
Analyzing and Modeling In-Storage Computing Workloads On
EISC — An FPGA-Based System-Level Emulation Platform

Zhenyuan Ruan∗ Tong He Jason Cong
University of California, Los Angeles
{zainryan, tonghe, cong}@cs.ucla.edu

Abstract—Storage drive technology has made continuous improve-
ments over the last decade, shifting the bottleneck of the data processing
system from the storage drive to host/drive interconnection. To overcome
this ”data movement wall,” people have proposed in-storage computing
(ISC) architectures which add the computing unit directly into the storage
drive. Rather than moving data from drive to host, it offloads computation
from host to drive, thereby alleviating the interconnection bottleneck.

Though existing work shows the effectiveness of ISC under some
specific workloads, they have not tackled two critical issues: 1) ISC is
still at the early research stage, and there is no available ISC device
on the market. Researchers lack an effective way to accurately explore
the benefits of ISC under different applications and different system
parameters (drive performance and interconnection performance). 2)
What kinds of applications can benefit from ISC, and what cannot?
It is crucial to have a method to quickly discriminate between the types
of applications before spending significant efforts to implement them.

This paper gives a response to the above problems. First, we build a
complete FPGA-based ISC emulation system to enable rapid exploration.
To the best of our knowledge, it is the first open-source 1, publicly
accessible ISC emulation system. Second, we use our system to evaluate
12 common applications. The results give us the basic criteria for
choosing ISC-friendly applications. By assuming a general drive program
construct, we provide further insights by building an analytical model
which enables an accurate quantitative analysis.

I. INTRODUCTION

In recent years, near-data computing has become a hot topic in
the research community, e.g., [20], [18], [14], [21], [23]. Notably, the
CRISP (Center for Research in Intelligent Storage and Processing in
Memory), a multiyear research center funded by SRC and DARPA,
is focusing on re-architecting the computing system by introducing
computing units into data devices.

The idea of ISC is motivated by the ever-increasing performance
gap between storage drive and host/drive interconnection. A recent
paper [25] shows that the storage drive bandwidth has doubled every
two years from 2007 to 2017. However, meanwhile the performance
of the host/drive interconnection bus, i.e., PCIe, is unable to follow
the trend. This performance gap impedes host users trying to leverage
advancement in the storage drive technology. The presence of ISC
aims to bridge this gap (§II). With the intelligent storage drive, host
offloads the first round of computation into the drive (this contains
computation patterns like filtering or reduction). By making this
computation directly happen inside the drive, we can leverage the
high internal drive performance. The volume of the output data is
expected to be reduced; therefore, less data will be transferred through
the bus, which alleviates the interconnection bottleneck.

After witnessing the effectiveness of ISC in some efforts, re-
searchers wish to further explore its benefits under a broader space,
i.e., different applications and system (drive and interconnection)
performance parameters. Since ISC is still at its early research
stage, there is no available ISC drive on the market. Existing work
conducted evaluations using their own private prototypes which

∗The corresponding author.
1https://github.com/zainryan/EISC

have fixed system parameters and are not publicly accessible for
others (§III). To further push forward the concept of ISC in both
academia and industry, it is critical to have an open-source system-
level emulation platform. First, in order to enable a rich set of
research work, researchers need an easy-to-use evaluation system to
validate their design and conduct the architectural exploration. Every
team that independently builds their own specific platform incurs
wasteful duplication of efforts and can greatly slow down the research
progress in this area. Second, vendors face a “chicken or the egg”
problem of manufacturing ISC drives, and they will only do this
after seeing enough benefits of ISC. Having such an open-source
evaluation platform can help them better evaluate ISC in a broad
space of applications and system performance parameters.

To address the pain point, we propose EISC (Emulator for In-
Storage Computing), an open-source FPGA-based emulation plat-
form for ISC. Leveraging our previous work INSIDER [25] on
the programming and system support for ISC, in this paper we
focus on introducing the design and implementation of the emulation
platform for ISC (§IV). Specifically we discuss how to emulate the
yet nonexistent ISC drive. At the high level, EISC achieves this goal
with a DRAM-equipped FPGA board; it uses the DRAM chips to
mimic the storage chips and implements the drive controller logic
in FPGA. The remaining FPGA resource is used to accommodate
the application logic, enabling the drive ISC capability. One desired
property is to have configurable system performance parameters.
EISC realizes this in hardware by selectively asserting idle signals
after the DRAM controller and the PCIe controller.

Along with the research advance in ISC, an unanswered is that
what kinds of application can benefit from ISC, and what cannot?
While existing work aims on demonstrating the power of ISC in some
particular workloads (e.g., [20], [14], [28], etc.), they do not answer
this general question. However, implementing a new application in
the ISC device will definitely requires higher efforts compared with
the standard host programming. It is crucial to have an analytical
way to quickly tell that whether an application could benefit from
ISC in the first place. To answer this question, in this work we
leverage EISC to do design space exploration to examine the benefits
of ISC (§V). We evaluate 12 common applications under different
drive and interconnection performance parameters (§V-B). Guided by
the results, we propose a set of guidelines for choosing ISC friendly
applications, which allows programmers to qualitatively make quick
decisions using two simple application characteristics (§V-C). By
assuming a general drive program construct, we build an analytical
model to enable an accurate quantitative analysis (§V-D).

II. BACKGROUND

To combat the issue of limited interconnection performance (dis-
cussed in §I), researchers proposed the in-storage computing (ISC)
architecture (e.g., [26], [20]). In this serction, we give a brief
background introduction of ISC.



Host

Chips
Read data

Drive
Controller

Kernel

Fewer read data
Computation
(reduction)

Host

Chips
Write data

Drive
Controller

Kernel

Fewer write data
Computation

(amplification)

Fig. 1: Saving bus bandwidth from drive to host using ISC.

A. Saving Interconnection Bandwidth from Drive to Host

Rather than moving data from storage drive to host, ISC archi-
tecture moves computation from host to drive (see Figure 1). The
controller equips an embedded computing unit which is able to
execute host-offloaded tasks. It performs a first-round of computation
in drive so that it can leverage the high in-storage read performance.
Developers offload computation patterns like data filtering or reduc-
tion, thus the output data volume is reduced. In this way, much
fewer data need to be transferred back to host. This alleviates the
performance bottleneck of the interconnection from drive to host.

B. Saving Interconnection Bandwidth from Host to Drive

Similarly, ISC architecture enables us to save interconnection
bandwidth from host to drive. Developers first offload tasks that
involve data amplification patterns, e.g., file decompression. Then
host writes data into the storage drive controller which performs in-
storage computing. The output data, whose volume is larger than the
original input data, is written to the storage chips; it takes advantage
of the high in-storage write performance.

C. FPGA-Based In-Storage Computing System

There are multiple candidates for the ISC unit. Existing work, e.g.,
[31], [12], demonstrates the effectiveness of FPGA for ISC. Com-
pared to ASIC, FPGA could be customized to support a wide range of
applications, enabling general ISC. With processing units like ARM
or X86, it is difficult to saturate the high-storage bandwidth—which
could be as high as tens of GB/s. Compared to them, FPGA can more
easily reach the performance goal through hardware customization.
Finally, since the storage drive is a low-power device, the ISC unit
should not significantly compromise the power efficiency of the drive.
Compared to GPU, FPGA could achieve better energy efficiency. In
this paper we target the FPGA-based ISC system.

III. MOTIVATION

Though receiving much attention in academia, the ISC architecture
is still at a relatively early research stage; there is no general
programmable ISC drive on the market yet. Vendors face a ”chicken
or the egg” problem of manufacturing ISC drives: they will only do
this after seeing enough benefits of ISC. Existing work, e.g., [14],
[18], [26], [20] , fail to answer this problem due to the following
reasons.

a) Target Limited Applications: Existing work targets a few
specific applications to demonstrate the advantages of ISC, e.g.,
[20], [18], [14]. However, they fail to show the cases that are not
suitable for ISC; the generality of this architecture still remains
unknown. Porting an application to a new architecture requires non-
trivial efforts. It would be very helpful to provide insights on how
to qualitatively or quantitatively judge whether an application could
potentially benefit from ISC before actually implementing it.

b) Fixed System Parameters: Existing work only targets the
prototyping platforms, and reports results from them. However,
different storage drives have different performance parameters (i.e.,
bandwidth and latency), and different host systems have different
interconnection bus performance; existing work is unable to tell

the benefits under changed system parameters. In fact, as we will
show later, the speedup brought by ISC is highly related to these
parameters. It is important to demonstrate that ISC will be worthwhile
under what system settings.

c) Not Publicly Accessible: Existing work are evaluated on their
private testbeds. There is no publicly accessible ISC platform for the
community; it prevents system designers from exploring the benefits
of ISC under their own scenarios. Building a system prototype is a
time-consuming process which is not affordable for every team. The
lack of publicly accessible emulation platforms not only obstructs
industry from evaluating the benefits of ISC, but also impedes the
research progress in this area. It is crucial to have an open-source
system-level emulation platform to enable potential users to engage
in rapid exploration.

IV. DESIGN AND IMPLEMENTATION

A. Design Goals and System Overview

In order to overcome the above problems, we build a new emula-
tion platform EISC. It achieves the following design goals.

a) End-to-End System Emulation: Rather than the functional
simulation software like GEM5 [5] or PARADE [10], we decide
to build an end-to-end system emulation platform. The goal is to
provide a system-level emulation environment as real as possible.
This is important for two reasons: 1) It can provide much more
accurate results compared to the functional simulation; 2) It can create
a realistic system prototype enabling users to integrate it with the
system software stack and experiment with various applications. We
achieve this goal by building an FPGA-emulated ISC drive prototype
(§IV-B) and its corresponding software stack (§IV-C).

b) Configurable System Parameters: To enable system-level
design exploration, EISC should allow users to configure important
system parameters, i.e. the bandwidth and latency of the intercon-
nection bus and the storage drive. EISC achieves this goal with
two design choices. First, EISC adopts PCIe Gen3 X16 as the
interconnection and uses DRAM chips to mimic the storage chips.
Their performance is high enough to serve as the performance upper
bound of the interconnection bus and the emerging storage chips.
Second, we introduce the delay units and the throttle units into
both the DMA controller (§IV-B2) and storage controller (§IV-B3).
Those units are configurable via the host API which allows users
to dynamically configure the latency and bandwidth lower than the
aforementioned upper bounds.

c) Easy to Port Applications: As an emulation platform, one
important aspect is to ensure the simplicity to port applications to
our platform. EISC is an FPGA-based ISC system; thus we have
to carefully design the accelerator kernel interface so that existing
FPGA kernels can be easily ported (IV-C1). Also, the host API has
to be straightforward so that the host program can easily interact with
the EISC drive (IV-C2).

d) Publicly Accessible: We make EISC an open-source, publicly
accessible emulation platform to benefit the community. To achieve
this goal, we could either host a large-scale shared platform accessing
service like Emulab [3] or implement our system upon a public
cloud service. Here we choose the latter; we adapt EISC to the
AWS F1 instance [1] which provides the necessary hardware/software
environment (IV-D). Everyone can deploy the EISC system on the
F1 instance with our code.

In the following sections we are going to introduce the design of
EISC. First, we will introduce the design of EISC drive which is
an FPGA-based ISC device (§IV-B). After that, we will introduce
the corresponding host APIs to interact with the EISC drive (§IV-C).



Fig. 2: The EISC architecture.

Finally, we will introduce how we adapt and implement EISC on the
AWS F1 instance (xIV-D).

B. EISC Drive

The top half of Figure 2 presents the EISC drive architecture. In
the high level, the EISC drive consists of emulated storage chips and
an FPGA chip. We implement three major modules, i.e., the DMA
controller, storage controller and drive controller, over the FPGA chip.

1) PCIe Interface:The EISC drive is inserted at the PCIe Gen3
X16 slot of the host motherboard. In the realistic settings, the storage
drive uses far fewer PCIe lanes—mainly for cost and storage density
considerations. Here, we choose PCIe Gen3 X16 to create an upper
bound of the interconnection performance. With the delay and throttle
units in the DMA controller (xIV-B2), we are able to emulate any
performance number below this upper bound.

2) DMA Controller: The EISC DMA controller is an interface
between the drive controller and the PCIe bus. Through the DMA
controller, the host-sent data and command can be passed to the drive
�rmware. The PCIe hard IP in the bottom (of the DMA controller)
is responsible for converting the raw PCIe signals into the AXI [2]
interface. One design goal of EISC is to make system parameters con-
�gurable. To achieve con�gurable interconnection bus performance,
we introduce a set of delay and throttle units to the DMA controller.
The delay unit is responsible for instructing the delay cycles into
the signals from/to the PCIe interface. Via invoking the host method
set dma delay unit (x), the host user can increase the latency of
the interconnection bus byx cycles tolat original + x � f req � 1

F P GA .
The throttle unit is used for changing the duty ratio of the data
signals from/to the PCIe interface. Host users could con�gure the
throttle unit via the host methodset dma throttle unit (x; y );
it asks the throttle unit to inserty empty cycles after receiving
x cycles of effective signals. After applying this command, the
host user can decrease the bandwidth of the interconnection bus to
bworiginal � x=(x + y).

3) Storage Controller:In EISC we use DRAM chips to emulate
the storage chips. We make this decision since the performance of
DRAM chips could serve as an upper bound in the performance of
high-performance storage chips. We implement a storage controller
which assists the drive controller with accessing the emulated storage

chips. To mimic the multi-channel property of storage chips in
commodity drive, we attach multiple DRAM chips to the storage
controller with separate connectors.

The �rst job of storage controller is to make the performance of
emulated storage chips con�gurable. We achieve this by adding a
set of delay units and throttle units, which are similar to the ones
in xIV-B2. We also provide corresponding host APIs for users to
dynamically con�gure them.

The second job of storage controller is to expose a uni�ed storage
chip interface for the drive controller. Similar to the commodity drive,
we implement the block size (i.e., the �nest accessing granularity)
as 4 KB, which is a standard setting in most commodity storage
drives. Thus, the addressing space of each emulated storage chip is
partitioned into chunks of 4 KB. We adopt the low-order interleaving
to merge the addressing space of multiple storage chips into a single
uni�ed space.

4) Drive Controller: The EISC drive controller consists of two
modules: �rmware and accelerator kernel. Similar to a commodity
drive, we implement a simple �ash transaction layer (FTL) in our
�rmware module; it decodes the host-sent drive commands, performs
drive logical block address (LBA) to physical block address (PBA)
translation, and issues the corresponding accessing requests to the
storage controller.

The accelerator kernel is a unique component of EISC in which
users could put their ISC logic. Commodity drive equips embedded
DRAMs [13]. To emulate this, in our EISC drive, we attach DRAM
chips to the accelerator kernel, which could serve as a buffer to store
the intermediate data. Via the �rmware module, the accelerator kernel
is able to talk with the storage controller and the DMA controller.
Therefore, the accelerator can read/write data from/to the storage
chips and send/receive data from/to the PCIe interface.

C. EISC Host Stack

The bottom half of Figure 2 presents the host-side architecture
which will be introduced in the followings.

1) Development Toolchains:Users could easily port an FPGA
kernel into EISC. We provide an EISC compiler which accepts either
the Xilinx high-level synthesis (HLS) kernel or the RTL kernel.
The top-level de�nition of user-provided kernels should observe the
following interface (shown in the HLS style).

void kernel(
/ * ISC related interface * /
hls::stream<ap_uint<512>> &input_channel,
hls::stream<ap_uint<512>> &output_channel,
hls::stream< unsigned int > &args_channel,
/ * DRAM accessing interface * /
hls::stream<Dram_Read_Req> &dram_read_req_channel,
hls::stream<Dram_Read_Resp> &dram_read_resp_channel,
hls::stream<Dram_Write_Req> &dram_write_req_channel,
/ * Debugging/monitoring interface * /
hls::stream<Peek_Req> peek_req_channel,
hls::stream<Peek_Resp> peek_resp_channel

);

Listing 1: The interface of EISC drive kernel.

The user-provided HLS kernel acquires input frominput channel,
performs computation, and writes output intooutput channel. It can
accept host-sent runtime arguments fromargs channel.

It can also use drive-embedded DRAMs to store the intermediate
results through the DRAM accessing interface (a common DRAM
stream interface which is also used in ST-Accel [24]). Notably, this
is a general interface and many existing kernels are written in this
form (e.g., the ones in [24], [15]).

Once running the application on EISC, it is common that the
performance does not match the expectation, or the output results



Parameter
Con�guration

1) void set dma delay unit(uint32 x)
2) void set dma throttle unit(uint32 x, uint32 y)
3) void set storagedelay unit(uint32 x)
4) void set storagethrottle unit(uint32 x, uint32 y)

Kernel Runtime 5) void sendruntime args(uint32 *args, int num)

ISC Read
Kernel (xIV-C1)

6) void set input �le(string input �le path)
7) void set input lba vec(vector< uint64> input lba vec)
8) unsigned long long recvisc unit(char *buf, uint64 len)

ISC Write
Kernel (xIV-C1)

9) void set output �le(string output �le path)
10) void setoutput lba vec(vector< uint64> output lba vec)
11) unsigned long long sendisc unit(char *buf, uint64 len)

Debugging 12) unsigned int peekreg(uint32 id);

TABLE I: EISC host APIs (xIV-C2).

are not correct. EISC provides a handy interface that enables host
users to peek the states in the drive FPGA kernel for debugging. Host
users issueP eek Req which will be stored inpeek req channel .
P eek Req is essentially a 32-bit identi�er. After reading the identi-
�er, the FPGA kernel can write the response data, which essentially
contains the debug information, topeek resp channel . EISC run-
time guarantees to deliver the response data back to host users.

We classify the EISC kernels into two categories according to their
data �ow directions: ISC read kernel (xII-A) and ISC write kernel
(xII-B). For the ISC read kernel, itsinput channelstores the data
read from emulated storage chips, while itsoutput channelstores
the data that will be sent back to host via the interconnection bus.
For the ISC write kernel, the above bindings are reversed.

After accepting the user-provided kernel, the compiler front end
performs the source-to-source code transformation to make it com-
patible with our system framework. Then, if it is an HLS kernel,
Xilinx Vivado HLS will be invoked to generate the RTL kernel code.
Next, the compiler backend will connect the generated RTL code
with the RTL implementation of EISC drive (xIV-B), and generate a
complete FPGA source project. Finally, the Xilinx Vivado tool suite
is invoked to synthesize the project and generate the FPGA binary.

In addition to the compiler, EISC also provides the system-level
simulation framework to accelerate the development iteration. It
supports both C/C++-level and RTL-level simulations.

2) Host APIs: Table I presents the host APIs implemented in
EISC. Rows 1 to 4 are the system parameter con�guration APIs;
users can invoke them to con�gure the bandwidth and latency of the
interconnection (xIV-B2) and the emulated storage chip (xIV-B3).
Row 5 is related to the kernel runtime; it allows users to send small
runtime arguments to the accelerator kernel (xIV-C1). Rows 6 to 8 are
used for the ISC read kernel. The kernel can read from a drive �le; via
6 the data of the speci�ed �le is sent to the kernelinput channel
(xIV-C1). Alternatively, the kernel can read from multiple �les; row
7 allows users to read from a vector of drive logical block addresses.
The kernel execution output can be acquired by host via the function
in row 8. Symmetrically, rows 9 to 11 are used for the ISC write
kernel. 12 is used for debugging, which can issueP eek Req to
the drive FPGA kernel as we discussed inxIV-C1; its return value
corresponds toP eek Resp.

D. Adaption to The AWS F1 Instance

One of our design goals is to make EISC publicly accessible
to bene�t the community. To achieve this goal, we adapt EISC to
the AWS F1 instance [1] since it provides the necessary hardware
environment for implementing the EISC drive.

First, the F1 FPGA board equips a Xilinx Virtex UltraScale+ FPGA
board which could be used to build an EISC drive. The board is
connected with host via PCIe Gen3 X16 which could deliver enough
interconnection performance for our scenario (xIV-B1). Second, the
F1 FPGA board equips four 16 GiB DDR4 DRAM chips (64 GiB
in total). We have to statically partition them into emulated storage

(a) (FPGA-based) in-storage
computing architecture.

(b) Decoupled architecture
(FPGA connects drive via PCIe).

Fig. 3: Two architectures used in our evaluation.

chips (xIV-B3) and accelerator kernel attached DRAMs (xIV-B4). The
partition has to observe the following constraints: 1) Multiple DRAM
chips have to be used to mimic the multi-channel storage chips; 2)
Since the accelerator uses its DRAMs as the fast intermediate data
buffer, their performance has to be no lower than the upper bound
performance of the emulated storage chips. Given those constraints,
we use two on-board DRAM chips to emulate the storage chips and
use the rest of two DRAM chips to serve as the accelerator attached
DRAMs. To re�ect a practical scenario of the commodity drive, we
limit the addressable space of the accelerator DRAMs to 4 GiB.
Finally, we implement all EISC drive hardware logics (xIV-B) in the
F1 FPGA board. The design is fully pipelined and is able to run at
250 MHz.

V. EVALUATION

In this section we focus on answering the following questions:
Q1: How much programming effort is required to port an existing
FPGA application into EISC?
Q2: For the applications used in evaluation, how do their speedups
change under different system con�gurations (e.g., interconnection
performance, storage drive performance)?
Q3: What kind of applications can bene�t from the (FPGA-based)
ISC architecture and what kind of applications cannot?
Q4: How to qualitatively or quantitatively discriminate between two
kinds of applications in Q3.
Q5: For the applications that bene�t from the ISC architecture,
we further want to know how much fast drive bandwidth can
they saturate. This information is critical for avoiding unnecessarily
provisioning the drive bandwidth.

We answerQ1 by porting existing FPGA programs to EISC
and showing the corresponding efforts (xV-A). Among evaluated
applications, Gzip, SW and equal are ported from the existing
implementation from Xilinx.

We answerQ2 by applying EISC to 12 different applications (in
Table II) to explore the bene�ts of ISC. We con�gure the drive and
interconnection performance to EISC to measure the application per-
formance under different system parameters (xV-B). The evaluation
is done on the AWS f1.2xlarge instance.

We answerQ3 by comparing the performance of the FPGA-based
ISC architecture (Figure 3a) with the decoupled architecture (Figure
3b). We emulate the latter architecture in EISC by setting the drive
performance into the same value of the host-drive interconnection
performance (xV-B).

We answerQ4 and Q5 by conducting the qualitative analysis
(xV-C) and quantitative analysis (xV-D) over the evaluation results.

A. Efforts to Port Existing FPGA Programs

Table II lists the applications used in our evaluation, while Table
III presents the programming efforts of porting existing FPGA
applications into EISC. As we can see, the required code change
is moderate. That is because users are only required to change the



(a) Drive bandwidth = 16 GB/s, PCIe Gen3 X16. (b) Drive bandwidth = 16 GB/s, PCIe Gen3 X12.

(c) Drive bandwidth = 16 GB/s, PCIe Gen3 X8. (d) Drive bandwidth = 16 GB/s, PCIe Gen3 X4.

(e) Drive bandwidth = 12 GB/s, PCIe Gen3 X12. (f) Drive bandwidth = 12 GB/s, PCIe Gen3 X8.

(g) Drive bandwidth = 12 GB/s, PCIe Gen3 X4. (h) Drive bandwidth = 8 GB/s, PCIe Gen3 X8.

(i) Drive bandwidth = 8 GB/s, PCIe Gen3 X4. (j) Drive bandwidth = 4 GB/s, PCIe Gen3 X4.

Fig. 4: Compare the end-to-end application performance between ISC architecture and decoupled architecture under different system settings.


