on-chip buffer size, and so on. As
shown in Fig. 1(b), due to the data dependency between consecu-
tive layers, one intuitive way to maximize resource efficiency of
all accelerators is to concurrently execute different input images
in pipelining on different accelerators designed for different layers.
Although the concurrent execution of multiple accelerators could
maximize resource efficiency and improve performance compared
to the homogeneous designs, this improvement mainly contributes
to throughput improvement of multiple input images at the cost
of latency of single input image. Because during the execution of
each layer, the resources are only from one accelerator rather than
the whole FPGA board.

2.2 State-of-the-art FPGA Architecture

The state-of-the-art FPGAs claim to have a peak performance of
over 1 TFlops with thousands of Digital Signal Processing (DSP)
blocks. Limited by the circuitry overhead, the new generations of
FPGAs are manufactured by integrating multiple dies mounted on a
passive silicon interposer, rather than simply increasing transistor
density and chip size [25]. Apart from abundant logic and DSP
resources as well as traditional on-chip memory resources such as
LUTRAM, Block RAM etc., these FPGAs contain a new memory
block named UltraRAM that enables up to hundreds of megabits
total on-chip storage, equating to a 4X increase in on-chip com-
pared with last generation of Xilinx FPGAs. In addition, these latest
FPGAs are usually equipped with multiple DDR banks. The FPGA
vendor synthesis tool chain allows monolithic designs that consume
resources on multiple dies, automatically performing crossing-die
placement and routing [25]. But there still exist signals that routes
are unable to propagate, such as carry chains, DSP cascades, Block
RAM address cascades. Therefore, the number of timing critical
paths that must cross dies should be limited as much as possible in
order to satisfy timing closure.

3 TILE-GRAINED PIPELINE ARCHITECTURE

In this section, we present an accelerator architecture for low la-
tency CNN inference. It has the following two benefits.

Heterogeneity. Our architecture adopts the heterogeneous design.
It has the potential to improve on-chip resource efficiency by layer



specific designing. Moreover, the concurrent execution of the mul-
tiple accelerators comes from pipelining of different tiles within a
single input image rather than that of different input images. Thus
the latency of the single image inference could be reduced.
Frequency. The architecture adopts systolic array to do convo-
lution operations because 2-D topology of systolic array matches
the 2-D structure in the FPGA layout well. On the other hand, to
avoid the internal timing critical datapaths between PEs and data
accesses to internal buffers to be placed across multiple dies, we
constrain each accelerator within a single FPGA die. These two
strategies make the architecture satisfy the timing closure more
easily.

3.1 Architecture Design Overview
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Figure 3: Architecture overview

The architecture overview is shown in Fig. 3. There are multi-
ple convolutional layer accelerators that are designed specifically
for layers executing on each of them. Each accelerator processes
convolutions and other operations attached with each convolution
such as relu, pooling, etc. Accelerators are connected by stream
buffers to enable pipelining execution of consecutive layers in a
given CNN model. Unlike existing heterogeneous designs that take
image as pipeline granularity, our architecture allows the current
layer to begin its computation once enough input data, referred
as a tile, has been buffered. Different accelerators process tiles
from different layers in parallel. We name this execution model as
tile-grained pipelining, and the architecture is named tile-grained
pipeline architecture (TGPA).
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Figure 4: Tile-grained pipelining paradigm

We illustrate how tile-grained pipelining works in Fig. 4 taking a
model snippet from ResNet [7] as an example. As shown in Fig. 4(a),
the snippet contains 9 convolutional layers indexed in topological
order. We suppose TGPA has 3 accelerators, and then 3 consecutive
convolutional layers execute concurrently in tile-grained pipelining.

As shown in Fig. 4(b), each accelerator takes a number of tiles from
its previous accelerator as input, and produces an output tile for
the next accelerator. The tile size each accelerator processes may
be different from each other. For example, in Fig. 4(b), the second
accelerator takes 2 tiles from the first accelerator to form one of
its input tiles, and the third accelerator splits an output tile from
the second accelerator into three tiles for its processing. In general,
we partition a CNN model graph into groups as shown in Fig. 4(a).
Each group contains the same number of consecutive convolutional
layers equal to the number of accelerators. As a result, layers with
indexes 1, 4, 7, - - - are mapped on the first accelerator, and layers 2,
5, 10, - - - are mapped on the second accelerator, and so on. Layers
from different groups execute sequentially and the execution of
a group is called a round as shown in Fig. 4(c). When each round
ends, there is a synchronization to wait until all output data are
accumulated from the last layer in the current group. Then the next
round begins its execution. The pipelining execution of a round
is exemplified in Fig. 4(d) for round 2 of Fig. 4(c). Within a round,
for the least number of tiles in a stream buffer that could enable
the launch of an accelerator, we name the execution time of these
tiles a tile window. The accelerator with the largest tile window
would dominate the latency of this round. In Fig. 4(d), the latency
of round 2 is determined by the window of the third accelerator.
Some of the state-of-the-art CNN networks have complex branches
and data dependency between layers. To handle this scenario, apart
from stream buffers, we also equip the accelerators with activation
buffers to store complete output feature maps for future rounds.
Moreover, considering the limited capacity of on-chip memory, we
choose to spill some of the activation buffers into off-chip memory
once the on-chip memory limitation is exceeded. The activation
buffer interconnects and the off-chip buffer interconnects compose
the I/Os for all the cross-round activation read and write. The multi-
layer controller controls the buffer accesses for each accelerator
according to the data dependency of layers mapped on it. In addi-
tion, we distribute the off-chip memory accesses for weights and
activations onto two DDR banks to improve bandwidth utilization.

3.2 Accelerator Design
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Figure 5: Accelerator design

Fig. 5 shows the accelerator design for processing a single con-
volutional layer and its auxiliary layers. We adopt a systolic array
to perform convolution operations. Systolic array [11] has been
proved to be a suitable architecture for CNN acceleration [2, 9, 23].



The systolic array architecture is a specialized form of parallel com-
puting with a deeply pipelined network of PEs. With the regular
layout and local communication, the systolic array features low
global data transfer and high clock frequency, which is suitable
for large-scale parallel design, especially on FPGAs. In addition,
there are internal on-chip buffers to store weights, input and out-
put feature maps, in order to keep data reuse within a tile. The
postprocessing module is used to perform relu, pooing and zero
padding, etc. The single layer controller determines the input and
output for the computation part according to the control signal
transmitted from the multi-layer controller. It is also responsible
for the bypass control which is used to handle the "false" layer
dependency in a round that happens when two layers are in topo-
logical order but have no data dependency. For example, L4 and
L5 in the second round in Fig. 4 have "false" layer dependency. In
this case, to keep the pipeline work correctly, the input control
multiplex chooses its input from activation buffer or DRAM. The
bypass control multiplex firstly chooses to output the data from
the previous stream buffer directly to the next stream buffer, then
it subsequently outputs results from PE array. If the current layer
needs a residual addition operation, the multiplex will be replaced
by an adder to perform the addition before sending the results to
the next stream buffer.

3.3 Stream Buffer
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The stream buffers are used to connect multiple accelerators to
support tile-grained pipelining. There are three challenges to enable
pipelining at the granularity of tiles: 1) One output tile needs the
padding data from its neighboring tiles to form an input tile until it
could be sent to the next accelerator. 2) Each tile will be reused by
some weights tiles. The space in the buffer for a tile thereby should
not be flushed until the reuse on it finishes. 3) Different accelerators
may require different tile sizes. Therefore, we adopt the line buffer
structure for our stream buffer design. Its design diagram is shown
in Fig. 6. Suppose the current convolutional layer has C input feature
maps with row and column sizes by H X W. It convolves with M
kernels with C channels and the kernel size is K X K. The shifting
stride of the kernels is S. We could see that the line buffer is a circular
buffer consisting of K + S lines. The size of each line is W X C. At the
beginning, the first K rows of input feature maps are loaded to input
buffer line 1 to K from the output of the previous accelerator. After
that, tiles with padding data in the K rows slide through these lines
to be sent to the accelerator and fill the internal buffers. Here the
first challenge is solved. Meanwhile, the next S input feature map
rows are being transferred to the line buffer. Once the reuse for the
tiles and transfer are both done, the next round begins. The second
challenge for the concern of reuse is also solved. If we approach to
the end of the line buffer, we will restart from the first line. Fig. 6
illustrates this process with K = 3 and S = 1, and the input tile size
is (T, — 1) XS+ K) X (T — 1) X S + K) X T, with tiling factors for H,
Wand Care Ty, =1, T,, = 2 and T, = C. To handle with the third
challenge, we must perform tile reorganization to deal with the tile

size mismatching between neighboring accelerators. The address
generator in Fig. 6 generates correct addresses for the received data
and put them in the line buffers according to the multi-layer control
signals.

4 DESIGN OPTIMIZATION

There is a large design space to explore in order to find the TGPA
design with minimal latency. It consists of four aspects which in-
teract with each other. First, it is difficult to determine the number
of accelerators. Although designing a specific accelerator for each
convolutional layer will have the maximal resource efficiency, there
are several factors limiting the number of accelerators, including
on-chip resources, off-chip memory bandwidth and some logics
that keep duplicate as the number of accelerators increases. Second,
how to partition resources among accelerators, including DSPs for
PE array and internal buffers for data reuse within a tile, and de-
termine the shape of each systolic array is also challenging. Third,
determining the memory interface type for each accelerator, and
the on-chip memory size for each external buffer is also not triv-
ial. Finally, we must guarantee the maximization and balancing
of resource efficiency during the partitioning and mapping of the
accelerators onto multiple dies. In this section, we first model the
latency of TGPA. Then we design a heuristic algorithm to find the
architecture with minimal possible latency.

4.1 TGPA Latency Modelling

The TGPA pipeline in Fig. 3 consists of accelerators and stream
buffers, as well as the the on-/off-chip buffer interconnets for inter-
mediate activations accessing and weights accessing. The latency of
the stream buffers will be hidden by that of accelerators during the
execution of each round due to their line buffer structures. Hence
we only model the performance of accelerators in terms of com-
putation and communication. According to the execution model
illustrated in Sec. 3, the latency of a TGPA design for executing a
CNN model is determined by the number of rounds and the latency
for each round. As all the accelerators execute in parallel in a round,
the latency of a round is determined by the accelerator with the
largest latency for processing all tiles within the current round.
We suppose the number of accelerators in the TGPA design is N,
and the number of rounds is R. The expression of the latency £ is
shown in Eq. 1.
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where Lg¢c and T4 are the latency and throughput for an accel-
erator n in round r. NG . is the number of actual operations for
processing a given layer. It is obtained by the upper bounds and
tiling factors of all dimensions. B(d) returns the upper bound for

dimension d. Tgc. is computed in Eq. 2.
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where T oo and 7,59™™ are computation throughput and com-
munication throughput for processing a tile. %iimp equals to the
number of multiply and accumulations the accelerator could do
multiplying the frequency F. P; denotes the parallelism factor in di-
mension d, and [] P4 equals to the number of DSPs. 7;’0’mm is the
communication throughput at array port p. For a given port, a tile



could be loaded from on-chip buffers (stream buffer or activation
buffer), or off-chip buffers as illustrated in Fig. 3.
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In Eq. 3, IF(p) denotes the memory type for port p. If IF(p) = 1,
p loads data from on-chip buffer, and PF is the partition factor for
the buffer. Otherwise, it loads data from off-chip memory. Bgcc is
the bandwidth obtained by the accelerator. In a single round, the
obtained bandwidth by a given accelerator is determined by the
percentage of its off-chip memory accesses in all of the simultaneous
access requests by all accelerators. The equation to compute 85“
is shown in Eq. 4.
Bgcc _ thile X Sfile
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where N* denotes the number of tiles array p will load in a given
tile

X Bbank (4)

round, and Spl. . is the tile size. Both of them could be computed
by polyhedral model by parsing the systolic array dataflow defined
in [23].

4.2 Optimization

We divide the design space into two parts and design an algorithm
involving communication optimization and computation optimiza-
tion individually. As communication and computation interact with
each other, we make the following three heuristic pruning strategies
in order to reduce and separate the design spaces while keeping
the optimal results as much as possible.

1. Do not apply tiling on feature map height H and kernel
size K. Our systolic array implementation has three levels of paral-
lelism, and H has the same size with W for all layers. So we choose
to map W on systolic array and keep the stream buffers be the same
structure for all accelerators. For K, they are usually small, say,
mostly 3 and 1, especially for the latest models.

2. Adopt the parallelism factors as the partition factors for

internal buffers. It could guarantee that performance not be bounded

by internal buffer access.

3. Keep the accelerators be put in the same ascending order
with dies. It helps reduce the crossing-die paths to the greatest
extent because any two accelerators will have only one path through
a stream buffer. That is, given two accelerators with indexes p and
g, supposing the indexes of dies which the two accelerators are
put on are ip and ig, we define that ig > i, if ¢ > p. With the
three pruning strategies, we list the buffer information in Tab. 1
to be referred by our optimization process. Each item in the table
quantifies the buffer type, size and number of each buffer, as well
as the partition factor.

Table 1: On-chip buffer information

Buffer Size Number | Factor
B (Tp, + R-D)X (T /Pw+S-1DXTe [ P P,
INT [ WB [T /Pm [ X Te XRXS P P
OB [T /P [ X Ty X Tay P 1
EXT LSt W+S-1)xC T, +R | PF
Act. HF¥R-DXxW+S-1)xC 1 PF

The algorithm flow is shown in Fig. 7. The input of the algorithm
is a directed acyclic graph (DAG) G(V, E) representing a CNN model.
The vertices set V represents convolutional layers (merged with the
postprocessing layers), and E represents data dependency between
layers. We first set a tentative number of accelerators n and an
external buffer size constraint Qex to explore. Then the algorithm
goes through two steps to obtain a solution in the current iteration.
The first step allocates on-chip memory for external buffers and
determines the memory interfaces for all accelerators. After that,
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Figure 7: Algorithm flow

Algorithm 1: TGPA optimization algorithm

input :A CNN model G(V, E)

output:The minimal latency £
1 fore € E do
2 | e.size < Sizegct(e.v)// e ={v,u}
3 Qext <0

4 PF « seed

5 forn < 1to |V|do

6 while Qcxr < NEOLAl 4o

7 Step 1: External buffer allocation for G(V, E)

8 GG(Vy, Eq) « Partition(G(V, E))

9 Sstr ZveVl Sizestr(v)

10 Qact « Qext = NB ¢ (Sstr, 1+ max{By(r)|l € Ln}, PF)
1 {Sact. IF} — ActBuf Alloc(GG(V1, E1), Qact)
12 fori < 1to mdo

13 ‘ Nmemlil & Nmemlil + W

14 Step 2: Map n accelerators onto m dies

15 Ln « %y Lr,n,m, Ndsp[m]y Nmemlm])

16 if £, < L then

17 | L« Ly

18 Qext « Qext +AQ

19 PF (B, Pw(i) X Pc(i))/n

with the remaining on-chip memories and DSPs, the second step
partitions and maps the accelerators onto different dies. Latency £
and partition factor of external buffers PF will be updated before
the next trial.
L(r,i,j =1, Nasplj = 1], Nmemlj = 10), if d(i, j) = 0
min(x,y){max{L(r, i-1,j,dj—x,bj—y), Lace(r,i)}},
otherwise.

®)

The algorithm details are shown in Alg. 1. Each vertex has an
attribute named size denoting the buffer size it requires to store its
padded output feature maps. Each edge also has the size attribute
denoting the size of data flowing from the start vertex to the end
vertex. At the beginning, the size of each edge is initialized by
that of its start vertex. The partition factor PF is initialized by
a random seed value. The Step 1 allocates on-chip memory for
stream buffers and activation buffers under the constraint of Q¢ x;.
It firstly partitions the input CNN model represented by a graph
G(V, E) into groups according to the number of accelerators n. Each
group contains n layers that are mapped onto the n accelerators
in a round as shown in Fig. 7(b). The groups are formed into a
new graph called group graph GG(Vj, E1) where the vertices are
groups and the edges mean data dependency between groups. In

L(r,i,j,dj, bj) =



line 10, We accumulate the stream buffer sizes across all groups and
compute the required total on-chip memory size for stream buffers
via N;B,,, which is defined in [4] to compute on-chip memory
blocks. Its three platform independent parameters are the number
of buffers, buffer size and partition factor for each buffer. As we
don’t apply tiling on H, so T}, is 1. Bj(r) returns the kernel width
for layer [, and L, contains all layers executing on accelerator
n. After that activation buffers are allocated for GG in procedure
ActBufAlloc. It is a revised version of the classic register allocation
algorithm proposed in [3]. The minimum size of buffer usage S is
also returned. The memory interfaces for all vertices are recorded
in IF. We omit its implementation details and only strength our
revisions. This procedure consists of 3 steps as known as Build,
Color and Spill as shown in Fig. 7(b). We firstly Build a buffer
interference graph BIG via dataflow analysis and live range analysis
on GG. The Color phase assigns each vertex a color that is different
from all its neighbors. Each color has a weight value denoting the
on-chip buffer size. It must be large enough to accommodate the
largest required buffer size of the vertices with the same color.
Once a color is selected for a vertex, its weight will be updated if its
current value is smaller than the size of the vertex. Each time we
finish coloring a vertex, we will examine if the total size of current
colors exceeds Qgct. If Qqer has been exceeded, we go to Spill and
select a vertex from the spilling list with the maximal cost to spill
it into off-chip memory.

In Step 2, we find a minimum £ in Eq. 1 given the number of
accelerators and dies, as well as resource constraints on each die.
As L is the summation of latencies of all the rounds and each round
executes on the same set of accelerators, therefore the minimal
latency for each round could guarantee the minimum of £. Un-
der the third pruning strategy, we use a dynamic programming
algorithm to compute the minimal latency of a given round. The
suboptimal structure £(r, i, j, dj, bj) means the minimum latency
of round r when assigning i accelerators on j dies with remaining
available DSP, BRAM resources on the j die being dj and bj. The
ith accelerator could only be put on the, (1) jt" die or, (2) some
die before the j'" die. According to the pruning strategy, in the
second case, there will be no accelerators being put on the j"* die.
Hence we only consider the resource limitations on the j’ h die in
the suboptimal structure instead of those on all j dies. The state
transition function is shown in Equation 5, where b(i, j) is a binary
variable. b(i, j) = 1 indicates that we put the i’ h accelerator on the
jth die; otherwise, we don’t put the ith accelerator on the jth die.
The algorithm process is illustrated in Fig. 7(c). When b(i, j) = 0,
for a given round, the solution is equal to that when the number
of dies is (j — 1). When b(i, j) = 1, we enumerate a resource con-
straint pair (x’, y”) for DSP and on-chip memory and leverage the
design space exploration designed in [23] to find a design with
the highest performance under (x’,y’) for the i*" systolic array
with actual resource consumption (x, y). In this case, the latency is
determined by the maximum of latency of the i‘" systolic array and
that of when we put (i — 1) systolic arrays on j dies supposing the
remaining DSP and on-chip memory resources on the j*” die are dj
and bj. Thus L(r, i, j, dj, bj) is the minimum among all the (x’,y")
pairs. At the end of each iteration, Q¢ will be updated by adding
AQ which is taken from each die one at a time in a round-robin
way. PF is updated by the average partition factor of internal input
buffers across all systolic arrays as well. The time complexity of the
Step 1is O(|V|?). We regard the time for obtaining Lcc by DSE
as a constant C, because it traverses the upper bounds of convolu-
tions which are constant. Thus the time complexity of the Step 2 is

O(% *nxmi Nygp s Niokal) = O(|V | m Nysp * Ntotaly gq the

total
time complexity of Alg. 1is O(|V|?x N’A"é'" (m*Ngsp *NEOLAL L |V))).

5 EVALUATION
5.1 Methodology
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Figure 8: Automation flow

We implement an automation flow to generate an executable
system on FPGAs from a high-level CNN specification. The main
components of the flow is shown in Fig. 8. We leverage the Py-
Torch [18] framework to parse the high-level CNN descriptions
into computation graphs that are stored as dataflow graphs. The
nodes of a dataflow graph are layers and edges are data dependen-
cies between layers. With the dataflow graph as input, the TGPA
optimizer determines the number of systolic arrays and assignment
of them on multiple dies, as well as on-chip memory allocation for
each systolic array by Alg. 1. Structure of each systolic array is
obtained from our design space exploration process. The output
of the TGPA optimizer is the TGPA pipeline without multi-/single-
layer control logics. After that, the structures of all accelerators
are parameterized to instantiate template files, including Vivado
HLS systolic array implementations, ReLU, pooling and stream
buffers (kernel). The control logics are also inserted directed by
the dataflow graph. Finally, the instantiated kernel is synthesized
by the Xilinx SDAccel SDK for the physical implementation under
multi-die assignment constraints. The systolic array assignment
information is used to define the constraint file.

We use four latest CNN models as our benchmark suite. It in-
cludes AlexNet (AN), VGG-19 (VN), ResNet-152 (RN) and GoogleNet
(GN). We evaluate the designs generated by our automation flow
and algorithm on AWS F1 EC2 instances. There are two kinds of
instances on F1 equipped with FPGAs. Currently we use the in-
stance size including one Xilinx VU9P FPGA. The FPGA has 3 dies
containing 2585 K logic elements and 6800 DSPs. Moreover, it has
about 40 megabytes on-chip memory resources including 75.9 Mb
Block RAMs and 270 Mb UltraRAMs. The underlying TGPA designs
are implemented by Vivado HLS and synthesized by Xilinx SDAccel
2017.1 flow. We use various precisions, 8- and 16-bit fixed point, and
32-bit floating point data types to evaluate how different precisions
affect resource utilization. Our evaluation methodology consists of
three parts. We firstly verify the effectiveness of the TGPA designs
by comparing them with baseline designs. The baseline designs
are homogeneous designs as shown in Fig. 1(a) using the systolic
array implementations as shown in Fig. 5 without input/output
and bypass controls. Then we analyze the scalability of the TGPA
designs as the number of dies increases. In the effectiveness and
scalability experiments, the batch size we use is 1 and the fully
connected layers are not included during the execution. We finally
compare the TGPA designs for end-to-end evaluation with the state-
of-the-art CNN designs. In this evaluation, we use a small batch
size 4 to avoid underutilization of PE array when executing fully
connected layers.

5.2 Performance Improvement over Baseline

Fig. 9(a) shows the performance improvement of TGPA designs over
the baseline designs. We can see that on average, the performance
improvements of TGPA architecture are 56%, 48% and 32% for 8-bit,
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Figure 9: Performance improvement

Table 2: Detailed design information

Baseline TGPA
Model| Precision . Mem] Freq. R . Mem. Freq.
Arith (NT). (MH4 Acc#| Mapping| Arith INT [ EXT | (MHy
8-bit 40% 14% 160 5 (1,1,3) 80% 9% 6% 200
AN 16-bit 40% 20% 160 5 (1,1,3) 80% 16% 10% 200
32-bit 56% | 18% | 160 5 (1,1,3) 84% | 24% 22% 200
8-bit 77% 13% 160 4 (1,1,2) 89% 10% 6% 210
VN 16-bit 77% 19% 160 4 (1,1,2) 89% 16% 12% 210
32-bit 84% | 19% | 160 4 (1,1,2) 92% | 22% 20% 210
8-bit 68% 8% 140 10 (3,34 84% 6% 14% 200
RN 16-bit 68% | 14% | 140 10 (33,4 84% | 14% 30% 200
32-bit 80% | 18% | 140 6 (2,2,2) 88% | 19% 40% 200
8-bit 56% | 8% 140 11 (3,4,4) 84% | 6% 19% 200
GN 16-bit 56% | 14% | 140 11 (3,44) 84% | 15% 30% 200
32-bit 70% | 18% | 140 8 (2,3.3) 88% | 20% 48% 200

16-bit and 32-bit precisions respectively. The improvements are
mainly from three aspects. First, arithmetic utilization is improved
by heterogeneity of TGPA. Second, the external buffers of TGPA
reduce off-chip memory data transferring for activations. Third, fre-
quency improvement is obtained by placement of accelerators onto
multiple dies. The performance improvement breakdown for them
is shown in Fig. 9(b). The design details including the number of
accelerators and their mapping results on multiple dies, arithmetic
utilization and buffer allocation results are all shown in Tab. 2. For
the baseline designs, the number of accelerators is 1 and we only
allocate internal buffers for them. For the mapping results of TGPA
designs, we list the number of accelerators that are mapped on each
of the 3 dies.

We can see that AlexNet benefits most from arithmetic utilization
improvement (about 40% improvement). That is because the num-
ber of input feature maps of its first layer is only 3 while for other
layers, it is at least 96. This differentiation is exaggerated by the fact
that AlexNet has only 5 convolutional layers. The specific design
for its first layer effectively mitigates this differentiation. VGG-19
has a relatively regular network structure for different layers, so
we only have 12% of performance improvement from four systolic
arrays. Both AlexNet and VGG-19 barely have improvement from
buffer allocation because all five layers are no longer bounded by
off-chip memory bandwidth with less than 80% of Block RAMs for
internal buffers. Although ResNet-152 has residual building block
structure, its layer shapes are regular except for kernel sizes of
which about two-thirds are 1x1 kernels. The regular layer shapes
cause limited performance improvement (8%) from heterogeneous
design. However, at least the layers with 1x1 kernel sizes are mem-
ory bound for input feature maps because data reuse for these layers
are limited compared with those with 3x3 or 7x7 kernel sizes. As a
result, ResNet-152 benefits most from buffer allocation. GoogleNet

could both benefit from heterogeneous design and buffer allocation.
For one thing, the concatenation operations in these two models
increase irregularity. For the other, there is also a large proportion
of 1x1 kernels in them.

5.3 Scalability
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Figure 10: Scalability of TGPA

In addition to higher DSP efficiency and better crossing-die place-
ment adaptability, the TGPA architecture also has better scalability
than the homogeneous systolic array design on a multi-die FPGA.
We evaluate three CNN models, AlexNet, VGG-19 and ResNet-152,
as case studies for the scalability analysis. We still use the systolic
array design as our baseline homogeneous design. Then three opti-
mal designs are generated under the resource limitations in terms
of one, two and three dies respectively. Compared to the one die
designs, we get 1.46X and 1.39X performance improvement for the
two dies and three dies designs on average as shown in Fig. 10. We
also generate three TGPA designs of which the accelerators are
mapped on one, two and three dies. For the TGPA designs that are
mapped on two and three dies, we get average 2.01X and 2.24X
performance improvement over the design that executes on one
die. The TGPA designs have better scalability as the number of
dies increases. On one hand, more dies provide more resources and
flexibility. On the other hand, the crossing-die timing issue makes
the homogeneous design not scalable.

5.4 Comparison with State-of-the-art Designs

Finally we compare our end-to-end results with state-of-the-art de-
signs. In this experiment we still use AlexNet, VGG and ResNet-152
for comparison (GoogleNet’s on-board results are still not available
in any published papers we could find). We use designs with the
best results on different FPGA platforms we could find for this com-
parison. We use three metrics for performance comparison. Latency
is the time for processing a small batch size (4). It is used to validate
the effectiveness of our designs. Throughput is for performance
comparison’s purpose. It (Gops) is not used to measure the rate
for processing multiple images. We also compare the performance
density which reflects arithmetic utilization. It is defined as the
number of arithmetic operations that one DSP slice executes in one
cycle. The comparison results are shown in Table 3. For AlexNet and
ResNet-152, the latency results are better than all other works. For
VGG, our latency is longer than [29] due to 45% frequency gap. That
is because the authors in [29] tune the frequency of their design at
RTL level while TGPA is totally implemented by HLS. In addition,
our designs have better performance densities than others except
the results in [2, 6, 16] which exceed 2. The work in [2] adopts
Winograd transformation for arithmetic optimization, which has
been widely used on different acceleration platforms [8, 13, 14].
The works in [6, 16] also resort to logic resources to implement
part of multiplications for the fixed point design. We implement all
of our multiply and accumulation operations by DSPs. Finally, the
throughputs of our designs outperform most of the state-of-the-art
results. First of all, our designs have higher DSP consumption to
support more parallelism. Second, the frequencies are competitive

- @~ AlexNet-Baseline -4~ ResNet-152-Baseline



Table 3: Comparison to state-of-the-art designs

Design [2] [ [23] [ TGPA [26] [ [29] [ TGPA [6] [16] TGPA
CNN Model AlexNet VGG ResNet-152

Arrial0 Arrial0 Xilinx Xilinx Arrial0 Xilinx Stratix-V Arrial0 Xilinx
FPGA GX 1150 GT 1150 VU9P KU060 GX 1150 VU9P GSMD5 | GX 1150 VU9P
Frequency (MHz) 303 240 200 200 385 210 150 150 200
Precision ﬂoa_t ﬂoa_t ﬁxe(_:l ﬁxe;l ﬁxeFl ﬁxe(_i ﬁxe(_i ﬁxet_i ﬁxe(_i

16 bit 32 bit 16 bit 16 bit 16 bit 16 bit 16 bit 16 bit 16 bit
Logic Utilization 246K (58%) | 350K (82%) | 463K (40%) | 100K (31%) N/A 193K (42%) | 42K (25%) | 141K (33%) | 506K (43%)
DSP Utilization 1518 (100%) | 1320 (87%) | 4480 (66%) | 1058 (38%) | 2756 (O1%) | 4096 (60%) | 1036 (65%) | 1046 (69%) | 4096 (60%)
BRAM Utilization 2487 (92%) | 2360 (86%) | 3364 (78%) | 782 (36%) | 1668 (61%) | 3380 (78%) | 919 (46%) | 2536 (93%) | 2960 (63%)
URAM Utilization N/A N/A 117 (13%) N/A N/A 140 (15.6%) N/A N/A 351 (39%)
Throughput (Gops) 1382 360 1432 266 1790 1510 364 315 1463
Latency/Image (ms) 0.98 4.05 1.03 101.15 17.18 22.35 62.14 71.71 17.34
%};ﬁ;’ggg;ﬁ;ﬁ?ﬁgy 3.09 117 1.60 1.26 1.68 1.84 2.35 2.01 178

because we use systolic array and there are few crossing-die timing
critical paths. Third, usage of UltraRAM greatly reduces off-chip
memory footprints.

6 RELATED WORKS
Design and synthesis of hardware accelerators on FPGA for CNNs
has been one of the most active research topics in computer architec-
ture and design automation. The prior works can be broadly divided
into two categories: homogeneous and heterogeneous designs.
Homogeneous Designs. The works of [15, 27] adopt a parallel
PE array with centralized local buffer design to exploit optimal
parallelism factors. The design in [29] uses a distributed local buffer
design to reduce the complexity of computation to communication
interconnects. The works of [2, 17, 23] map convolutional and fully
connected layers onto systolic arrays to improve frequency through
global data transfer elimination and low fan-in/fan-out. All of the
designs above are homogeneous designs that have benefit on la-
tency reduction of a single input image. But they have low resource
efficiency due to irregularity of CNN models. In addition, deploying
a homogeneous design on a multi-die FPGA will encounter timing
issues due to the long delay of too many crossing-dies paths.
Heterogeneous Designs. Heterogeneous design has been adopted
in several previous works to improve the resource efficiency for the
entire model. The authors in [12, 19] place multiple convolutional
layer accelerators on a single FPGA in order to maximize the overall
resource utilization by optimizing each accelerator for one or some
specific layers that are executed on this accelerator. All of them aim
to improve throughput of multiple input images rather than reduce
latency of one image execution. The kernel fusion technique [1, 24]
adopts pipelining strategy between multiple layers to save off-chip
memory accesses. There are no discussions in those works on how
to solve the resource inefficiency issue. The work in [28] exploits
the layer irregularity on a FPGA cluster containing multiple FPGAs.
The authors in [22] also adopt layer specific accelerator to improve
arithmetic efficiency via reconfiguration.

As far as we know, our work is the first to reduce CNN inference
latency leveraging the high resource efficiency of heterogeneous
design.

7 CONCLUSIONS

In this work, we propose a new CNN accelerator architecture named
tile-grained pipeline architecture (TGPA) for low latency inference.
TGPA uses the heterogeneous design methodology to resolve the
resource inefficiency existing in the homogeneous designs, which
helps to reduce latency when a single input image executes in tile-
grained pipelining on the multiple accelerators. By adopting systolic
array for single accelerator design and placing accelerators onto dif-
ferent FPGA dies to avoid crossing-dies timing critical paths, TGPA
achieves higher frequency than homogeneous designs. Experiment
results show that the TGPA designs generated by our algorithm
achieve up to 40% performance improvement than homogeneous
designs and 3X latency reduction than previous designs.

8 ACKNOWLEDGEMENTS
This work is supported by Beijing Natural Science Foundation (No.

L172004). We thank all the anonymous reviewers for their feedback.
REFERENCES

[1] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer CNN acceler-
ators. In MICRO.

[2] U. Aydonat, S. O’Connell, D. Capalija, A. Ling, and G. Chiu. 2017. An OpenCL
Deep Learning Accelerator on Arria 10. In FPGA.

[3] G. Chaitin. 2004. Register Allocation and Spilling via Graph Coloring. SIGPLAN
Not. (2004).

[4] J. Cong, P. Wei, C. H. Yu, and P. Zhou. 2017. Bandwidth Optimization Through

On-Chip Memory Restructuring for HLS. In DAC.

H. Gao, Z. Liu, K. Q. Weinberger, and L. van der Maaten. 2017. Deep Residual

Learning for Image Recognition. In CVPR.

Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J. Cong.

2017. FP-DNN: An Automated Framework for Mapping Deep Neural Networks

onto FPGAs with RTL-HLS Hybrid Templates. In FCCM.

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image

Recognition. In CVPR.

Intel. 2016. "Not so fast, FFT": Winograd. https://ai.intel.com/winograd/. (2016).

N. P. Jouppi, C. Young, N. Patil, and et al. 2017. In-Datacenter Performance Anal-

ysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International

Symposium on Computer Architecture.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification with

Deep Convolutional Neural Networks. In NIPS.

H. T. Kung and C. E. Leiserson. 1979. Algorithms for VLSI Processor Arrays.

H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang. 2016. A High Performance

FPGA-based Accelerator for Large-scale Convolutional Neural Networks. In FPL.

Ligiang Lu and Yun Liang. 2018. SpWA: An Efficient Sparse Winograd Convolu-

tional Neural Networks Accelerator on FPGAs. In DAC.

L. Lu, Y. Liang, Q. Xiao, and S. Yan. 2017. Evaluating Fast Algorithms for Convo-

lutional Neural Networks on FPGAs. In FCCM.

Y. Ma, Y. Cao, S. Vrudhula, and J. Seo. 2017. Optimizing Loop Operation and

Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks. In

FPGA.

Y. Ma, M. Kim, Y. Cao, S. Vrudhula, and J. s. Seo. 2017. End-to-end scalable FPGA

accelerator for deep residual networks. In ISCAS.

K. Ovtcharov, O. Ruwase, J. Kim, J. Fowers, K. Strauss, and E. Chung. 2015.

Toward Accelerating Deep Learning at Scale Using Specialized Hardware in the

Datacenter. In Hot Chips.

PyTorch. 2018. https://pytorch.org. (2018).

Y. Shen, M. Ferdman, and P. Milder. 2017. Maximizing CNN Accelerator Efficiency

Through Resource Partitioning. In ISCA.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich. 2014. Going Deeper with Convolutions. In CVPR.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K.

Vissers. 2017. FINN: A Framework for Fast, Scalable Binarized Neural Network

Inference. In FPGA.

S. I Venieris and C. S. Bouganis. 2016. fpgaConvNet: A Framework for Mapping

Convolutional Neural Networks on FPGAs. In FCCM.

X. Wei, Cody H. Yu, P. Zhang, Y Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong.

2017. Automated Systolic Array Architecture Synthesis for High Throughput

CNN Inference on FPGAs. In DAC.

Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. Tai. 2017. Exploring Heterogeneous

Algorithms for Accelerating Deep Convolutional Neural Networks on FPGAs. In

DAC.

Xilinx. 2018. Large FPGA Methodology Guide. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx13_4/ug872_largefpga.pdf. (2018).

C.Zhang, Z.Fang, P. Zhou, P. Pan, and J. Cong. 2016. Caffeine: Towards Uniformed

Representation and Acceleration for Deep Convolutional Neural Networks. In

ICCAD.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. 2015. Optimizing FPGA-

based Accelerator Design for Deep Convolutional Neural Networks. In FPGA.

C. Zhang, D. W, J. Sun, G. Sun, G. Luo, and J. Cong. 2016. Energy-Efficient CNN

Implementation on a Deeply Pipelined FPGA Cluster. In ISLPED.

J. Zhang and J. Li. 2017. Improving the Performance of OpenCL-based FPGA

Accelerator for Convolutional Neural Network. In FPGA.

[25

[26]

[27]

[28

[29]



