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Abstract—Recent studies have found that the position of mice
or rats can be decoded from calcium imaging of brain activity
offline. However, given the complex analysis pipeline, real-time
position decoding remains a challenging task, especially consid-
ering strict requirements on hardware usage and energy cost
for closed-loop feedback applications. In this paper, we propose
two neural network based methods and corresponding hardware
designs for real-time position decoding from calcium images. Our
methods are based on: 1) convolutional neural network (CNN),
2) spiking neural network (SNN) converted from the CNN.
We implemented quantized CNN and SNN models on FPGA.
Evaluation results show that the CNN and the SNN methods
achieve 56.3%/83.1% and 56.0%/82.8% Hit-1/Hit-3 accuracy for
the position decoding across different rats, respectively. We also
observed an accuracy-latency tradeoff of the SNN method in
decoding positions under various time steps. Finally, we present
our SNN implementation on the neuromorphic chip Loihi.

Index Terms—calcium image, decoding, neural network

I. INTRODUCTION

The miniaturized calcium imaging microscope (e.g. Minis-
cope) is an emerging device that can be implanted at certain
brain region of a mouse or rat for monitoring a large popula-
tion of cell activity while the animal is performing various be-
havioral tasks [1], [2]. Most existing calcium image processing
pipelines focus on real-time trace extraction [3]–[6], whereas
the real-time calcium image decoding remains a challenge,
especially considering the strict hardware usage and energy
cost requirements for closed-loop feedback applications.

The calcium image decoding has gained popularity in re-
cent literatures. [7] employed Laplacian Eigenmaps to decode
behavior states from a reduced dimensional space of neural
activity. [8] used the ResNet18 model to detect the forelimb
reaching activity of a mouse from mean calcium images. [9]
proposed supervised and unsupervised methods for decoding
mouse’s position from the surrogate of spikes. [10] aimed
at accomplishing real-time mouse movement detection with
a support vector machine based decoder running on the CPU.

In this work, we target at real-time position decoding from
calcium images recorded from rat running on a linear track, as
Fig. 1 shows. We first propose the decoding methods based on
a convolutional neural network (CNN) and a converted spik-
ing neural network (SNN), respectively. Then we implement
accelerator kernels for these methods on an FPGA device and
benchmark the accuracy, hardware cost, and latency of these
implementations. Finally, we further deploy the SNN based
decoder on the neuromorphic chip Loihi [11] and report its
performance on the latency and energy efficiency.
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Fig. 1. Real-time position decoding of a rat’s position on a linear track from
the calcium imaging.

II. BACKGROUND

A. Real-Time Calcium Image Processing

Conventional calcium image processing aims at extracting
cell activity from the calcium image recording and usually
consists of following consecutive steps [3]: The motion cor-
rection, the image enhancement and the trace extraction, as
Fig. 2 illustrates. The motion correction eliminates the motion
artifacts caused by the movement of the brain tissue during the
recording. The image enhancement estimates the background
fluorescence and gets rid of it to improve the signal-to-noise
ratio. The trace extraction obtains fluorescence traces reflecting
the cell firing activities.

We can conduct calcium image decoding in two ways: 1)
First pre-process raw calcium images to extract fluorescence
traces reflecting cell activities [6], and then apply a decoder to
infer the position from the traces. 2) Bypass the pre-processing
and decode positions from the raw calcium images directly.
Compared to 2), the first approach greatly reduces the input
dimension of the decoder and saves the computation time and
hardware cost for both training and inference. In this paper,
we aim at realizing real-time calcium image decoding based
on 1). Fig. 2 shows our proposed calcium image processing
pipeline. The data acquisition board (DAQ) [12] receives
calcium images from the Miniscope and sends them to the pre-
processing pipeline implemented on the FPGA. The decoder
takes the extracted traces from the pre-processing and makes
inference for the decoded position. We implement the decoder
on both the FPGA and the Loihi.
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Fig. 2. Calcium image processing flow for the real-time position decoding.

B. Position Decoding Task

Fig. 1 illustrates the position-decoding task. During the
experiments, the rat ran back and forth on a linear track,
whereas an implanted Miniscope device [2] captured calcium
images with 512× 512 spatial resolution and 22.8 fps rate. A
separate behavioral camera kept track of the rat’s position on
the linear track. We divided the track’s positions into 24 evenly
distributed bins by length. From left to right and right to left,
we labelled the rat’s positions with labels 1 to 12 and 13 to
24, respectively. We recorded data from 8 different rats from
R1 to R8. For each rat, we collected 8000 frames of calcium
images with aligned position labels. We then separated the
collected calcium image data and position labels into training
and test sets for the position decoding task.

III. PROPOSED METHOD

A. Accuracy Evaluation Metrics

We aim at a frame-based position decoding from in vivo
calcium images. Fig. 3(a) presents a plot showing ground-
truth and decoded positions of a rat running in an experiment,
with positions labeled into 24 bins. The blue and red dots
represent the ground-truth and decoded positions, respectively.
We come up with a Hit-N metric to evaluate the decoding
accuracy, which reflects the percentage of correct decoding
among all trials. N represents the number of bins that we
count as correct decoded positions around the ground-truth
position. For example, if the ground-truth position label is 6,
then we count all decoded position labels falling into the ±1
neighborhood of 6, i.e., 5, 6, and 7, as correct under the Hit-3
metric. Fig. 3(b) visualizes the Hit-1 to Hit-9 metrics in a pie
chart. Fig. 3(c) gives an example of accuracy evaluation on
the decoding in Fig. 3(a) under different metrics.

B. CNN-Based Method

We first propose a CNN-based position decoding method.
We explored two CNN models: the ResNet20, and a simple
CNN model. The ResNet20 takes 32×32 image as input.
Each image consists of 8×8 non-overlapping tiles, and each
tile contains 4×4 pixels. We assigned a same trace value
corresponding to a specific cell to all 16 pixels within a tile.
In contrast, the simple CNN takes an N×N image (N=8 for
comparison here) as input, and each pixel represents the trace
value computed from a single cell. The simple CNN model
is made up of one convolution (CONV) layer and one fully
connected (FC) layer. The CONV layer contains 6 convolution
kernels in 3×3 size, and the FC layer has all-to-all connection
between (N-2)×(N-2) hidden nodes and 24 output nodes. We
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Fig. 3. (a) The ground-truth and decoded position labels throughout a
recording session. (b) Proposed accuracy evaluation metrics for the position
decoding task. (c) Accuracy evaluation on the decoding results shown in (a).

TABLE I
COMPARISON BETWEEN THE RESNET20 AND THE SIMPLE CNN MODELS

Model # Layers # Weights Size Hit-3
ResNet20 19 CONV + 1 FC 269,722 1.03 MB 56.0%
Simple CNN 1 CONV + 1 FC 5,250 5.13 KB 56.2%

trained these two CNN models and evaluated their accuracy
using the same decoding data set collected from a rat. Table
I shows comparison results on the network structure, memory
footprint and decoding accuracy between these two models.

The simple CNN model achieves similar decoding accuracy
as the ResNet20, whereas it reduces the model size and
the parameter number significantly. This can be explained
by a lack of hierarchical features in the calcium image, in
which place cells fire as the rat passes specific locations
on the linear track [9]. Considering the strict requirements
on hardware cost and latency for closed-loop applications,
we chose the simple CNN model for the position decoding.
Further evaluation shows that 8-bit quantization does not cause
significant accuracy loss for the simple CNN model.

C. SNN-Based Method

The second method we propose for the position decoding
relies on a rate-based SNN model. We converted the SNN from
a well-trained simple CNN model introduced in Section III-B
using the SNN Toolbox [13]. Fig. 4 shows the architecture of
the converted SNN model. We only converted the FC layer
of the CNN. We first applied rate-based encoding at the input
of the FC layer by converting hidden node values into spike
sequences over a certain number of time steps based on the
integrate-and-fire (IAF) model [14]. Then we fed the spike
sequences to the output nodes in a fully connected fashion.
The output nodes operated as the IAF neurons as well. We
describe the converted SNN model [15] as follows:
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Fig. 4. Converted rate-based SNN model for the position decoding from
calcium images.

We normalize each element of SNN input between 0 and 1,
as conductance pi. Suppose the membrane voltage is Vt, the
SNN input current z0i at time step t is computed as:

z0i (t) = Vt × pi, i ∈ [1, N0] (1)

For the layer L containing NL nodes, weights and biases
are wL

ij and bLi . The output spike from layer L−1 at the time
step t is sL−1

j (t). The current is then given by:

zLi (t) = Vt

NL−1∑
j=1

wL
ijs

L−1
j (t) + bLi

 , i ∈ [1, NL] (2)

At each time step, each SNN neuron integrates its in-
put spikes into current (and charge), which is added to its
membrane potential V L

i (t). When the V L
i (t) reaches Vt, the

neuron fires a spike. Subsequently, the neuron’s membrane
potential gets reset by subtracting Vt from itself. This allows
the excess charge to be preserved for further spike generation,
and improves the firing rate approximation of the SNN. The
equations describing the membrane potential dynamics are:

V L
i (t) = V L

i (t− 1) + zLi (t)− sL−1
i (t)Vt

sLi (t) =

{
1, V L

i (t) ≥ Vt

0, V L
i (t) < Vt

, i ∈ [1, NL]
(3)

D. Accuracy Evaluation

We evaluated the decoding accuracy of a baseline floating-
point CNN and a converted 8-bit SNN across datasets from
8 different rats on linear tracks (different from the dataset in
Fig. 3). Table II summarizes the cell number and the input
dimensions of the CNN and the SNN for these rats. Fig. 5
shows the Hit-1 and Hit-3 accuracy evaluation across test sets.
The CNN/SNN achieves 56.3%/56.0% and 83.1%/82.8% Hit-
1 and Hit-3 accuracy on average, respectively.

TABLE II
THE NUMBER OF DETECTED CELLS AND THE INPUT SIZE FOR THE CNN

AND SNN MODELS AMONG RATS.

Rat R1 R2 R3 R4
# Cells 153 194 296 309
Input Size 12×12 13×13 16×16 17×17
Rat R5 R6 R7 R8
# Cells 317 322 643 760
Input Size 17×17 17×17 25×25 27×27
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Fig. 5. Hit-1 and Hit-3 accuracy by CNN and SNN models across test sets.

We observed that reducing the SNN inference time steps
shortens the latency but slightly degrades the decoding accu-
racy. Fig. 6 shows the averaged latency and accuracy achieved
by the CNN and SNN decoders across the datasets. The latency
increases linearly with the time steps, whereas the decoding
accuracy gradually approaches that of the CNN decoder as the
employed time step increases. This latency/accuracy tradeoff
of the SNN model makes it flexible in adapting itself to
applications with various inference speed requirements.

IV. IMPLEMENTATION

A. FPGA Accelerator Design

We designed accelerators for the CNN and SNN models
using the Vitis HLS, targeting the low-power Ultra96 FPGA
under 300 MHz clock frequency. We implemented the matrix
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vector multiplication in the CNN/SNN model with a multi-
layer nested loop in the HLS design, and we applied the loop
reordering and the loop pipelining to reduce the latency cycle
count while keeping the hardware cost as low as possible. Our
implementation achieves the initiation interval (II) [6] of 1 for
all nested loops in the CNN and the SNN accelerator designs.

We quantized the weights of the CNN and SNN models
into 8-bit fixed-point representation, and we verified that this
quantization does not cause accuracy loss compared to the
floating-point CNN design. We implemented the quantized
CNN and SNN models with 8-bit multiplications and additions
instead of expensive floating-point operations to save the
hardware usage.

One limitation of a converted SNN is that the neuron’s firing
rates have to be kept proportional to the original activations
in the CNN model in order to maintain the accuracy. This
requires the input current of a neuron to be normalized
between 0 and Vt. However, the normalization is compu-
tationally expensive because it involves division and must
operate for each neuron at every time step. We applied a data-
based normalization method [14], which takes average of the
maximum current of each layer over the total analyzed time
steps T , and makes use of it to rescale the weights and biases
offline. It reduces the computation cost by keeping the Vt to
be 1 and avoiding the normalization computation step during
the online SNN inference.

For the layer L with input current zLi (t), weights and biases
are normalized as follows:

w̄L
ij = wL

ij/β
L , b̄Li = bLi /β

L

βL =

(
T∑

t=1

max
(
zLi (t)

∣∣ i ∈ [1, NL]
))

/T
(4)

B. Deployment on Neuromorphic Hardware

To further improve the energy efficiency and latency of our
proposed SNN model, we implemented it on Intel’s Loihi [11],
which is a customized programmable neuromorphic processor
optimized for asynchronous SNN computation. We used the
SNN Toolbox [13], which converted our SNN model to a
Loihi-compatible form using the NxTF compiler [16]. The
NxTF performs partitioning of the model across neurocores
followed by a mapping of the model to the Loihi.

V. RESULTS

A. Resource Utilization

We summarize the comparison of the resource utilization for
the CNN and SNN based decoders in Table III. We report the
resource utilization of the decoders for R1 and R8 rats, as these
two rats have the minimum and maximum numbers of cells
detected from their calcium image recordings, and correspond
to the minimum and maximum hardware utilization on the
decoder designs, respectively. Compared to its CNN based
decoder, the SNN decoder saves on average 37.6%, 38.7%,
and 80.0% LUT, FF and DSP resources.

TABLE III
RESOURCE UTILIZATION OF IMPLEMENTED DECODERS ON THE ULTRA96

Models CNN SNN Reduction Rate
Rats R1 R8 R1 R8 R1 R8 Average
LUT 2787 2526 1615 1612 42.1% 36.2% 37.6%
FF 2463 2492 1443 1555 41.4% 37.6% 38.7%
DSP 7 16 0 6 100% 62.5% 80.0%
BRAM 8 54 10 53 - 1.9% -

TABLE IV
LATENCY AND ACCURACY COMPARISON AMONG DECODER

IMPLEMENTATIONS

Models CNN SNN SNN
Time Steps 1 4 32
Rats R1 R8 R1 R8 R1 R8
Latency (ms) 0.112 0.799 0.270 1.727 1.736 10.830
Hit-1 (%) 44.3 54.6 38.2 43.6 44.8 54.1
Hit-3 (%) 70.6 79.4 66.3 70.6 69.0 79.3

B. Latency and Accuracy

Table IV summarizes the comparison results on the latency
and the Hit-1 and Hit-3 accuracy achieved by the CNN and
SNN decoders implemented on the FPGA. The SNN decoder
can operate with different time steps. Under 32 time steps, the
SNN decoder achieves similar accuracy as the CNN decoder,
though it suffers a longer latency. In this case, the main benefit
of the SNN decoder is the less hardware usage. Under 4 time
steps, the SNN decoder largely reduces the latency, but it
experiences slight accuracy degradation on the decoding. For
applications that have strict requirements on hardware usage
and latency but can tolerate small accuracy loss, the SNN
decoder operating with short time steps is a more appropriate.

C. Performance and Energy Efficiency on Loihi

For the position decoding on the R1 and the R8 rats, the
SNN models consumed 4 (3.1%) and 15 (11.7%) neurocores
on the Loihi and took 3.02 ms and 6.94 ms for each inference,
with 94.8 µJ/inf and 258 µJ/inf energy efficiency, respectively.
Compared to the FPGA based SNN accelerator, the SNN
implemented on the Loihi has 1.56x speedup on the position
decoding for the R8 rat, with the same decoding accuracy.

VI. CONCLUSION

In this paper, we proposed the methods of combining the
CNN and the SNN inference with the calcium image pre-
processing pipeline for realizing the real-time position decod-
ing. The SNN decoder consumes less hardware cost while
maintaining similar accuracy compared to its CNN counter-
part, and it offers a unique accuracy-latency tradeoff feature.
Given its capability to be mapped onto the neuromorphic
hardware, the SNN decoder remains promising in achieving
real-time calcium image based position decoding with high
energy efficiency for future closed-loop feedback applications.
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