
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Reuse-Aware Compilation for Zoned Quantum
Architectures Based on Neutral Atoms

Wan-Hsuan Lin†, Daniel Bochen Tan†,‡, and Jason Cong†
†University of California, Los Angeles, ‡Department of Physics, Harvard University

{wanhsuanlin, bochentan}@g.ucla.edu, cong@cs.ucla.edu

Abstract—Quantum computing architectures based on neutral
atoms offer large scales and high-fidelity operations. They can
be heterogeneous, with different zones for storage, entangling
operations, and readout. Zoned architectures improve computa-
tion fidelity by shielding idling qubits in storage from side-effect
noise, unlike monolithic architectures where all operations occur
in a single zone. However, supporting these flexible architectures
with efficient compilation remains challenging. In this paper, we
propose ZAC, a scalable compiler for zoned architectures. ZAC
minimizes data movement overhead between zones with qubit
reuse, i.e., keeping them in the entanglement zone if an immediate
entangling operation is pending. Other innovations include novel
data placement and instruction scheduling strategies in ZAC, a
flexible specification of zoned architectures, and an intermediate
representation for zoned architectures, ZAIR. Our evaluation
shows that zoned architectures equipped with ZAC achieve a 22x
improvement in fidelity compared to monolithic architectures.
Moreover, ZAC is shown to have a 10% fidelity gap on average
compared to the ideal solution. This significant performance
enhancement enables more efficient and reliable quantum circuit
execution, enabling advancements in quantum algorithms and
applications. ZAC is open source at https://github.com/UCLA-
VAST/ZAC

I. INTRODUCTION

Rapid technological advances have established neutral
atoms as a promising platform for quantum computing due
to its scalability, long coherence time, and reconfigurability.
In these experiments, each atom needs to be held in a trap.
Using a spatial light modulator (SLM), large arrays of traps
supporting thousands of qubits can be generated [19], [22],
[25]. The key fidelity metric in quantum computing, two-
qubit entangling gate fidelity, has reached 99.5% [2]. This
gate is implemented by a laser that excites qubits to Rydberg
states, illustrated as half-transparent discs in Fig. 1a. When two
qubits are within each other’s discs (pairs in dashed ellipse),
an entangling gate is performed. Therefore, the placement of
qubits in traps and the distance between the traps determine
which qubit pairs can have entangling gates applied. To change
the placement, qubits can be transferred from SLM traps to
mobile traps generated by an acousto-optic deflector (AOD)
and moved accordingly. This high-fidelity movement allows
entangling gates to be executed on arbitrary pairs of qubits [5].

Prior compilation works [23], [28]–[30], [35], [36] primarily
focused on the simplest, monolithic architecture, as shown
in Fig.1a. In this architecture, the Rydberg laser illuminates
the entire region, exciting all qubits, including idle ones. This
side effect is a significant source of error. In Fig.1c, we break
down the fidelity estimation of running some quantum circuits

Two-qubit gate

a) monolithic b) zoned

dinteract

c)

Fig. 1. A comparison between a) monolithic and b) zoned architectures based
on neutral atoms. Blue regions are illuminated by the Rydberg laser. The grey
region in b) is not covered by the Rydberg laser. c) Fidelity breakdown for
the monolithic architecture based on the results in Ref. [30]. Side-effect noise
(blue, Rydberg excitation of idling qubits) is significant.

on the monolithic architecture. These compiled results have
the optimal number of Rydberg exposures, which means they
have the minimum possible excitation errors. However, these
errors still dominate. Zoned architectures, featuring distinct
regions for entangling gates and qubit storage, have been
demonstrated to address these errors [4]. As illustrated in
Fig.1b, the Rydberg laser is restricted to an entanglement zone
(blue region), while a storage zone (grey region) shields idle
qubits from Rydberg excitation.

Preliminary works [7], [27] have begun exploring compi-
lation for zoned architectures, but they do not fully leverage
the benefits such zoned architectures offer. Arctic [7] only
supports one specific zoned architecture and introduce a large
qubit movement overhead without qubit reuse. NALAC [27]
aims at reducing movement overhead between zones via qubit
reuse but at the cost of increasing moving distance within
the entanglement zone and exposing idle qubits to Rydberg
excitation errors, lowering overall circuit fidelity.

In this paper, we address compilation for zoned architectures
based on neutral atoms aiming at supporting advanced zoned
architectures and optimizing circuit performance via optimized
qubit reuse. Our key contributions are:

• We develop a novel zoned architecture compiler, named

https://github.com/UCLA-VAST/ZAC
https://github.com/UCLA-VAST/ZAC

ZAC, consisting of a reuse-aware placement strategy
and a load-balancing scheduling for architectures with
multiple AODs and different zone configurations.

• For placement, we design the cost function to approxi-
mate the movement duration which reduces qubit move-
ment for both current and future circuit execution.

• We propose an optimized qubit reuse strategy as a key
technique to reduce data movement overhead between
entanglement and storage zones without increasing the
excitation errors.

• We present a load-balancing scheduling for rearrange-
ment jobs, i.e., qubit movements, which minimizes ex-
ecution time and maximizes hardware utilization by dis-
tributing the jobs across multiple AODs.

• We support logical circuits with transversal gates, which
is a fundamental operation in fault-tolerant quantum
computing (FTQC).

The evaluation results demonstrate a 22× fidelity improve-
ment of a zoned architecture equipped with ZAC compared
to monolithic architectures. We also perform an optimality
study showing that ZAC achieves near-optimal performance
with only a 10% fidelity gap from the ideal solution.

In addition to ZAC, we propose an architecture specification
and intermediate representation (IR) for zoned architectures.
The architecture specification enables precise definition and
flexible configuration of multiple AODs, as well as storage
and entanglement zones. This facilitates the design of scal-
able and versatile architecture layouts. Our zoned architecture
intermediate representation, named ZAIR, strikes a balance
between structure and detail by introducing the notion of
rearrangement jobs.

The remainder of this paper is organized as follows. We
discuss related works in Section II and presents our zoned
architecture specification in Section III. Section IV gives the
overview for our compiler, ZAC, and the detailed algorithms
are provided in Section V and Section VI. Then, Section VII
presents the evaluation results. Section VIII demonstrates
applying ZAC in fault-tolerant quantum computing compila-
tion. Section IX introduces our proposed IR, ZAIR. Finally,
Section X concludes the paper and outlines future directions.

II. RELATED WORKS

Early compilation works on quantum computing with neu-
tral atoms (Baker et al. [3], Geyser [24], TETRIS [16], and
Schmid et al. [26]) assume individually addressable Rydberg
entangling gates. In this case, qubit routing leverages SWAP
gates, similar to superconducting quantum processors, but
these extra gates reduce circuit fidelity. Moreover, individually
addressed Rydberg gates need a different optical setup that has
not yet achieved competitive fidelity (92.5% [8]) compared to
the 99.5% fidelity of a global Rydberg laser [2]).

OLSQ-DPQA [28], [29] first targets “dynamically field-
programmable qubit array” that is a monolithic architecture
with a global Rydberg laser and atom movements. However, it
encodes the compilation to an SMT problem, which has expo-
nential worst-case time complexity, limiting its scalability. To

address this, several scalable compilation ideas have emerged.
Q-Pilot [36] leverages “flying ancillas” as an intermediate to
perform entangling gates but suffers from many extra qubits
and gates. Nottingham et al. [23] routes qubits with a “switch”
operation that physically swaps the location of qubits, risking
qubit collisions. Atomique [35] takes a hybrid approach. For
inter-array entangling gates (with one qubit in the SLM and the
other in the AOD), it moves the whole AOD array to get these
pairs to interact. For intra-array gates, SWAPs between the two
arrays are inserted as necessary to make them inter-array gates
later. The latest work Enola [30] employs graph theory in the
compilation. It first schedules the entangling gates with an
edge-coloring algorithm for a near-optimal number of layers.
Then, it derives rounds of parallel qubit movements between
the layers with a maximal independent set algorithm.

While the monolithic architecture’s fidelity bottleneck, the
global Rydberg exposure, has been optimized to near-optimal,
the noise on idle qubits is still significant (Fig. 1c), especially
for deep circuits with many dependencies. The zoned archi-
tecture can avoid this by moving only the necessary qubits to
the entanglement zone. Arctic [7] supports one specific zoned
architecture: an entangling zone with a single row of traps
“sandwiched” by two storage zones. It demonstrates fidelity
improvement over the monolithic architectures, but the appli-
cability is limited. NALAC [27] supports zoned architectures
with various sizes. It moves two rows of qubits from the
storage to the entangling zone each time and “slides” the two
rows past each other to interact qubits, which enables qubit
reuse. However, NALAC adopts a greedy placement strategy
to minimize movement in one stage and limits gate placement
to a single row in the entanglement zone, underutilizing the
zone’s capacity. Lastly, NALAC lacks support for architectures
with multiple AODs and varied zone configurations, limiting
its capability for architectural exploration and adaptation to
advanced systems. In contrast, ZAC can fully utilize the
entanglement zone by placing gates across multiple rows and
support compilation for advanced architectures.

III. A GENERAL SPECIFICATION OF ZONED
ARCHITECTURES

Our specification contains four types of entities: AOD
arrays, SLM arrays, zones, and the architecture, as listed in
Fig. 3. We shall explain the specification with our reference
zoned architecture following Ref. [4] (Fig. 2).

Each AOD array corresponds to an optical apparatus that is
a product of a row component and a column component. Each
row and column can be turned on/off and moved during the
circuit execution. The AOD traps are the intersection points of
the activated rows and columns. We need an index aod_id for
each AOD array because there may be multiple AOD arrays
in the architecture. Each array will have a max_num_col
and max_num_row reflecting the capacity of the column and
row components. The min_sep is the minimum separation
between any two rows and any two columns at any time.

An SLM array contains num_col columns and num_row
rows of traps. sep specifies the x and y separations. To anchor

x

y

storage zone

…

…

entanglement zone

…

…

readout zone

Rydberg site 𝜔0,0

x

y

35

307

2737 29 39 41

317

𝜔0,1

𝜔1,0

d𝜔

dRyd

d𝜔

x

y

0

0

63

3
6

9

9

storage trap s0,0 s0,1

s1,0

ds
ds

b)

a)

c)

7 rows

100
rows

20 sites

100 cols

dsep

dsep
(um)

(um)

(um)(um)

(um)

(um)rearrangement
job

q0 q1
q2 q3

q0 q1

q2 q3

Fig. 2. Our reference zoned architecture following Ref. [4]. a) Overview of
the architecture consisting of a readout zone (orange) for qubit measurement,
an entanglement zone (blue) for Rydberg entangling gates, and a storage
zone (grey) for idle qubits. The entanglement zone consists of 7 rows of
Rydberg sites, each contains 20 sites. The storage zone consists of 100×100
storage traps. The zone separation is dsep=10um. The red dashes denote a
rearrangement job from the storage to the entanglement zone. b) Detailed
layout in the entanglement zone. The dotted gray eclipses indicate Rydberg
sites, each with two SLM traps separated by dRyd=2um. The blue discs
indicate the Rydberg range for qubit interaction. The distance between two
Rydberg sites is dω=10um. This prevent unwanted interaction between qubits
in different sites. The circles represent the empty traps, and the solid dots are
the traps occupied by qubits. When the Rydberg laser is on, two qubits in the
same Rydberg site perform a CZ operation, e.g., CZ(q0,q1) and CZ(q2,q3).
c) Detailed layout in the storage zone, where the qubit separation is ds=3um.

the array at a specific location, we also need an offset which
is the offset of the bottom left trap with respect to the origin in
the x and y coordinate. Each SLM array does not correspond
to an individual optical apparatus.

This definition may seem a bit convoluted, but our goal is
to support the configuration of the entanglement zones in a
compact way. In our reference architecture, the SLM traps in
an entanglement zone (Fig. 2b) need to form Rydberg sites ω.
These are pairs of traps separated by dRyd = 2um. The sites are
indexed by row and column, e.g., ω1,0 is the Rydberg site at
row 1 and column 0. To prevent unwanted interactions between
qubits in different Rydberg sites, the distance between two
rows or columns of Rydberg sites is dω = 10um. To describe
the reference configuration, we specify two slmArrays with
the same separation, but with different offsets: (35, 307) and
(37, 307). As the qubits within a Rydberg site are placed in the
same row, the x separation for the slmArrays is dRyd + dω
= 12um, and the y separation is dω = 10um.

In the storage zone (Fig. 2c), the SLM separations can be
smaller, ds = 3um, because in this zone it is unnecessary to
leave dω between qubits to avoid Rydberg interaction. We
denote sr,c as a storage trap at row r and column c.

Each zone corresponds to a physical region with certain
boundaries. Thus, it has an offset, i.e., location of bottom
left corner, and a dimension which are its width and height.
Inside a zone, there can be some SLM arrays. In our reference

<aodArray> ::= { 'aod_id': int, 'min_sep': float,
'max_num_col': int, 'max_num_row': int }

<slmArray> ::= { 'slm_id': int, 'sep': (float, float),
'num_col': int, 'num_row': int, 'offset': (float, float) }

<zone> ::= { 'zone_id': int, 'offset': (float, float),
'dimension': (float, float), 'slms': list[slmArray] }

<architecture> ::= {
'aods': list[aodArray], 'entanglement_zones': list[zone],
'storage_zones': list[zone], 'readout_zones': list[zone] }

Fig. 3. Specification of AOD arrays, SLM arrays, zones, and architecture.

architecture (Fig. 2a), the readout zone has no SLM, the
storage zone has one, and the entanglement zone has two.

Finally, the whole architecture is defined by a list of AOD
arrays, a list of entanglement zones, a list of storage zones,
and a list of readout zones. In our reference architecture, there
is only one zone of each type, and they are separated by
dsep = 10um ≥ dω to avoid any unwanted Rydberg interaction.

By providing this comprehensive and flexible specification,
our architecture supports the customized and scalable designs,
adaptable to a wide range of experimental setups and computa-
tional requirements. For example, it is possible to increase the
number of SLM traps in a Rydberg site to leverage a Rydberg
gate on more qubits. Another example is to specify multiple
entanglement zones as we will demonstrate later.

IV. ZAC: ZONED ARCHITECTURE COMPILER

Our compilation consists of three steps: preprocessing,
placement, and scheduling. During preprocessing, we resyn-
thesize the circuit based on the hardware-supported gate set
{CZ, U3} and optimize 1Q gates. This can be done in standard
approaches, e.g., with Qiskit [11]. Next, we assign gates into
Rydberg and 1Q gate stages, and ensure that a qubit is involved
in no more than one gate per stage. Fig. 4 provides an example
of preprocessing. This circuit is our running example in the
following sections.

After preprocessing, the Rydberg stages can be readily
translated into instructions in ZAIR. However, the qubits are
not yet mapped to traps. In the placement step, we first derive
the initial locations of qubits in the storage zone. Then, for
each Rydberg stage, we map each 2Q gate to a Rydberg site
in an entanglement zone. After each Rydberg stage, idle qubits
for the next Rydberg stage need to be moved back to a storage
zone to prevent Rydberg excitation errors.

Once placement is complete, we know the change of lo-
cation for each qubit before and after each Rydberg stage.
In the scheduling step, we generate a set of rearrangement
jobs to accommodate these changes in qubit location, e.g., in
Fig. 2 there is a job moving four qubits from the storage to
the entanglement zone. These jobs have dependencies with
the other types of instructions and with each other. Based on
these dependencies, we schedule the instructions to optimize
circuit execution time. If there are multiple AODs, we assign
the rearrangement jobs to AODs in a load-balanced manner.

With a zoned architecture, idle qubits can avoid Rydberg
excitation in the storage zone, so the number of Rydberg
stages is no longer the critical factor for fidelity. Instead, the

l1,1qGate

l2,Rydberg

l3,1qGate

l4,Rydberg

: {q0, q2,
 q3, q4, q5}
: {(q0, q1),
 (q3, q4)}
: {q0, q3, q4}
: {(q1, q2),
 (q3, q5),
 (q0, q4)}

q0
q1
q2 U3

U3 U3

U3
U3

q0
q1
q2 X

Z

H

q0
q1
q2 X

H H
H

Z

H

1. resynthesis to
gate set

2. Single-qubit gate
optimization

3. ASAP
Scheduling

Input Circuit

q3
q4 H

q3
q4 H
H H

H H

H
H

q3
q4

U3
U3

U3
U3

U3

…

q5 H q5 H q5 U3

H

U3

U3

Fig. 4. Preprocessing: resynthesis, 1Q gate optimization, and as-soon-as-
possible 2Q gate scheduling. The output is a list of gate stages.

primary error sources are the overheads associated with qubit
movements, as they incur errors from decoherence and atom
transfers during qubit pickup and drop-off. Since the changes
in qubit locations determine which and how the qubits are
moved, we find placement to be the most important step.

Our placement strategy includes two main innovations.
First, we utilize the concept of reuse: a qubit in the entan-
glement zone is considered reusable if it will be involved in
the next Rydberg stage. These reusable qubits can remain at
their Rydberg sites for the next gate operations, thus reducing
atom transfer errors and qubit movement time. Second, we
refine the cost function for qubit placement. Intuitively, the
cost of a 2Q gate can be the distance between the two qubits
in the gate. As done in some previous works, one approach
is minimizing the sum of all gate costs in the initial qubit
placement. However, this cost is not applicable in our case
because the distance between two qubits can not directly
reflect the movement distance for performing the gate at a
Rydberg site. Additionally, it does not consider movements
that can be bundled together in the same rearrangement job.
Thus, we propose a cost function to better estimate the
movement duration to a site and incorporate considerations
for the parallel movements. In the intermediate placements,
we also enhance the cost function with a lookahead cost to
minimize movement distances for future Rydberg stages.

V. REUSE-AWARE PLACEMENT

A. Initial Qubit Placement Based on Simulated Annealing

A good initial qubit placement aims to minimize movement
overheads throughout the computation process. The movement
overhead for a gate to a site is estimated based on the qubit
distance to the site. For the case where the movements can be
performed in parallel, the cost is estimated by the maximum
of the distance between the qubits and the site because the
movement duration is decided by the longest movement.
Otherwise, the cost is estimated by the distance sum. The
movements can be performed in parallel if initially, the qubits
are in the same SLM row. Because they will be picked up by
one AOD row, we can move them together to the Rydberg
site via stretching the AOD, e.g., in Fig. 5, q0 and q1 can be
moved to site ω0,0 simultaneously. However, if the qubits are
not in the same row, different AOD rows will pick them up.
As a result, they can not be dropped off at the Rydberg site
simultaneously due to the non-stacking constraint for AOD
rows. Therefore, such movements are performed sequentially.

l1,1qGate
l2,Rydberg
l3,1qGate
l4,Rydberg

: {q0, q2, q3, q4, q5}
: {[𝑔0(q0, q1), 𝑔!(q3, q4)}
: {q0, q3, q4}
: {𝑔"(q1, q2), 𝑔#(q3, q5),
 𝑔$(q0, q4)}

q0
q1
q2 U3

U3 U3

U3
q3
q4
U3
U3

U3
U3

…

𝑤%! = 𝑤%" = 1,
𝑤%# = 𝑤%$ = 𝑤%% = 0.9

…

1st Rydberg stage

2nd Rydberg stage

𝜔&,&

new location

U3q5

U3

U3

U3
U3

𝜔&,! 𝜔&."

𝜔%!
near 𝜔%"

near

y

0

9

(um)

19

4 x1 13 (um)0

Fig. 5. Initial placement. Qubits are represented by dots in different colors.
Colored edges indicate the nearest Rydberg sites for each qubit, e.g., the
nearest site for q0 (red dot) is ω0,1. ωnear

g0
and ωnear

g1
are the nearest Rydberg

site for g0 and g1, respectively. A possible movement in simulated annealing
(dashed arrow) is to move q0 to the site at r3 and c9 in the storage zone.

Formally, the qubit placement at a certain time are denoted
by M = (m0,m1, . . . ,mn), where mq = (xq, yq) is the exact
location for qubit q. Then, given a qubit placement M , the
movement cost for gate g(q, q′) to Rydberg site ω is

gCost(g, ω,M) =

{√
d(ω,mq) +

√
d(ω,mq′), if yq ̸= yq′

max(
√

d(ω,mq),
√
d(ω,mq′)), o.w.

(1)
A square root function is applied since the movement duration
is proportional to the square root of movement distance [5].

The cost of the whole qubit placement, is estimated as
the sum of the cost of all 2Q gates. The cost for a gate
g is estimated based on its target qubits and their nearest
Rydberg site ωnear

g , designated as gCost(g, ωnear
g ,M0). ωnear

g

is determined by first identifying the nearest Rydberg sites for
each target qubit, and then selecting the middle Rydberg site
between these two sites, i.e., if ωr,c and ω′

r′,c′ are the nearest
Rydberg sites for target qubits q and q′ respectively, then
ωnear
g = ωr∗,c∗ , where r∗ = ⌊(r+r′)/2⌋ and c∗ = ⌊(c+c′)/2⌋.
Consider the example qubit placement shown in Fig. 5.

For gate g0(q0, q1), the nearest Rydberg site is ωnear
g0 =

ω(0+0)/2,⌊(0+1)/2⌋ = ω0,0. Under placement on the right, q0
is at s3,4 with x = 13 and y = 9, and q1 is at s3,0 with x = 1
and y = 9. For distance calculations, we use the left trap in a
Rydberg site as its reference location. Thus, the exact location
for ω0,0 is x = 0 and y = 19. The distances are then computed
as d(ω0,0, s3,4) =

√
(0− 13)2 + (19− 9)2 = 16.40, and

d(ω0,0, s3,0) = 10.05. Since q0 and q1 are in the same row,
the cost for g0 is max(

√
16.40,

√
10.05) = 4.05.

Our cost for the whole initial placement M , is:

cost(M) =
∑
g∈G2

wg × gCost(g, ωnear
g ,M), (2)

where G2 is the set of 2Q gates in the circuit. We as-
sign a weight factor wg for each gate, calculated as wg =
max(0.1, 1 − 0.1(t − 1)), where t is the Rydberg stage at
which gate g is scheduled to be executed. For example, in

Fig. 5, wg2 = 0.9, as g2 belongs to the second Rydberg stage.
This weighting scheme prioritizes gates occurring earlier in
the circuit. The rationale behind this weighting is that with
dynamic qubit placement, the locations of qubits in the storage
zone change as the circuit execution progresses. Consequently,
using the initial qubit locations to estimate distances for gates
later in the circuit may lead to inaccuracies. By assigning
higher weights to earlier gates, we ensure that the placement
optimization focuses more on the initial stages of the circuit,
where our distance estimates are most reliable.

We apply a simulated annealing (SA) framework [32] to
minimize the cost. During annealing, we generate neighboring
states by changing the qubit location. For example, a qubit
may exchange locations with another qubit or jump to an
empty trap, as indicated by the dashed arrow in Fig. 5. The
process terminates when the cost converges or the iteration
exceeds a user-defined limit. Based on our empirical results,
we set a 1000 iteration limit. The complexity for SA is
O(g), where g is the number of 2Q gates, since we need
to calculate a cost for each gate. Although other placement
techniques, e.g., analytical methods, may be applied as well,
our experimental results (Section VII) shows that our SA-
based approach with maximal qubit reuse (will be presented
in Section V-B) achieves near-optimal solutions.

B. Reuse-Aware Dynamic Placement

Since there are multiple Rydberg stages, the qubit placement
can be dynamic. Below we iteratively determine intermediate
placements after the initial placement. If a qubit q is reused
in the next Rydberg stage by a gate g(q, q′), we would like
to maintain it in the entanglement zone. We choose to keep
it at the same site. Otherwise, q still necessitates movements,
albeit inside the same zone. If a qubit is not reused, we assign
it a trap in the storage zone in a non-reuse dynamic qubit
placement step.

During gate placement, we allocate Rydberg sites for the
gates that do not reuse qubits. While the qubit reuse idea
can reduce movement of q, it may have a negative impact
too, because q′ may be required to traverse longer distances
to the current site of q. Thus, for each Rydberg stage, we
generate two placement solutions for non-reuse dynamic qubit
placement and gate placement, one incorporating qubit reuse
and the other without it. We commit to the the better solution
between the two. Before the first Rydberg stage, no qubits are
in entanglement zones, so we do not need to consider reuse.
The following subsections detail our approach to identify qubit
reuse, place 2Q gates, and place non-reuse qubits back to the
storage zone.

1) Qubit Reuse Strategy: As just mentioned, our idea is to
keep reusable qubits at their current Rydberg site. However,
if both qubits at a site are reusable, keeping them both results
in an error. For instance, in Fig. 6a, both q0 and q1 in g0 are
reusable in the next stage: q0 in g4 and q1 in g2. If we reuse
both qubits, g4 and g2 are assigned to the same site, causing
a conflict. To resolve this issue, we model the reuse relation
between gates in two Rydberg stages by a bipartite graph,

𝑔0

𝑔!

𝜔","

𝜔",!

𝜔",$

𝜔!,"

𝜔!,!

𝜔!,$

3.1
7+0
.1*
3.4
6

𝑞0

𝑞%

𝑠%,"

𝑠%,%

𝑠%,&

𝑠%,'

𝑠%,(

𝑠&,"

Neighboring storage traps with 𝑘 = 1
Original storage trapNearest storage trap to the related qubit

b) Gate Placement for Rydberg Stage l2,Rydberg

c) Non-Reuse Qubit Placement After Rydberg Stage l2,Rydberg

Gates Rydberg Sites

Non-reuse
Qubits

Storage traps

3.28
3.85

4.3
4+
3.5
8

…

…

𝑠&,(

4.05
+ 3.2

8

l2,Rydberg: {𝑔0(q0, q1), 𝑔!(q3, q4)}
l4,Rydberg: {𝑔$(q1, q2), 𝑔%(q3, q5) ,

𝑔&(q0, q4)}
𝑔0

𝑔!

𝑔$

𝑔%

𝑔&

Gate in l2,Rydberg Gate in l4,Rydberg

Bipartite Graph for Qubit Reuse

Bipartite Graph for Gate Placement

Bipartite Graph for Non-Reuse
Qubit Placement

a) Qubit Reuse

𝜔"," 𝜔",! 𝜔",$

y

0

9

(um)

19

4 x1 13 (um)0

Ω)*+,
-!

q0q1 q2 q3q4q5

𝑠%,"

𝑠","

y

0

9

(um)

19

𝑆)*+,
."

Non-reuse Qubits

4 x1 13 (um)0

𝑞1
𝑞0 𝑞3

𝑞4

Fig. 6. Intermediate placement. a) Identifying qubit reuse with bipartite
matching (highlights) between gates in two Rydberg stages. b) Gate placement
for Rydberg stage l2,Rydberg. The qubit placement on the left is before Rydberg
stage l2,Rydberg. The candidate Rydberg sites Ωg1

cand are indicated by the dashed
boxes. Gates are placed by a full matching in bipartite graph on the right. c)
Non-reuse qubit placement after Rydberg stage l2,Rydberg. The qubit placement
on the left is based on results in b). The candidate storage traps for q0 are
Sq0

cand, indicated by circles in dashed boxes.

where vertices represent gates from each stage, and edges are
drawn between vertices vg and vg′ if a qubit of g can be reused
in g′. To maximize the number of reuse qubits, we employ the
Hopcroft–Karp algorithm [10] to find the maximum cardinality
matching in this bipartite graph. The algorithm’s complexity
is O(|E|

√
|V |). In our case, both vertex and edge numbers

are O(n), where n is the number of Rydberg sites, yielding a
complexity of O(n1.5).

2) Gate Placement: The qubit reuse strategy determines a
set of Rydberg sites Ωreuse occupied by gates involved with
reused qubits. We need to further place the other gates to

remaining Rydberg sites while minimizing the total movement
cost. For a placement M , we estimate the cost for a gate g
at a Rydberg site ω utilizing gCost(g, ω,M), as calculated in
Eq. 1. In addition, if gate g(q, q′) is reused by g′(q, q′′) in the
next Rydberg stage, we include the movement cost of q′′ to
ω, i.e.,

√
d(ω,mq′′), into the cost for gate g.

For this optimization, we employ a minimum weight full
matching approach on a bipartite graph. The graph vertices
consist of gates and candidate Rydberg sites within Ωg

cand. We
define Ωg

cand as the difference between the set of neighboring
sites Ωg

near and Ωg
reuse. The neighboring sites are determined

based on the nearest Rydberg site to the gate’s target qubits
with an expansion factor δ to ensure a full matching exists.
Fig. 6b presents an example for Ωg0

cand and Ωg1
cand.

Edges in the graph connect gates to their candidate sites,
with weights representing the movement costs. For instance,
the edge weight between g0 and ω0,0 is calculated as 4.05+3.28
where the first term is the cost to move q0 and q1 to ω0,0,
whereas the second term is the cost for moving q2 to ω0,0 as
q2 and q1 will perform g2 here in the next Rydberg stage. To
solve this matching problem efficiently, we utilize the Jonker-
Volgenant algorithm [12], which has a time complexity of
O(|V |3). In our case, the vertices number is O(n), resulting
in a complexity of O(n3). This approach allows us to opti-
mize gate placement while considering both qubit reuse and
movement minimization.

3) Non-Reuse Dynamic Qubit Placement: The non-reuse
qubits still needs to return to the storage zone. Similar to gate
placement, the optimal assignment of non-reuse qubits can
be solved via finding the minimum-weight full matching of
a bipartite graph, where vertices are the non-reuse qubits and
the candidate storage traps.

For each qubit q, the set of candidate traps Sq
Cand is

constructed based on its current location and the future gate
operation. Sq

Cand consists of the empty storage traps within a
bounding box covering three types of the storage traps:

• The qubit’s original storage zone location: The trap is
added to ensure full matching exists because one valid
solution is to return all qubits back to where they were.

• Neighboring storage traps close to its current Rydberg
site: To generate these traps, we first find the nearest
storage trap to the current Rydberg site, and then include
its k-neighboring traps along the row or column.

• The nearest storage trap to its related qubit (if applicable).
We define q′ to be the related qubit of q if q′ and q
will perform a 2Q gate in the next Rydberg stage. This
trap is a good candidate because placing q and q′ near
each other reduces the movement overhead for the next
Rydberg stage. If q does not involve in any gates in the
next Rydberg stage, we omit this type of traps.

Fig. 6c provides example candidate sites for q0. First, its
original trap s3,4 is included (red triangle). Second, the nearest
storage trap to its current location s3,0 and the k = 1-hop
storage traps to s3,0 are included (red crosses). Third, its
related qubit is q4, so the nearest storage trap to q4, s3,5 is
included (red hexagon). Lastly, we obtain the bounding box

of the above traps (red dashed box), and Sq0
cand is all the empty

traps in the bounding box.
Based on the qubit placement M for a Rydberg stage, the

edges connect qubit q to its candidate trap sr,c with weights
representing movement costs:√

d(sr,c,mq) + 1q′ × α×
√
d(sr,c,mq′), (3)

where the function 1q′ indicates whether such related qubit q′

exists, α = 0.1 is a weighting factor for the lookahead cost.
Similar to gate placement, we apply the Jonker-Volgenant

algorithm to obtain the minimum weight full matching for
the qubits and traps. In the bipartite graph, we have O(n)
qubit vertices, where each qubit has a constant number of
candidate traps on average and n is the number of Rydberg
sites in entanglement zones. Thus, the complexity for qubit
placement is O(n3). Given O(g) stages in the worst case, the
overall complexity for intermediate placement is O(g · n3).

VI. LOAD-BALANCING SCHEDULING FOR MULTI-AOD
ARCHITECTURES

Based on the qubit placements, we can derive the required
qubit movements. Due to the order constraints imposed by
AOD, we split the movements into multiple rearrangement
jobs, such that the movements within a job can be performed
by one AOD. The detailed instructions for each rearrangement
job, including atom transfer and AOD move, will be generated
as described in Sec. IX. To generate the jobs, we adopt the
strategy proposed in a previous work Enola [30], where a
maximal independent set algorithm is applied to recognize
the largest set of movements that can be performed simulta-
neously. According to Ref. [30], the complexity of generating
rearrangement jobs is O(n2 log(n)).

If there is only one AOD, all the rearrangement jobs are
sequential. However, if there are multiple AODs, we can use
them to rearrange qubits in parallel. In scheduling, we assign
the jobs to AODs and compute the exact start and end time
for each instruction, including the rydberg instructions for
2Q gates, 1qGate instruction for 1Q gates, and rearrangement
jobs for qubit movements. The key is to identify dependencies
among the jobs.

After the machine-level instructions of each rearrangement
job are derived, each job splits to three steps: picking up all
the qubits, performing parallel movements of these qubits,
and dropping off all the qubits. The relative finishing time
of pickup and move with respect to the beginning time of
the whole job are computed. Based on this information, we
find it necessary to distinguish trap dependencies and qubit
dependencies as illustrated in Fig. 7.

Trap dependency exists between two rearrangement jobs
acting on the same SLM trap. If there is a job1 moving a qubit,
blue in Fig. 7a), currently located at an SLM trap (dashed
circle), any other job that moves another qubit to this SLM trap
must wait until job1 vacates the trap. Thus, a trap dependency
dictates the finishing time of the move in job2 to be later than
the finishing time of the pick in job1, leaving some possibilities
of overlapping between the two jobs.

a) trap dependency

job1 job2

b) qubit dependency

job2 job1
rydberg
or 1qgatejob2

pick move drop

pick move drop

pick move drop

t t

or

...

Fig. 7. Two types of dependencies for rearrangement jobs. a) site dependency:
job1 needs to vacate the SLM site before job2 can occupy the site. b) qubit
dependency: job2 can only operate on the same qubit after job1 finishes.

Qubit dependency exists between two instructions involved
with the same qubit. For example, if two jobs move the same
qubit, then there is a qubit dependency between them which
forbids any time overlap between the two jobs (Fig. 7b). If
there is a rydberg or 1qGate instruction on the qubit,
the rearrangement job also needs to wait until that instruction
finishes, and vice versa.

To ensure correct circuit execution, we process grouped
instructions sequentially: 1) moving qubits to the Rydberg
zone, 2) executing gates, 3) moving qubits back to the storage
zone, and repeating this sequence until the final Rydberg stage.
This methodology adheres to instruction dependencies. If the
instruction type is rydberg or 1qGate, its start time is the
latest finishing time of the instructions it depends upon.

If there are multiple AODs, we employ a load-balancing
scheduling algorithm to assign parallelizable rearrangement
instructions to AODs. This algorithm iteratively allocates the
longest duration instruction to the earliest available AOD. By
scheduling the longest instructions first, we minimize overall
circuit execution time, preventing bottlenecks that could delay
dependent instructions. This strategy ensures that shorter, more
flexible tasks can fill any scheduling gaps, optimizing AOD
utilization and maintaining high parallelism. Consequently, the
algorithm balances the load across multiple AODs, avoiding
bottlenecks and preserving the correct sequence of dependent
instructions. The start time of the arrangement instruction is
determined by the later of either the available time of the
assigned AOD or the finishing time of the instructions it
depends on.

VII. EVALUATION

We implemented our proposed algorithm in Python. We
employed SciPy (v1.11.0) [34] for solving minimum weight
full matching and maximal cardinality matching of a bipartite
graph. All experiments were conducted on an AMD EPYC
7V13 64-Core Processor at 2450 MHz and 128 GB of RAM.
Our benchmark circuits are selected from QASMBench [14]
with a qubit number ranging from 14 to 98 and a gate number
ranging from 41 to 630. All circuits are precompiled by Qiskit
(v1.2.4) with optimization level 3 [11] for preprocessing.

A. Architecture and Compiler Settings

To demonstrate the advantage of zoned architectures, we
compare with the monolithic architecture and superconducting

TABLE I
HARDWARE PARAMETERS.

Parameter f2 f1 T1q T2q T2

Neutral Atom [4] 0.995 0.9997 52us 360ns 1.5s
SC Heron [1] 0.999 0.9997 25ns 68ns 311us
SC Grid [13] 0.999 0.9997 25ns 42ns 89us

qubit-based architectures. We list the architecture configura-
tions and the compiler settings in the following paragraph:
Zoned Architecture: The default configuration is the architec-
ture consisting of one AOD with 100×100 sites, one storage
zone with 100×100 sites and one entanglement zone with
7×20 sites as seen in Fig. 2. We compare with the leading
compiler for zoned architecture, NALAC [27].
Monolithic Architecture: We consider the architecture with
a single entanglement zone consisting of 10×10 Rydberg sites
and one AOD with 10×10 sites. Qubit separation follows the
settings of the entanglement zone in the zoned architecture. We
compare against two state-of-the-art compilers, Atomique [35]
and Enola [30].
Superconducting Qubits: We consider the IBM’s Heron
superconducting machine with a 127-qubit heavy hexagon
coupling graph and a 11-by-11 grid coupling graph featured
Google’s sycamore architecture [13], and compile circuits by
the default Qiskit transpiler with Sabre [15].

B. Fidelity Model

We consider three main error sources: imperfect gates, atom
transfers, and qubit decoherence. We assume that the qubit
movement affects circuit fidelity by increasing decoherence er-
rors. Given a movement distance d, we calculate the movement
time t based on the relation d/t2 = 2750m/s2 [5]. According
to the experiments in [5], the qubit movement at this speed
does not incur fidelity decrease or atom loss.

The hardware parameters are derived from the leading
hardware [4], [5]. To be conservative, we assume 1Q gates
are executed sequentially with the fidelity f1 = 99.97% and
duration T1q = 52us. This estimation is based on conservative
pulse duration [4]: three Rz and two Ry pulses, each 8us,
and the separation between two pulses is 3us. CZ gates
are implemented by a global Rydberg laser with the fidelity
f2 = 99.5% and duration TRyd = 360ns. Idle qubits excited
by the Rydberg laser results in the fidelity fexc = 99.75%.
Multiple atoms can be transferred simultaneously from one
tweezer to the other in Ttran = 15us, and each transfer has
the fidelity ftran = 99.9%, accounting for both dephasing and
atom loss.

The decoherence error is estimated by a linear model 1 −
tq/T2, where tq is the idling time for qubit q and T2 = 1.5s
is the coherence time for neutral atoms. The linear model is
a reasonable approximation in scenarios where tq ≪ T2. The
qubit idling time is the time that a qubit is not performing
gates or atom transfers.

The total circuit fidelity is computed by

f = (f1)
g1︸ ︷︷ ︸

1Q gate

· (f2)g2 · (fexc)
Nexc︸ ︷︷ ︸

2Q gate

· (ftran)
Ntran︸ ︷︷ ︸

atom transfer

·Πq∈Q (1− tq
T2

)︸ ︷︷ ︸
decoherence

,

where g1 and g2 are the number of 1Q and 2Q gates, Nexc
is the number of qubits excited by the Rydberg laser without
performing a 2Q gate, Ntran is the number of atom transfers,
and Q is the set of qubits.

The hardware parameters for superconducting qubits are
from the leading commercial machines. For the Heron archi-
tecture, we extract the parameters of ibm torino from IBMQ
platform [1], [21]. We set T2 = 311us, and use 2Q gate
fidelity f2 = 99.9% [21]. When estimating the decoherence
error, we use 68ns for 2Q gate duration and 25ns for 1Q
gate duration [1]. The parameters for the grid architecture
are derived from [13], with T2 = 89us and T2q = 42ns. The
parameters are summarized in Table I.

C. Monolithic Architecture vs Zoned Architecture vs Super-
conducting Qubit

In our evaluation results, the performance gain is summa-
rized by the geometric mean. Fig. 8 demonstrates that ZAC
outperforms all baselines for every circuit. We achieve a 1.56×
and 2.33× fidelity improvement compared to the superconduct-
ing Heron and grid architectures, respectively, due to better
decoherence fidelity. Table II shows the fidelity breakdown
and average circuit duration for the Heron architecture and
ZAC, where each fidelity term is the geometric mean among
all benchmarks. Although the zoned architecture based on
neutral atom have longer circuit duration compared to the
superconducting qubit platform due to slow operations and
qubit movement, it has less decoherence errors due to the
long coherence time. However, with better 2Q gate fidelity,
for circuits with short circuit duration, superconducting qubit
architectures may have advantages over the zoned architecture,
e.g., ising n42 has a fidelity of 0.601 and 0.722 with duration
2us and 650ns on SC Heron and Grid, respectively, with while
its fidelity on the zoned architecture is 0.37 with duration
10,439us.

Compared with the monolithic architecture, ZAC increases
fidelity by 22× and 13,350× compared to Enola and Atom-
ique, respectively. Moreover, for zoned architectures, ZAC
delivers a 4× fidelity improvement over NALAC. Note that in
terms of 2Q gate fidelity, NALAC has addition qubit excitation
errors since they keep idle qubits in the entanglement zone to
enhance qubit reuse. Fig. 9 provides the fidelity breakdown
for ZAC, NALAC, Enola, and Atomnique. Without qubit
excitation errors caused by the Rydberg laser, ZAC achieves
1.37× and 14× better 2Q gate fidelity than NALAC and
Enola. In terms of atom transfer fidelity, Atomique does not
utilize atom transfers but employs SWAP gates to change qubit
locations. Compared with Enola, ZAC demonstrates a 1.03×
improvement in atom transfer fidelity via exploiting qubit
reuse. For decoherence errors, ZAC exhibits a 1.36× fidelity
improvement compared with Atomique. This improvement can

TABLE II
FIDELITY BREAKDOWN AND AVERAGE CIRCUIT DURATION FOR THE

SUPERCONDUCTING QUBIT GRID ARCHITECTURE AND ZAC.

Fidelity breakdown Avg.
2Q gate 1Q gate Tran. Decohe. Total duration

SC 0.8451 0.9008 N/A 0.3102 0.2362 9.1us
ZAC 0.6977 0.9721 0.7814 0.7003 0.3689 13.8ms

be attributed to the shorter qubit traveling distance. Fig. 10
illustrates the circuit duration. Since qubits can be placed more
compactly in the storage zone, we have shorter movement
distances to bring qubits to the Rydberg site compared to
the monolithic architecture. However, NALAC has the longer
circuit duration for large cases, showing that their placement
strategy and reuse strategy fail to reduce the movement over-
head. Overall, ZAC achieves 10% and 55% shorter circuit
duration compared to Atomique and NALAC, respectively.

We see performance differences across various architec-
tures depending on the circuit characteristics. For circuits
with low parallelism such as BV (Bernstein-Vazirani), GHZ
(Greenberger-Horne-Zeilinger), QFT (Quantum Fourier Trans-
form), where the gate execution is sequential in nature, the
zoned architecture demonstrates larger fidelity improvement
compared to the monolithic architecture. Because the qubit
excitation errors for the monolithic architecture is detrimental,
the circuit performance drops rapidly as the qubit number
grows. For example, for bv n70, ZAC shows an 635× fidelity
improvement compared with the monolithic architecture.

On the other hand, for circuits with high parallelism like
Ising, the ability to handle multiple qubit interactions simul-
taneously is critical. In such cases, monolithic architectures,
which can be viewed to maximize qubit reuse, may display
a stronger performance as they are inherently designed to
support dense and simultaneous qubit interactions without
the overhead of frequent zone transfers. However, zoned
architectures, when optimized, can still be competitive by
leveraging qubit reuse and strategic placement to minimize
movement overhead. Furthermore, the compact layout in the
storage zones further reduces decoherence errors, enhancing
the overall performance. Therefore, for circuits with high
parallelism such as ising n98, ZAC can still deliver a 11×
fidelity gain. In conclusion, while zoned architectures excel
in maintaining high fidelity for sequential circuits by mini-
mizing qubit excitation errors, they also exhibit competitive
performance for highly parallel circuits through minimizing
movement overhead and decoherence errors.

D. Ablation Study of Compilation Techniques

Fig. 11 presents a comparative analysis of different tech-
niques in ZAC. ‘Vanilla’ is the baseline approach with trivial
and static qubit placement, where we place qubits sequen-
tially according to their indices, starting from the first stor-
age trap in the nearest row to the entanglement zone. By
introducing dynamic placement, ‘dynPlace’ achieves a 5%
fidelity improvement, showing its effectiveness in reducing

bv_n14(13, 28)
bv_n19(18, 38)

bv_n30(18, 38)
bv_n70(36, 107)

cat_n22(21, 43)
cat_n35(34, 69)

ghz_n23(22, 45)
ghz_n40(39, 79)

ghz_n78(77, 155)

ising_n42(82, 144)

ising_n98(194, 340)

knn_n31(105, 153)

multiply_n13(40, 53)
qft_n18(306, 324)

seca_n11(80, 100)

swap_test_n25(84, 123)

wstate_n27(52, 105)
GMean

0.0

0.5

fid
el

ity
Architecture Comparison

SC-Heron SC-Grid Monolithic-Atomique Monolithic-Enola Zoned-NALAC Zoned-ZAC

Fig. 8. Circuit fidelity comparisons across different architectures. ‘SC’ means superconducting qubits. The name of the benchmark circuit is followed by the
number of program qubits and the gate number. For example, qft n18(306/324) represents the QFT circuit with 18 qubits, 306 2Q gates and 324 1Q gates.

1

0.1

0.01

2Q gate comparison

1
0.85

0.7

fid
el

ity
, l

og
 sc

al
e atom transfer comparison

Atomique
Enola
NALAC
ZAC

bv_n14bv_n19bv_n30bv_n70
cat_n22

cat_n35
ghz_n23

ghz_n40
ghz_n78

ising_n42
ising_n98

knn_n31
multiply_n13qft_n18

seca_n11
swap_test_n25

wstate_n27GMean

1

0.5
0.25

decoherence comparison

Fig. 9. Fidelity breakdown for Atomique, Enola, NALAC and ZAC. Shorter bars are better because of the log scale.

bv_n14 bv_n19 bv_n30 bv_n70
cat_n22

cat_n35
ghz_n23

ghz_n40
ghz_n78

ising_n42
ising_n98

knn_n31
multiply_n13 qft_n18

seca_n11
swap_test_n25

wstate_n27
0

50

100

du
ra

tio
n

(m
s)

circuit duration comparison

Atomique
Enola
NALAC
ZAC

Fig. 10. Circuit duration for Atomique, Enola, NALAC and ZAC.

the average distance of qubit movements. ‘dynPlace+reuse’
further incorporates qubit reuse and boosts the fidelity by 46%
compared to ‘dynPlace’. As the reuse of qubits minimizes
unnecessary movements, it lessens the errors associated with
atom transfer and decoherence. ‘SA+dynPlace+reuse’ attains
the best performance by adding simulated annealing-based ini-
tial placement. This setting only demonstrates a 0.4% fidelity
increase on average. Since the qubits in the circuits fit into
one row of the storage zone, all qubits have the same distance
to the entanglement zone, and the effect of initial placement
is less significant. However, it realizes up to a 4% gain on

circuits such as qft n18. This evaluation results highlight the
effectiveness of integrating advanced placement strategies and
reuse policies in enhancing quantum circuit fidelity.

E. Scalablity Study

Fig. 12 reveals the trade-off between fidelity and the com-
pilation time. ZAC demonstrates its efficiency by achieving
higher fidelity with runtime comparable to other tools. If we
disable the optimization for initial mapping, ZAC can solve
every instances in less than 1 second, achieving 63× speedup
and 3.6× better fidelity compared to NALAC. The results

bv_n14bv_n19bv_n30bv_n70
cat_n22

cat_n35
ghz_n23

ghz_n40
ghz_n78

ising_n42
ising_n98

knn_n31
multiply_n13qft_n18

seca_n11
swap_test_n25

wstate_n27GMean
0.00

0.25

0.50

0.75

fid
el

ity
Technique Comparison

Vanilla
dynPlace
dynPlace+reuse
SA+dynPlace+reuse

Fig. 11. Circuit fidelity comparison for different settings in ZAC. ‘Vanilla’ means trivial initial placement and fix intermediate qubit placement without any
qubit reuse. ‘dynPlace’ means dynamic qubit placement. ‘reuse’ means reuse-aware qubit placement. ‘SA’ means SA-based initial placement.

10 1 100 101

time (s), log scale

0.0

0.1

0.2

0.3

fid
el

ity

compilation time and fidelity

Atomique
Enola
NALAC
ZAC-Vanilla
ZAC-dynPlace
ZAC-dynPlace+reuse
ZAC-SA+dynPlace+reuse

Fig. 12. Comparison of the average compilation time and circuit fidelity
in the geometric mean across all circuits for Atomique, Enola, NALAC, and
ZAC. Each color represents a compiler, and different marker indicates the
strategy adopted in ZAC.

show that ZAC is a more effective and efficient compiler
compared to other tools.

F. Optimality Study

In this experiment, we evaluate the optimality gap for
ZAC by comparing it against the fidelity of three ideal
cases, perfect reuse, perfect movement and perfect placement.
Note that perfect placement is built upon the assumption
of perfect movement, while perfect reuse incorporates both
perfect placement and perfect movement. These idealized
scenarios represent upper bounds on fidelity, though they are
not generally achievable. The fidelity represents the overall
circuit fidelity. The evaluation results are illustrated in Fig. 13.

The setting for perfect movement assumes that all move-
ments are compatible. Therefore, between two Rydberg in-
structions, we have at most two rearrangement instructions:
the first rearrangement instruction moves the qubits that are
not involved in gates from the entanglement zone to the storage
zone, and the second rearrangement instruction relocates the
qubits, that are about to go through gates, from the storage
zone to the entanglement zone. ZAC only demonstrates a
3% optimality gap compared with the perfect movement case,
showing that our placement strategy effectively maximizes the
movement parallelism.

Based on the assumptions of ideal movement, perfect place-
ment assumes that the distance to move a qubit between
a storage trap and a Rydberg site is the zone separation.
Thus, the duration for each rearrangement layer is the min-
imum possible duration for any rearrangement layer, i.e.,

2Ttran + Tmove = 2Ttran +
√
dsep/a. Under this setting, ZAC

has a 7% optimality gap, indicating that our placement strategy
effectively minimizes the movement duration.

The setting for perfect reuse represents the most ideal
scenario for zoned architectures. With the assumptions in
perfect placement, we further assume that for the reusable
qubit can stay at the current site or be directly moved to its
next site, reducing two atom transfers required for moving the
qubit back to a storage trap. Compared with perfect reuse,
ZAC only demonstrates a 10% optimally gap. The optimality
study reveals that our compiler’s performance is near optimal,
demonstrating its effectiveness for zoned architectures.

G. Effectiveness of Multiple AODs

Fig. 14 demonstrates the impact of utilizing multiple AODs
on circuit fidelity across various benchmarks. The use of multi-
ple AODs generally enhances circuit fidelity, with the greatest
improvements observed in having two AODs with a 10%
fidelity improvement. This increase comes from the increased
parallelism for rearrangement instructions. The improvement
becomes less significant with more than two AODs since there
are not enough rearrangement instructions to fully utilize the
increased parallelism. Thus, adding the third and fourth AOD
only gives a 2% fidelity improvement. The gain of multiple
AODs observed in Atomique can be more significant than ZAC
because Atomique reduces movement distance and Rydberg
stages in a monolithic architecture via multiple AODs. How-
ever, in zoned architectures, the movement distance is fixed,
and the number of Rydberg stages does not affect fidelity, so
the gain is more moderate.

H. Effectiveness of Multiple Entanglement Zones

We demonstrate the flexibility of ZAC by evaluating the
circuit fidelity on different zone layouts, e.g., multiple entan-
glement zones. The advantage of having multiple entanglement
zones is to reduce the average distance between a storage trap
and a Rydberg site. The zone size of the default configuration
is too large for our circuits to demonstrate the advantage
of the second entanglement zone. Because we only utilize
one row in the storage zone and two to three rows in the
entanglement zone, adding the second entanglement zone does
not reduce the movement distance. Therefore, we consider
a smaller architecture where qubits occupy multiple rows in

bv_n14bv_n19bv_n30bv_n70
cat_n22

cat_n35
ghz_n23

ghz_n40
ghz_n78

ising_n42
ising_n98

knn_n31
multiply_n13qft_n18

seca_n11
swap_test_n25

wstate_n27GMean
0.00

0.25

0.50

0.75

fid
el

ity
Optimality Analysis

Perfect Reuse
Perfect Placement
Perfect Movement
ZAC

Fig. 13. Optimality analysis. ‘Perfect movement’ considers the ideal case when all qubit movement can be performed in parallel. ‘Perfect placement’ assumes
the shortest movement between zones. ‘Perfect reuse’ considers maximum qubit reuse via direct movements between Rydberg sites.

bv_n14 bv_n19 bv_n30 bv_n70
cat_n22

cat_n35
ghz_n23

ghz_n40
ghz_n78

ising_n42
ising_n98

knn_n31
multiply_n13qft_n18

seca_n11
swap_test_n25

wstate_n27 GMean
0.00

0.25

0.50

0.75

fid
el

ity

AOD Number Comparison

1AOD
2AOD
3AOD
4AOD

Fig. 14. Architecture evaluation with different AOD numbers.

b)a)

Partial Layout for Arch1 Partial Layout for Arch2

Fig. 15. Demonstration for qubit movement of circuit ising n98. a) Partial
architecture for Arch1. b) Partial architecture for Arch2.

the storage zone. Thus, when adding the second entanglement
zone, we can effectively reduce the movement distance.

In this experiment, we consider circuit ising n98 with 98
qubits. To have a fair comparison, both architectures have
the same configuration for the storage zone and the number
of Rydberg sites. Arch1 is the small architecture with 3×40
storage traps, and an entanglement zone with 6×10 sites.
Arch2 is the architecture with two entanglement zones, each
comprising of 3×10 sites located above and below the storage
zone as indicated in Fig. 15. Ising n98 is a highly parallel
circuit, where 49 2Q gates can be executed simultaneously.
Therefore, the qubits fill up most of the entanglement sites.
With a single entanglement zone, qubits need to travel long
distance to reach the sites at the rear row as shown in
Fig. 15a. The performance for ising n98 on Arch1 has a
circuit fidelity of 0.041 and a circuit duration of 23.25ms.
With the second entanglement zone, the fidelity on Arch2 is
0.047, which is a 15% improvement because when equipped

with two entanglement zones, the distance to reach the rear
sites are reduced as illustrates in Fig. 15b. The circuit duration
is also shortened to 21.63ms, which is a 8% reduction. This
result demonstrates the potential of architectures with multiple
entanglement zones to improve circuit performance in terms
of both fidelity and efficiency. Additionally, the experiment
demonstrates that ZAC is capable of supporting architectures
with multiple entanglement zones.

VIII. ZAC IN FAULT-TOLERANT QUANTUM COMPUTING

Recent experiments in reconfigurable neutral atom arrays
have demonstrated fault-tolerant quantum algorithms using
tens of logical qubits [4], highlighting the need for compilation
support for fault-tolerant quantum computing (FTQC).

In FTQC, logical qubits are redundantly encoded into more
physical qubits to enable the detection and correction of quan-
tum errors. For instance, the [[8,3,2]] code, as summarized in
Fig. 16a, encodes 3 logical qubits using 8 physical qubits with
distance 2, allowing detection of any single-qubit error [33]. To
implement logical gates, physical gates are carefully designed
to manipulate logical qubits while remaining within the code
space. Transversal gates are broadly defined as gates that do
not propagate errors within the same code block, making them
preferred in FTQC. In addition, reconfigurable architectures
such as trapped ions and neutral atoms can directly perform
transversal gates leveraging available long-range connectiv-
ity. Two example transversal gates of the [[8,3,2]] code are
displayed in Fig. 16a: the ‘in-block gate,’ where applying
physical T † gates equates to a combination of logical CCZ,
CZ, and Z gates; and the ‘inter-block gate,’ where applying
physical CNOTs to corresponding qubits in two blocks equates
to logical CNOTs on corresponding logical qubits.

The [[8,3,2]] codes were recently used to implement hyper-
cube instantaneous quantum polynomial (hIQP) circuits [4],

b) logical hypercube instantaneous quantum polynomial (hIQP) circuit

block0

block1

block2

block
127

...

in-block
layer

CNOT
layer

in-block
layer

CNOT
layer ...

...

in-block
layer

X-basis
measur
ements

...

a) in-block gate inter-block gate
CNOT

physical

logical

[[8,3,2]] code

Z
Z
Z(3 logical qubits)

Fig. 16. a) An [[8,3,2]] code block encodes 3 logical qubits with 8 physical
qubits. The physical layout is 2 rows by 4 columns. An in-block logical gate
equivalent to CCZ, CZ, and Z gates can be realized by applying physical T †

gates on all qubits. Inter-block CNOT gates can be realized by (transversal)
CNOTs on corresponding qubits of two blocks. b) A hypercube instantaneous
quantum polynomial (hIQP) circuit on 128 [[8,3,2]] code blocks (384 logical
qubits). This is a scaled-up version of the hIQP circuit in [4]. All logical
qubits are initiated in |+⟩ and measured in the X basis. There are 8 in-
block gate layers interleaved with 7 (inter-block) CNOT layers. The stride of
CNOTs doubles each time: in the first layer, the CNOTs are on (0,1), (2,3),
..., (126,127); in the second layer, they are on (0,2), (1,3), ..., (125,127), etc.

[9]. This class of circuits can be implemented using transversal
gates and may offer quantum advantage, as sampling from
these circuits could solve certain #P-hard counting prob-
lems [6]. We consider an hIQP circuit with 384 logical qubits
encoded in 128 [[8,3,2]] code blocks and 448 transversal
gates. In this circuit, there are layers of in-block gates in-
terleaved with inter-block CNOT layers. The stride of the
CNOTs increases by 2 in each layer, generating a hypercube
connectivity, e.g., in the first layer, CNOTs connect blocks
0 and 1, 2 and 3, etc.; in the second layer, CNOTs connect
blocks 0 and 2, 1 and 3, and so on. This circuit is a scaled-up
version of the 48-qubit circuit from Ref. [4], likely beyond the
reach of state-of-the-art classical simulation methods [20].

In the FTQC context, ZAC serves two main purposes.
First, it can compile physical qubit movements for FTQC
subroutines such as syndrome extraction and logical gates. For
the hIQP circuits on [[8,3,2]] codes, these tasks are straightfor-
ward, so we omit them here. Second, by inputting the logical
circuit consisting of transversal gates, ZAC can determine the
movements of logical code blocks to implement the correct
CNOTs between them. The physical qubits within each logical
block move together. Thus, ZAC’s qubit movement strategy
directly informs how logical blocks should be repositioned to
execute transversal gates. In the hIQP example, we apply ZAC
to the 128 code blocks and a smaller logical-level architecture.
Since according to the settings in [4], each code block occupies

<init> ::= { 'init_locs': list[qloc] }
<1qGate> ::= { 'unitary': u3, 'locs': list[qloc] }
<rydberg> ::= { 'zone_id': int }
<rearrangeJob> ::= { 'aod_id': int,

'begin_locs': list[qloc], 'end_locs': list[qloc],
'insts': list[activate | deactivate | move] }

a)

<activate> ::= { 'row_id': list[int], 'row_y': list[float],
'col_id': list[int], 'col_x': list[float] }

<deactiate> ::= { 'row_id': list[int], 'col_id': list[int] }
<move> ::= { 'row_id': list[int], 'row_y_begin': list[float],

'row_y_end': list[float], 'col_id': list[int],
'col_x_begin': list[float], 'col_x_end': list[float] }

b)

Fig. 17. a) Four types of instructions in ZAIR. b) Three types of machine-
level instructions involved in a rearrangeJob instruction in ZAIR.

2 rows by 4 columns, and the physical architecture includes
7 rows and 20 columns of sites in the entanglement zone,
the logical-level architecture supports ⌊7/2⌋ = 3 rows and
⌊20/4⌋ = 5 columns in the entanglement zone. Ref. [4]
provides a movement heuristic that extends to cases where
both the number of rows and columns are powers of 2, using
only 2 × 4 = 8 sites out of the 15 available. In contrast,
ZAC can leverage all available sites, resulting in a compiled
output with 35 Rydberg stages and a physical circuit duration
of 117.847 ms.

The results above demonstrate that ZAC is an effective tool
for the movements required by transversal CNOTs between
code blocks. However, this addresses only one of the aspects
in FTQC compilation for neutral atom arrays, and further work
is needed to advance toward large-scale universal computation.

IX. ZAIR: AN INTERMEDIATE REPRESENTATION FOR
ZONED ARCHITECTURES

Given a quantum circuit, the ultimate output of our compiler
are machine-level instructions on the controllable components
including AODs, the Rydberg laser (for 2Q gates), and the
Raman lasers (for 1Q gates). However, just like on classical
computers, the number of machine-level instructions can grow
quickly, hiding the structure of program execution. To tackle
with this complexity, we introduce ZAIR (zoned architecture
intermediate representation) as a level of abstraction. ZAIR
has four types of instructions listed in Fig. 17a. It locates a
qubit in SLM with qloc that is a 4-tuple (q, a, r, c) meaning
qubit q is at row r and column c of SLM array a.

The init instruction appears only once in the beginning
for the initial location of each qubit. 1qGate means applying
the 1Q gate unitary to a set of qlocs. rydberg means
applying the Rydberg laser to a specific entanglement zone
with index zone_id. Each of the rydberg instruction
executes what we call a Rydberg stage which is a set of 2Q
gates applied in parallel by the same Rydberg laser exposure.
A Rydberg stage requires qubit pairs to be properly moved
together to an entanglement zone to apply the 2Q gates.

The three instructions discussed above are at the machine-
level. In contrast, the rearrangeJob instruction corre-
sponds to a rearrangement job, which will be broken down

d) lower rowb) upper row

c0 c1

r0
r0

r1
c0 c1 c2

q1

q0

c) parking
r0

c0 c1

q2

q3

q5

q4

a)

c0 c1

r0

q1q0

c2

r1

q2

q3
q4 q5

Fig. 18. a) When we turn on the three AOD columns and two AOD rows, all
q0 to q5 are picked up. However, suppose we do not want to pick up q2 and
q3. We can do the following. b) Activate r0, c0 and c1 so that q0 and q1 are
picked up at the intersections. c) Perform a parking movement (arrow) that
shifts r0 and c0 so that q2 does not align with r0, and q3 does not align with
c0. d) Activate r1 and c2 so that q4 and q5 are picked up at the intersections.

to multiple machine-level instructions. The begin_locs
is comprised of a list of the qlocs for qubits that will
be rearranged by the AOD. The end_locs has the same
shape as begin_locs but the qlocs here change to the
ending locations after the rearrangement. For example, in
Fig. 2, qubits 0-3 form a little “square” at the bottom left
of the storage zone, i.e., they occupy (0,0), (0,1), (1,0),
and (1,1) in SLM array 0. Thus, begin_locs=[[(0,0,0,0),
(1,0,0,1)], [(2,0,1,0), (3,0,1,1)]]. The indicated rearrangement
job (red dashes) moves them to the entanglement zone with
end_locs =[[(0,1,0,2), (1,2,0,2)], [(2,1,1,2), (3,2,1,2)]]. q0
and q1 are at Rydberg site ω0,2 whereas q2 and q3 are at ω1,2.

The insts in a rearrangement job is populated by
machine-level AOD instructions listed in Fig. 17b. There
are some details to consider in generating these machine-
level instructions. For example, other than the movements
that shuttle qubits between zones, we may need some small
movements dubbed parking during the pickup phase in a job.
When we activate a set of AOD rows and columns, all qubits
at their intersections will be picked up as exhibited in Fig. 18a.
However, the rearrangement job may not be performing on a
set of qubits with this structure, the so-called combinatorial
rectangle [31], e.g., we may not want to move q2 and q3. In
this case, we can operate in a few steps as shown in Fig. 18b–
d. In this work, we adopt a simple pickup strategy following
OLSQ-DPQA [29] where we turn on the AOD row by row
and possibly insert parking between activating two rows.

The rearrangement job in ZAIR is at a sufficient level of
abstraction for the purpose of our compilation since it serves
as a natural interface between the placement in Sec. V and the
scheduling in Sec. VI. Generating machine-level instructions
from rearrangement jobs can involve specific machine details,
so this may be done by the hardware provider instead of the
user. No matter how a job is instantiated to machine-level
instructions, it occupies a worker (AOD) for a continuous pe-
riod of time, so our definition makes it convenient to leverage
multiple AODs. During the scheduling in the compilation,
each job is assigned to an AOD by setting the aod_id
field. ZAIR is also efficient: among the benchmark set in
this paper, the number of ZAIR instructions per gate is 0.85
geomean; the number of machine-level instructions per gate is
1.77 in geometry mean. The number of ZAIR instruction can
be lower than the number of gates because many 2Q gates
can be implemented together in a few ZAIR instructions in
benchmarks with high parallelism like Ising.

X. CONCLUSION

In this work, we propose ZAC, a compiler for zoned
quantum architectures based on neutral atoms. Our compiler
demonstrates significant improvement compared to with the
monolithic architecture or the superconducting qubit plat-
forms. By leveraging qubit mobility and innovative placement
and scheduling techniques, we address the critical challenges
associated with Rydberg excitation errors and qubit movement
overhead. Our proposed method effectively mitigates idle qubit
excitation errors by isolating qubits in storage zones when
not in use, enhancing overall circuit fidelity. Additionally,
reuse-aware placement strategies minimize the total move-
ment between zones, further reducing errors and improving
performance. Lastly, our load-balancing scheduling algorithm
ensures efficient distribution of rearrangement instructions,
maximizing parallelism and minimizing execution time. The
experimental results highlight the effectiveness of our com-
piler, showing that it achieves near-optimal performance with
only a 10% gap from the ideal solution. Compared with the
leading compiler for zoned architectures, we demonstrate a
4× fidelity improvement. The flexibility of our approach is
demonstrated through its adaptability to advanced architectures
with multiple AODs and multiple entanglement zones.

We also propose a comprehensive specification for zoned
architectures, supporting the expression with multiple entan-
glement and storage zones. In addition, we introduce the cor-
responding intermediate representation, ZAIR, that abstracts
rearrangement operations into jobs. This abstraction facilitates
the use of multiple AODs to move qubits in parallel.

Overall, this work underscores the potential of zoned ar-
chitectures in realizing scalable and reliable quantum com-
puting with neutral atoms, and the ability to support FTQC
makes ZAC a versatile tool for both current quantum com-
putations and future FTQC applications. There are several
future research directions. First, to further improve circuit
fidelity, we may explore other optimizations such as allowing
movements within entanglement zones for more advanced
qubit reuse. Second, our compiler can be extended to support
circuits with mid-circuit readout and multi-qubit gates by
revising the cost function. Lastly, our evaluation result for
multiple entanglement zones demonstrates the circuit perfor-
mance can be improved by running on architectures with
different configurations. Similar concepts have been proposed
for superconducting qubit platforms [17], [18], [37], [38].
This result suggests the possibilities for tailoring quantum
processors to diverse computational tasks, further enhancing
circuit efficiency and performance.

ACKNOWLEDGEMENTS

This work is partially funded by NSF grants CCF-2313083
and OSI-2410716. The authors thank Y. Stade, M. Cain, D.
Bluvstein, P. Liu, H. Zhou, M. Kalinowski, and Prof. M. D.
Lukin for valuable discussions.

REFERENCES

[1] “IBM Quantum,” https://quantum.ibm.com/, 2021.

https://quantum.ibm.com/

[2] “High-fidelity parallel entangling gates on a neutral-atom quantum
computer,” Nature, vol. 622, no. 7982, pp. 268–272, 2023.

[3] J. M. Baker, A. Litteken, C. Duckering, H. Hoffmann, H. Bernien,
and F. T. Chong, “Exploiting long-distance interactions and tolerating
atom loss in neutral atom quantum architectures,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 818–831.

[4] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz,
S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides,
N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn,
G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin,
“Logical quantum processor based on reconfigurable atom arrays,”
Nature, vol. 626, no. 7997, pp. 58–65, 2024.

[5] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kali-
nowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić,
and M. D. Lukin, “A quantum processor based on coherent transport of
entangled atom arrays,” Nature, vol. 604, no. 7906, pp. 451–456, 2022.

[6] M. J. Bremner, A. Montanaro, and D. J. Shepherd, “Average-case
complexity versus approximate simulation of commuting quantum com-
putations,” Physical Review Letters, vol. 117, no. 8, p. 080501, 2016.

[7] E. Decker, “Arctic: A field programmable quantum array scheduling
technique,” arXiv:2405.06183, 2024.

[8] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya,
P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert,
J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Bal-
lance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers,
T. Noel, and M. Saffman, “Multi-qubit entanglement and algorithms
on a neutral-atom quantum computer,” Nature, vol. 604, no. 7906, pp.
457–462, 2022.

[9] D. Hangleiter, M. Kalinowski, D. Bluvstein, M. Cain, N. Maskara,
X. Gao, A. Kubica, M. D. Lukin, and M. J. Gullans, “Fault-
tolerant compiling of classically hard IQP circuits on hypercubes,”
arXiv:2404.19005, 2024.

[10] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on Computing, vol. 2,
no. 4, pp. 225–231, 1973.

[11] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman,
J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R.
Johnson, and J. M. Gambetta, “Quantum computing with Qiskit,” 2024.

[12] R. Jonker and T. Volgenant, “A shortest augmenting path algorithm
for dense and sparse linear assignment problems,” in DGOR/NSOR:
Papers of the 16th Annual Meeting of DGOR in Cooperation with NSOR.
Springer, 1988, pp. 622–622.

[13] P. V. Klimov, A. Bengtsson, C. Quintana, A. Bourassa, S. Hong,
A. Dunsworth, K. J. Satzinger, W. P. Livingston, V. Sivak, M. Y. Niu,
T. I. Andersen, Y. Zhang, D. Chik, Z. Chen, C. Neill, C. Erickson,
A. Grajales Dau, A. Megrant, P. Roushan, A. N. Korotkov, J. Kelly,
V. Smelyanskiy, Y. Chen, and H. Neven, “Optimizing quantum gates
towards the scale of logical qubits,” Nature Communications, vol. 15,
no. 1, p. 2442, 2024.

[14] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “QASMBench: A low-
level quantum benchmark suite for NISQ evaluation and simulation,”
ACM Transactions on Quantum Computing, vol. 4, no. 2, 2023.

[15] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for NISQ-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001–1014.

[16] Y. Li, Y. Zhang, M. Chen, X. Li, and P. Xu, “Timing-aware qubit map-
ping and gate scheduling adapted to neutral atom quantum computing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 42, no. 11, 2023.

[17] C. Liang, Z. Li, M. Zhang, and L. Han, “A superconducting quantum
chip architecture design method for quantum programs,” in 2023 3rd
International Symposium on Computer Technology and Information
Science (ISCTIS). IEEE, 2023, pp. 1115–1121.

[18] W.-H. Lin, B. Tan, M. Y. Niu, J. Kimko, and J. Cong, “Domain-specific
quantum architecture optimization,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 12, no. 3, pp. 624–637,
2022.

[19] H. J. Manetsch, G. Nomura, E. Bataille, K. H. Leung, X. Lv, and
M. Endres, “A tweezer array with 6100 highly coherent atomic qubits,”
arXiv:2403.12021, 2024.

[20] D. Maslov, S. Bravyi, F. Tripier, A. Maksymov, and J. Latone, “Fast
classical simulation of Harvard/QuEra IQP circuits,” arXiv:2402.03211,
2024.

[21] D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. Govia, and
S. T. Merkel, “Benchmarking quantum processor performance at scale,”
arXiv:2311.05933, 2023.

[22] M. A. Norcia, H. Kim, W. B. Cairncross, M. Stone, A. Ryou, M. Jaffe,
M. O. Brown, K. Barnes, P. Battaglino, T. C. Bohdanowicz, A. Brown,
K. Cassella, C.-A. Chen, R. Coxe, D. Crow, J. Epstein, C. Griger,
E. Halperin, F. Hummel, A. M. W. Jones, J. M. Kindem, J. King,
K. Kotru, J. Lauigan, M. Li, M. Lu, E. Megidish, J. Marjanovic, M. Mc-
Donald, T. Mittiga, J. A. Muniz, S. Narayanaswami, C. Nishiguchi,
T. Paule, K. A. Pawlak, L. S. Peng, K. L. Pudenz, D. Rodrı́guez Pérez,
A. Smull, D. Stack, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro,
L. Wadleigh, T. Wilkason, T.-Y. Wu, X. Xie, E. Zalys-Geller, X. Zhang,
and B. J. Bloom, “Iterative assembly of 171Yb atom arrays with cavity-
enhanced optical lattices,” PRX Quantum, vol. 5, p. 030316, Jul 2024.

[23] N. Nottingham, M. A. Perlin, R. White, H. Bernien, F. T. Chong,
and J. M. Baker, “Decomposing and routing quantum circuits under
constraints for neutral atom architectures,” arXiv:2307.14996, 2023.

[24] T. Patel, D. Silver, and D. Tiwari, “Geyser: A compilation framework
for quantum computing with neutral atoms,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022.

[25] L. Pause, L. Sturm, M. Mittenbühler, S. Amann, T. Preuschoff,
D. Schäffner, M. Schlosser, and G. Birkl, “Supercharged two-
dimensional tweezer array with more than 1000 atomic qubits,” Optica,
vol. 11, no. 2, pp. 222–226, 2024.

[26] L. Schmid, S. Park, and R. Wille, “Hybrid circuit mapping: Leveraging
the full spectrum of computational capabilities of neutral atom quantum
computers,” in Design Automation Conference, 2024.

[27] Y. Stade, L. Schmid, L. Burgholzer, and R. Wille, “An abstract model
and efficient routing for logical entangling gates on zoned neutral atom
architectures,” arXiv:2405.08068, 2024.

[28] B. Tan, D. Bluvstein, M. D. Lukin, and J. Cong, “Qubit mapping
for reconfigurable atom arrays,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022, pp. 1–9.

[29] D. B. Tan, D. Bluvstein, M. D. Lukin, and J. Cong, “Compiling
quantum circuits for dynamically field-programmable neutral atoms
array processors,” Quantum, vol. 8, p. 1281, 2024.

[30] D. B. Tan, W.-H. Lin, and J. Cong, “Compilation for dynamically field-
programmable qubit arrays with efficient and provably near-optimal
scheduling,” arXiv:2405.15095, 2024.

[31] D. B. Tan, S. Ping, and J. Cong, “Depth-optimal addressing of 2D qubit
array with 1D controls based on exact binary matrix factorization,” in
2024 Design, Automation and Test in Europe Conference and Exhibition
(DATE) Proceedings, 2024.

[32] P. J. Van Laarhoven, E. H. Aarts, P. J. van Laarhoven, and E. H. Aarts,
Simulated annealing. Springer, 1987.

[33] M. Vasmer and A. Kubica, “Morphing quantum codes,” PRX Quantum,
vol. 3, no. 3, p. 030319, 2022.

[34] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[35] H. Wang, P. Liu, D. B. Tan, Y. Liu, J. Gu, D. Z. Pan, J. Cong, U. A.
Acar, and S. Han, “Atomique: A quantum compiler for reconfigurable
neutral atom arrays,” in Proceedings of the 51st Annual International
Symposium on Computer Architecture, ser. ISCA ’24, 2024.

[36] H. Wang, B. Tan, P. Liu, Y. Liu, J. Gu, J. Cong, and S. Han, “Q-Pilot:
Field programmable quantum array compilation with flying ancillas,” in
Proceedings of the 61st Annual Design Automation Conference, 2024.

[37] T. Yang, W. Wang, L. Wang, B. Zhao, C. Liang, and Z. Shan, “A
superconducting quantum processor architecture design method for
improving performance and reducing frequency collisions,” Results in
Physics, vol. 53, p. 106944, 2023.

[38] T. Yang, W. Wang, B. Zhao, L. Wang, X. Ding, C. Liang, and Z. Shan,
“A processor architecture design method for improving reusability of
special-purpose superconducting quantum processor,” Quantum Infor-
mation Processing, vol. 23, no. 6, p. 200, 2024.

APPENDIX

A. Abstract

The artifact includes the ZAC compiler, baseline compilers
for comparison, benchmarks, and all necessary scripts to run
experiments and generate figures. It provides instructions for
using the ZAC framework to replicate key results, including:
(1) performance comparisons presented in Fig. 8, Fig. 9,
Fig. 10, Fig. 11, and Table II and (2) architecture evaluation
shown in Fig. 14 and Section VII-H. The process is divided
into two main steps: (1) data generation and (2) figure plot-
ting. For brevity, instructions for remaining experiments are
omitted.

B. Artifact check-list (meta-information)
• Algorithm: Simulated Annealing, Hopcroft–Karp Algorithm,

Jonker-Volgenant Algorithm, Maximal Independent Set Algo-
rithm

• Program: Python
• Compilation: Python 3.10 with Qiskit 1.2.4 and Scipy. All are

public available.
• Run-time environment: Python with Qiskit. A Linux system

is recommended.
• Hardware: A CPU with 8 cores and 16 GB of memory is

recommended.
• Execution: No specific condition is required.
• Metrics: Quantum circuit duration and circuit fidelity
• Output: Figures 8-11 and 14 of the article and the necessary

data for Table II and Section VII-H.
• Experiments: Please see Section E for detailed instructions

for reproducing the results
• How much disk space required (approximately)?: <10G
• How much time is needed to prepare workflow (approxi-

mately)?: <10 minutes
• How much time is needed to complete experiments (approx-

imately)?: <2 hours
• Publicly available?: Our compiler is available at https://doi.

org/10.5281/zenodo.14219335
• Code licenses (if publicly available)?: BSD 3-Clause License
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

14219335

C. Description

1) How to access: The artifact is available at the following
link: https://doi.org/10.5281/zenodo.14219335

2) Hardware dependencies: To complete the experiments
in a reasonable amount of time, a CPU with 8 cores and 16
GB of memory is recommended.

3) Software dependencies: The artifact is implemented
in Python and requires several packages including Qiskit.
A complete list of required packages can be found in the
requirements.txt in the artifact.

D. Installation

For artifact evaluation, first download the artifact from
Zenodo at https://doi.org/10.5281/zenodo.14219335and unzip
the file. Then, you can install the required python packages
using pip with following commands:
$ cd ZAC_AE
$ pip install -r requirements.txt

E. Experiment workflow

1) Data generation: Once the required packages are in-
stalled, one can generate data via the command
$./gen_results.sh
The script contains four steps. The first step is to generate

simulation results for superconducting qubit platforms, includ-
ing the grid architecture and heavy-hexagon architecture. Next,
we proceed to generate the simulation results for the mono-
lithic neutral atom architecture in the second and third step
using the baseline compiler, Enola and Atomique, respectively.
Lastly, we generate the results of ZAC, including ablation
study, AOD number comparison, and zone configuration com-
parison. The produced log files are in directory “log”. A line
“[INFO] Finish Compilation” should appear in the end of the
log if the compiler are executed successfully.

Baseline results for the NALAC compiler are included in
the artifact. Due to NALAC’s complicated installation process
and nondeterministic behavior, its execution is omitted from
the main workflow. The source code for NALAC is provided in
the artifact under the directory “other compiler/nalac source”.
Users can follow the README in the directory to execute
NALAC.

2) Figure Generation: After collecting results from all
compilers, run to plot figure.
$ python process_data.py

F. Evaluation and expected results

The compiled circuits produced by the compiler are or-
ganized into a directory structure under the root directory
“result”. Each subdirectory consists of a set of compiled
circuits from a compiler and contains the following folders:

• code: Circuit instructions in the ZAIR format.
• fidelity: Simulated fidelity of the circuit.
• time: Logs the runtime of the solver used during compi-

lation.
After the figures are generated, they are stored in the “fig”

directory for visualization, and the csv files for plotting the
figures are stored in the “fig” directory for analysis.

G. Experiment customization

Users can test ZAC on their own benchmarks and customize
experiments by configuring the compilation settings according
to the instructions provided in the README.md file included
with the artifact.

H. ZAIR Example

In this section, we provide an example for ZAIR. Fig. 19
shows two instructions for implementing the first CZ gate
of the 14-qubit circuit bv n14, implemented the Bern-
stein–Vazirani algorithm, on the architecture in Fig. 2. The
specification of this architecture is provided in Fig. 20.

Initially, all qubits are placed according to their indices
in the storage zone, i.e., qi is located at trap (0, 99, i). A
rearrangeJob instruction performed by AOD-0 moves q0
and q13 from traps (0, 99, 1) and (0, 99, 13) in the storage
zone to traps (1, 0, 0) and (2, 0, 0) in the entanglement zone,

https://doi.org/10.5281/zenodo.14219335
https://doi.org/10.5281/zenodo.14219335
https://doi.org/10.5281/zenodo.14219335
https://doi.org/10.5281/zenodo.14219335
https://doi.org/10.5281/zenodo.14219335
https://doi.org/10.5281/zenodo.14219335

...
{

'type': 'rearrangeJob’,
'aod_id': 0,
'begin_locs': [[0, 0, 99, 1], [13, 0, 99, 13]],
'end_locs': [[0, 1, 0, 0], [13, 2, 0, 0]],
'insts': [

{
'type': 'activate’,
'row_id': [0],
'row_loc': [0, 99],
'col_id': [0, 1],
'col_loc': [[0, 1],[0, 13]]

},
{

'type': 'move’,
'row_id': [0],
'row_y_begin': [297],
'row_y_end': [307],
'row_loc_begin': [[0, 99]],
'row_loc_end': [[1, 0]],
'col_id': [0, 1],
'col_x_begin': [3, 39],
'col_x_end': [35, 37],
'col_loc_begin': [[0, 1],[0, 13]],
'col_loc_end': [[1, 0], [2, 0]]

},
{

'type': 'deactivate’,
'row_id': [0],
'col_id': [0, 1]

}
],
'begin_time': 8.75,
'end_time': 149.16

},
{

'type': 'rydberg’,
'zone_id': 0,
'begin_time': 149.16,
'end_time': 149.52,

},
...

Fig. 19. A rearrangeJob and Rydberg instruction in ZAIR from the
compiled bv n14 circuit.

respectively. First, we activate row 0 and columns 0 and 1 of
AOD-0 at row 99 and columns 0 and 13 in SLM-0 to transfer
q0 and q13 from SLM-0 to AOD-0. After moving qubits to
their target locations in the entanglement zone, we deactivate
row and columns of AOD-0 to transfer the qubits to SLM-1
and SLM-2. Lastly, a Rydberg laser is turned on to perform
the CZ gate.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• https://cTuning.org/ae

{
"name": "full_compute_store_architecture",
"operation_duration": {

"rydberg": 0.36,
"1qGate": 52,
"atom_transfer": 15

},
"operation_fidelity": {

"two_qubit_gate": 0.995,
"single_qubit_gate": 0.9997,
"atom_transfer": 0.999

},
"qubit_spec":{

"T": 1.5e6
},
"storage_zones": [{

"zone_id": 0,
"slms": [{

"id": 0,
"site_seperation": [3, 3],
"r": 100,
"c": 100,
"location": [0, 0]}],

"offset": [0, 0],
"dimenstion": [300, 300]

}],
"entanglement_zones": [{

"zone_id": 0,
"slms": [

{
"id": 1,
"site_seperation": [12, 10],
"r": 7,
"c": 20,
"location": [35, 307]

},
{

"id": 2,
"site_seperation": [12, 10],
"r": 7,
"c": 20,
"location": [37, 307]

}],
"offset": [35, 307],
"dimension": [240, 70]

}],
"aods":[

{
"id": 0,
"site_seperation": 2,
"r": 100,
"c": 100}

],
"arch_range": [[0, 0], [297, 402]],
"rydberg_range": [[[5, 305], [292, 402]]]

}

Fig. 20. Specification of the reference zoned architecture.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Introduction
	Related Works
	A General Specification of Zoned Architectures
	ZAC: Zoned Architecture Compiler
	Reuse-Aware Placement
	Initial Qubit Placement Based on Simulated Annealing
	Reuse-Aware Dynamic Placement
	Qubit Reuse Strategy
	Gate Placement
	Non-Reuse Dynamic Qubit Placement

	Load-Balancing Scheduling for Multi-AOD architectures
	Evaluation
	Architecture and Compiler Settings
	Fidelity Model
	Monolithic Architecture vs Zoned Architecture vs Superconducting Qubit
	Ablation Study of Compilation Techniques
	Scalablity Study
	Optimality Study
	Effectiveness of Multiple AODs
	Effectiveness of Multiple Entanglement Zones

	ZAC in Fault-Tolerant Quantum Computing
	ZAIR: an Intermediate Representation for Zoned Architectures
	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Data generation
	Figure Generation

	Evaluation and expected results
	Experiment customization
	ZAIR Example
	Methodology

