Understanding Performance Differences of FPGAs and GPUs

Jason Cong*, Zhenman Fang*T, Michael Lo*, Hanrui Wang*, Jingxian Xu*, Shaochong Zhang*
* Center for Domain-Specific Computing, UCLA T Xilinx
Email: zhenman@cs.ucla.edu

Abstract—This paper aims to better understand the per-
formance differences between FPGAs and GPUs. We inten-
tionally begin with a widely used GPU-friendly benchmark
suite, Rodinia, and port 15 of the kernels onto FPGAs using
HLS C. Then we propose an analytical model to compare
their performance. We find that for 6 out of the 15 ported
kernels, today’s FPGAs can provide comparable performance
or even achieve better performance than the GPU, while
consuming an average of 28% of the GPU power. Besides
lower clock frequency, FPGAs usually achieve a higher number
of operations per cycle in each customized deep pipeline, but
lower effective parallel factor due to the far lower off-chip
memory bandwidth. With 4x more memory bandwidth, 8 out
of the 15 FPGA Kernels are projected to achieve at least half
of the GPU Kkernel performance.

I. INTRODUCTION

To improve the performance and energy efficiency of im-
portant application domains, different kinds of accelerators
have been developed, including GPUs, FPGAs, and ASICs.
Compared to ASICs, GPUs and FPGAs gain more popularity
by providing better programmability and flexibility. It is
natural to ask the question: when is FPGA better, when is
GPU better, and why?

To answer this question, we intentionally use the GPU-
friendly Rodinia benchmark suite [1] for comparison, which
is widely recognized in the GPU community. Because Ro-
dinia benchmarks are already optimized for GPUs after sev-
eral generations of releases, it is fair to use them (the latest
Rodinia 3.1 release) in our FPGA and GPU comparison.

We first port 11 Rodinia benchmarks (15 kernels in total)
to the FPGA with Vivado HLS (high-level synthesis) C [2]
for the kernels and OpenCL for host programs. To achieve
reasonable performance on FPGAs, we apply a sequence
of optimizations, including caching (tiling), customized
pipeline, parallelization, double buffer, and memory coalesc-
ing and bursting. To make the porting of other benchmarks
easier, we also provide a set of reusable templates and APIs
to optimize FPGA accelerator designs, and will open source
them at https://github.com/zhenman/rodinia-fpga-hls. These
optimizations can be easily understood and mastered by
software programmers, and provide 32x to 4,308x speedup
compared to the original C code ported for FPGA.

We then propose an analytical model to analyze the
performance differences between FPGAs and GPUs. In
addition to the clock frequency (freq), we introduce three
new metrics, including: 1) the algorithm-level operations per
cycle achieved for each computing pipeline (pipe_OPC); 2)
effective coarse-grained parallelism factor (e_para_factor)
achieved taking both computing and memory access limita-
tions into consideration; and 3) extra overhead_factor.

Based on these, we conduct an on-board performance
comparison of the 15 Rodinia kernels between a 28nm

#2: Customized pipeline

PEO E
(wrn | (PN
Im:lm':'m
: buffer ': buffer!
|set0||set1 :PE1 1 set1 |l set2
1 1 ! 1! 1
o< o Mol ortions o |
Sowet's=s

[T
#1: Caching #4: Double buffer

NEidG.

|
| buffer 11 buffer |

—s

=\ ‘e \
1
1

#3: Parallelization

A4

#5: Memory coalescing and bursting
C o BT

Fig. 1: Overview of FPGA kernel design strategies

Xilinx Virtex 7 FPGA and a 28nm Nvidia K40c GPU. We
find that for 6 out of the 15 Rodinia kernels, the FPGA can
achieve comparable performance or even better performance
than the GPU. Meanwhile, on average the FPGA only
consumes around 28% of the GPU power. With an in-
depth analysis, we find (and confirm) that besides a lower
clock frequency than GPUs, FPGAs usually achieve higher
pipe_OPC' in each computing pipeline due to its small
pipeline initiation interval (II) and large pipeline depth, but
lower e_para_factor due to far lower off-chip memory
bandwidth. With 4x (or 32x) more memory bandwidth—
like ones in the publicly available Amazon F1 instance [3]
(or the coming HBM-enabled FPGA [4])—FPGAs become
an attractive alternative for GPUs: for 8 (or 9) out of the 15
Rodinia kernels, our FPGA kernels are projected to achieve
at least half of the GPU kernel performance, with 3 (or 4)
of them faster than the GPU.

II. OVERALL FPGA DESIGN STRATEGIES FOR RODINIA
We take the original code from Rodinia and make it HLS
C synthesizable on the FPGA, which serves as the FPGA
baseline. In addition, we provide a template for the OpenCL
interface between CPU and FPGA communication, so that
users can only focus on the FPGA kernel design in HLS C.
To achieve reasonable (not necessarily optimal) perfor-
mance of these ported Rodinia kernels on FPGAs, as sum-
marized in Figure 1, we apply a sequence of optimizations in
HLS C that can be easily understood by software program-
mers. These simple techniques turn out to be very efficient.
1. Caching/Tiling. To enable fast data access by the FPGA
processing elements (PE), our first step is to tile the code,
transfer a data tile from off-chip DRAM to on-chip BRAM,
and cache the data tile on-chip for later PE accesses. On
average, it achieves 1.8x speedup over the raw HLS code.
Specifically, users claim local arrays in the code and use
memcpy to transport a tile of data to local arrays. After that,
future data references are all accessed from local arrays.
2. Customized Pipeline. Customized deep pipeline is a
unique technique in FPGAs, which gets rid of the instruction

pipeline overhead in CPUs and GPUs. On average, pipeline
achieves an additional 7.8x speedup.

The pipeline initiation interval (II) and depth are two key
factors to measure the pipeline performance; they denote the
number of cycles 1) between the start times of two consecu-
tive iterations and 2) processing one entire iteration of data.
The smaller the II, the higher the pipeline throughput. The
larger the depth, the higher the achievable speed.

To implement pipeline, users only need to insert pipeline
pragma into target loops. To achieve a small II, users need
to perform loop transformations to eliminate harmful data
dependencies just like parallel programming in CPUs and
GPUs. One unique requirement is that users may have to
partition the data arrays using the HLS array_partition
pragma so that all data needed by the pipeline in each
IT cycles can be concurrently accessed. This is relatively
straightforward in most cases except for stencil applica-
tions [5]. To make it easier, we implement the reuse buffer
techniques proposed in [5] to achieve an II of 1 and provide
the templates to users.

3. Parallelization. Like GPUs, coarse-grained parallelism
on FPGAs is achieved by duplicating on-chip PEs such that
different partitions of data can be processed concurrently. On
average, parallelization achieves an additional 2.4x speedup.

In HLS C, this can be achieved by adding unroll pragmas

in outer loops. Then, a PE that accelerates inner loops
will be duplicated. In addition, BRAMs usually need to
be partitioned to satisfy the concurrent data access, i.e.,
array_partition pragmas need to be added.
4. Double Buffer. Double buffer aims to overlap the com-
putation and memory access latency between different tasks
(tiles). The on-chip BRAMs are duplicated to avoid read-
write dependencies so that load, computation, and store
can be processed concurrently. On average, double buffer
achieves an additional 1.5x speedup.

We provide double buffer templates for users so that they
only need to reorganize their code into load, computation,
and store functions. Meanwhile, the local arrays need to be
duplicated three times to store three concurrent sets of data.
5. Memory Coalescing and Bursting. According to prior
characterization [6], memory coalescing (increasing access
bit width) and memory bursting (increasing access length)
are two key techniques to improve effective off-chip memory
access bandwidth. On average, they achieve an additional
6.8x speedup, bringing the final average speedup to 328.9x.

To implement memory coalescing in HLS C, we imple-
ment a set of specialized memcpy APIs to bond several
pieces of narrow data into a single wider data. Users can
directly leverage our APIs to copy wider data types.

IT1I. COMPARISON METHODOLOGY
To perform first-order analysis, we propose Formula 1
to capture the relationship between the runtime and those

microarchitectural factors.
total_ops * overhead_factor

time ~ 1
runtme pipe_OPC x e_para_factor * freq M

freq is the clock frequency of the FPGA and GPU kernels.
total_ops is the total number of algorithm-level operations
to be executed by the kernel. For example, we only count
multiply and add operations in matrix multiplication and

do not count the array indexing operations. Therefore,

total_ops is the same for both FPGA and GPU implemen-

tations for a kernel, which makes it easier for comparison.
pipe_OPC is the number of operations that can be processed
per cycle for each computing pipeline.

1. For FPGAs, pipe_OPC is calculated by Formula 2.

pipe_OPC = ops_per_PE | II)
ops_per_PFE is the total number of operations done by a
single processing element (PE). Il is the pipeline initiation
interval, which can be estimated by Vivado HLS.

2. For GPUs, we refer to a computing pipeline as a single
streaming multiprocessor (SM) or computing unit (CU).
Unlike FPGAs, it is hard to derive the pipe_OPC from
statical analysis. Instead, we execute the application on
GPUs and calculate pipe_OPC based on Formula 1. As
explained in the following paragraphs, other factors in
Formula 1 are straightforward to profile for GPUs.

e_para_factor is the effective number of parallel pipelines.

We consider both the computing and off-chip memory access

limitations when calculating e_para_factor.

1. For FPGAs, it can be calculated by Formula 3.

total_FPGA_resource

resource_per_PFE

total_memory_BW
BW _per_PE }
The first term calculates e_para_factor based on the
available computing resources, while the second term
calculates based on the available off-chip memory band-
width (BW). From the Vivado HLS report, one can get the
resource utilization—including DSP, LUT, BRAM, and
FF—for a single PE. BW _per_PFE can be calculated
by the total size of off-chip data access of a single PE
divided by its runtime (i.e., cycles/frequency).

2. For GPUs, it can be calculated by Formula 4.

e_para_factor =~ number_SMsxSM _activity% (4)

e_para_factor = min{

)

3)

SM_activity% is a factor measuring the activity (i.e.,
utilization) of SMs, which includes the impact of memory
access. It is reported by Nvidia’s profile tool nvprof.
overhead_factor is specific for FPGAs, and it is simply 1
for GPUs. It measures some inevitable overhead in FPGA
kernel designs (Section II), which is the multiplication of:
1. Pipeline overhead cycles to fill the entire pipeline.
pipeline_overhead = 1 + pz.pe_c.lepth - 5)
11 x pipe_iterations
2. Double buffer overhead caused by the idle state of buffer
nodes in the first and last few iterations over data tiles.
buf fer_iterations ©)

buf fer_overhead =~ -
number_tiles

IV. COMPARISON RESULTS AND ANALYSIS

A. Experimental Setup

Benchmarks. For a fair comparison, we choose the latest
Rodinia release (Ver 3.1, Dec 2015). Shown in Table III,
we choose a total of 11 benchmarks (15 kernels), which
covers a variety of application domains, including structured
grid, unstructured grid, dense linear algebra, and dynamic

Table I: FPGA and GPU comparison breakdown using direct influence factors. “ratio” denotes the speedup of FPGA over GPU.

Runtime (s) perf/W pipe_OPC e_para_factor freq (MHz) overhead_factor
Kernel FPGA GPU ratio ratio FPGA GPU ratio FPGA GPU ratio GA GPU ratio FPGA GPU ratio
Hotspot 88,593 12,097 | 0.14 | 0.59 4.0 6.4 218 70 144 | 028 | 180 745 024 | 107 T 0.93
GICOV 148 138 297 | 7.76 2240 | 3.1 72.03 | 40 144 | 028 | 190 745 026 | 1.72 T 0.58
Dilate 234 347 148 | 451 18.0 13 1394 | 80 146 | 055 | 180 745 024 | 125 1 0.80
MGVF 89,715 11,816 | 0.13 | 0.50 45.0 196 | 2.29 40 41 | 028 | 160 745 021 | 1.06 1 0.94
SRAD 1,950 1,790 092 | 4.52 380 107 | 3.57 16.0 146 | 1.10 | 190 745 0.26 | 1.09 T 0.92
BP-1 336 371 0.69 | 3.10 70 0.7 3.62 8.0 44 | 056 | 190 745 026 | 1.I5 T 0.87
BP-2 1,995 358 0.18 | 0.58 63.1 T4 4349 | 0.3 144 | 0.02 | 200 745 027 | 1.13 T 0.88
StepFactor | 4,004 607 0.15 | 0.58 20.0 35 5.67 13 147 | 0.09 | 220 745 030 | 1.00 1 .00
Flux 145 11 0.08 | 0.35 35 0.4 8.01 1.0 3.1 | 0.08 | 200 745 027 | 2.11 1 0.47
LUD 181,055 | 9,042 0.05 | 0.17 32.0 44 | 222 1.0 95 0.1T | 160 745 021 | 1.01 1 0.99
Kmeans 16,975 3211 0.19 | 0.62 5150 | 150 | 3424 | 03 149 | 0.02 | 200 745 0.27 | 1.08 T 0.93
KNN 2,538 258 0.10 | 032 3840 | 65 59.00 | 0.1 144 | 0.01 | 240 745 032 | 1.04 T 0.96
SC 15,464 1,187 0.08 | 0.35 1284 | 163 | 7.88 0.5 147 | 0.03 | 220 745 030 | 1.01 T 0.99
NW 43 362 754 | 19.29 5.0 12 221 64.0 9.6 6.67 | 200 745 0.27 | 1.00 1 1.00
PF 28,750 24,680 | 0.86 | 2.85 8.0 6.7 1.20 32.0 120 | 2.67 | 200 745 0.27 | 1.00 T .00
Table II: FPGA and GPU comparison breakdown using more indirect influence factors
Average power (Watts) FPGA GPU
2¢ P i Pipeline SM_activity% } Number of instructions breakdown Bandwidth (GB/s)
Kernel FPGA GPU ratio 1T depth —activity%o occupancy floating others overhead read write
Hotspot 22.7 97.3 023 | 1 60 0.96 0.95 35,719,168 175,500,012 | 5.9 56.1 25.5
GICOV 21.7 56.7 0.38 1 298 0.96 0.58 14,375,000 25,750,000 2.8 0.6 17.4
Dilate 23.0 70.0 033 | 1 27 0.97 0.88 N/A N/A N/A 78 9.1
MGVF 23.0 88.0 026 | 1 93 0.94 0.87 37,748,736 58,707,972 2.6 63.5 311
SRAD 233 1150 | 020 | 1 21 0.97 0.95 69,206,016 162,004,410 | 3.3 209 80.5
BP-1 193 86.7 022 | 8 22 0.96 0.94 2,031,616 66,846,716 339 415 39.2
BP-2 23.0 747 031 | 1 24 0.96 0.96 4,194,352 35,651,744 9.5 60.5 57.0
StepFactor | 24.3 92.7 026 | 1 207 0.98 0.92 63,963,136 109,051,904 | 2.7 82.7 13.7
Flux 20.7 933 022 | 13 | 242 0.87 0.48 290,874,905 | 443,753,142 | 2.5 573 25
LUD 21.0 723 029 | 1 317 0.63 0.78 17,548,744 60,750,439 45 183 229
Kmeans 23.7 773 031 | 1 297 0.99 0.98 417,792,000 | 801,365,760 | 2.9 2050 | 1.2
KNN 243 773 031 | 1 33 0.96 0.84 23,068,660 46,137,352 3.0 1206 | 62.4
SC 24.0 108.3 0.22 8 18 0.98 0.89 101,056,512 358,088,704 | 4.5 176.7 5.9
NW 21.0 53.7 039 | 2 6 0.64 0.03 N/A N/A N/A 12 1.0
PF 243 80.7 030 | 1 5 0.8 0.56 N/A N/A N/A 5290 34
Dwar};able : %‘;ﬂﬁi{z of pomdéﬁg Ill\llfmte)f nChH]l)ir]E;nEl] of them (red color); FPGA has comparable performance for
HotSpot Hotspot Physics Simulation | the remaining 3 (black color). In terms of performance per
%ﬁﬁf‘%ﬁfm Leukocyte ;;,‘é &‘é&g‘a‘e Medical Imaging power (“Perf/W ratio” column of Table I), FPGA wins for
SRAD SRAD Tmage Processing 6 kernels (in green color). FPGA kernels typically consume
Unstructured BackPropagation BP-1, BP-2 Pattern Recognition : :
Grid: USGrid CFDSOI\IIDerg StepFactor, Flux Fluid Dynam%cs 20% to 39% of the GPU power, as detailed in Table II.
LUDecomposition LUD Linear Algebra C. In-Depth Analysis
Dense Linear Kmeans Kmeans Data Mining . .
Algebra: DLA [k-Nearest Neighbors | KNN Data Mining To gain a deeper understanding, we measure and compare
Streamcluster SC Data Mining i : :
P Dymamic—| Neelleman-Wansch—| NW B the metrlqs proposed in Sectl.on III. The breakdown results
Programming PathFinder PF Grid Traversal of direct influence faCtOI‘S, with the lmprovement of FPGA
. over GPU for each factor, are shown in Table I.
programming algorithms. For detailed description and im-

plementation of each kernel, we refer the audience to the
Rodinia website [1] and our open source website.
Hardware environment. The FPGA board we use is the
Alpha Data ADM-PCIE-7V3 board that has a 28nm Xilinx
Virtex 7 XC7VX690T FPGA chip. It has an on-board 16GB
DDR3 RAM with a peak bandwidth of 12.8GB/s. The GPU
is a 28nm Nvidia Tesla K40c @ 745MHz. It has 15 SMs,
each SM has 192 FP32 cores. It has 16GB GDDRS RAM
with a peak bandwidth of 288GB/s. Both FPGA and GPU
are connected to an Xeon CPU by PCle. The average power
consumption is measured by a power meter.

Software environment. The FPGA synthesis environment
is Xilinx SDAccel 2016.4, which includes Vivado HLS to
program kernels in C/C++ and OpenCL runtime to manage
CPU-FPGA communication. We use a CUDA 9.0 environ-
ment to run GPU kernels. To profile metrics proposed in
Section III, we leverage the Vivado HLS report, event timers
from OpenCL, and metrics profiled by Nvidia’s nvprof.

B. Overall On-Board Results
The overall on-board execution results are summarized in

the “Runtime” columns of Table I. In all 15 Rodinia kernels,
FPGA wins for 3 of them (green color); GPU wins for 9

freq. Typically, large FPGA accelerator designs in HLS C
can only get around 200MHz frequency, while GPUs can
run at 745MHz or even higher frequency. Our FPGA kernels
only achieve 21% to 32% clock frequency of the GPU.
overhead_factor. As shown in Table I, the FPGA has a
small overhead_factor, which is not a key factor.
pipe_OPC. In all of our cases, FPGA kernels have a larger
pipe_OPC value than GPU kernels, ranging from 1.2x to
72.0x. This means that the computing capability of a single
FPGA PE is stronger than that of a single GPU SM.

The large pipe_OPC of FPGAs can be explained by the
small pipeline II (II=1 in most cases) and large pipeline
depth, shown in Table II. Some kernels have irregular mem-
ory access patterns, e.g., BP-1, Flux, and SC, and (multiple)
data need to be fetched in different cycles. Therefore, they
have a higher II and lower pipe_OPC.

For GPUs, the peak pipe_OPC' should be 192 as there
are 192 SIMD cores in each SM. However, the actual
pipe_OPC rarely exceeds 20. There are several reasons for
that gap. First, for some kernels, not all the threads in the SM
are fully working, as shown in the “occupancy” column in
Table II. Second, there are lots of “extra” instructions added
to the “effective functional units” to support the program

W Measured-base
2.97x, 4.07x, 4.07x

Projected-4x-BW ® Projected-32x-BW

:72.0

% both 5.63x all 7.54x

515

>

o

3

910 I

=

o

205 | _

£, WL AR .1

53

%00. | | IIIII-IIII.
3 2 B O T Q B ¥ Q0 7) 3
8%2><mm§£:§§m§m
ggﬁozmmr_thgx
£ O = ©) v,

7

SGrid USGrid DLA DP
Fig. 2: Projected FPGA speedup with 4x and 32x more mem BW

execution, e.g., data indexing, load and store. As shown in
Table II, only float instructions are useful, and the “extra”
instructions can be 2.6x to 33.9x. Third, the instruction
pipeline itself may have some intrinsic overhead.

e_para_factor. As shown in Table I, GPU kernels usually
have a much higher e_para_factor than FPGA kernels,
which means GPUs are better at coarse-grained parallelism.

In our setup, the GPU has 15 SMs and there are two
factors potentially affecting the e_para_factor. One is the
SM activity% (utilization) shown in Table II, which is high
in most of the cases. The other is the memory read and write
bandwidths, which are well below the peak bandwidth, as
shown in Table II. This means that the memory system is
not a bottleneck in the GPU.

Meanwhile, the e_para_factor in most of our FPGA
kernels is low. There are two things that limit their coarse-
grained parallelism. For computation-bound kernels—
including SRAD, NW, and PF—the parallelism is limited
by the on-chip FPGA logic resource. For memory-bound
kernels—all the remaining kernels excluding BP-1, Flux,
and SC (which have irregular memory accesses)—the paral-
lelism is limited by our off-chip memory bandwidth (BW).
Projected performance. In fact, the memory BW limitation
for FPGAs is being solved: Amazon F1 instance [3] already
put four DDR-4 channels in a single FPGA (roughly 4x more
BW), and an HBM-enabled FPGA will soon be available
(roughly 32x more BW) [4]. Therefore, we also project the
performance of our FPGA kernels based on our analytical
model, assuming the performance scales ideally when there
are 4x and 32x more memory BWs and the same on-chip
FPGA resource. The normalized speedups are shown in
Figure 2. Except for KNN and LUD, 4x more BW is good
enough to improve the e_para_factor and thus throughput
for the above memory-bound kernels. With 4x more memory
BW, FPGAs become an attractive alternative for GPUs: for 8
out of the 15 Rodinia kernels, our FPGA kernels can achieve
at least half of the GPU kernel performance, with 3 of them
faster than the GPU. With 32x more memory BW, these
numbers increase to 9 and 4, respectively.

V. RELATED WORK

Most prior studies only compared GPU and FPGA perfor-
mance using a single application. And they did not provide
general insights, with a few exceptions as discussed below.

In [7] Che et al. conducted a performance study of
Gaussian elimination, DES and NW from Rodinia on a CPU,
GPU and FPGA. Their comparison is primarily qualitative
and limited to only three benchmarks, while our work
provides quantitative analysis between FPGA and GPU.

In [8] Krommydas et al. presented their implementation
of OpenDwarfs benchmark suite in OpenCL, which is also
derived from Berkeley dwarfs. However, the paper neither
aggressively optimized the FPGA kernels nor provided the
breakdown of performance comparison.

In [9] Zohouri et al. evaluated the performance and power
of six Rodinia benchmarks on FPGAs using OpenCL, in-
cluding NW, Pathfinder, Hotspot, SRAD, LUD and CFD. All
the kernels ran slower on their FPGA over the GPU, while
our work proved that FPGAs can achieve better performance
in certain applications. Also, no step-by-step FPGA kernel
optimization guideline was provided in [9]. In addition, they
did not perform a quantitative analysis to explain the FPGA-
GPU performance differences.

VI. CONCLUSION

In this paper we proposed an analytical model, with key
performance metrics like pipe_OPC' and e_para_factor,
to better understand the performance differences between
FPGAs and GPUs. We conducted an in-depth on-board
performance comparison and analysis on the 28nm Xilinx
Virtex 7 FPGA and Nvidia K40c GPU.

We found that besides a lower clock frequency than GPUs,
the FPGA usually achieves a higher number of operations
per cycle (pipe_OPC') in each computing pipeline due to its
small pipeline II and large pipeline depth, but lower effective
parallel factor (e_para_factor)—largely due to far lower
off-chip memory bandwidth. On our current 28nm FPGA
and GPU, 6 out of 15 Rodinia kernels can achieve at least
half of the GPU kernel performance, with an average of 28%
of the GPU power. This number is projected to be 8 (or 9) if
there is more memory bandwidth like Amazon F1 instance
(or HBM-enabled FPGA).

ACKNOWLEDGMENTS

This work is funded by the Center for Domain-Specific
Computing and Center for Future Architectures Research.
We also thank Falcon Computing for open-sourcing the
memory coalescing APIs.

REFERENCES

[1] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in IISWC’2009, pp. 44-54. [Online]. Available: http:
/Iwww.cs.virginia.edu/~skadron/wiki/rodinia/index.php

[2] J. Cong et al., “High-level synthesis for fpgas: From prototyping to
deployment,” TCAD’2011, vol. 30, no. 4, pp. 473-491.

[3] “Amazon EC2 Fl Instances,” https://aws.amazon.com/ec2/
instance-types/f1/, accessed: 2018-01-21.

[4] G. Singh et al., “Xilinx 16nm datacenter device family with in-package
hbm and ccix interconnect,” in HotChips’2017.

[5] J. Cong et al., “An optimal microarchitecture for stencil computation
acceleration based on non-uniform partitioning of data reuse buffers,”
in DAC’2014, pp. 1-6.

[6] C. Zhang et al., “Caffeine: Towards uniformed representation and
acceleration for deep convolutional neural networks,” in ICCAD 2016,
pp. 1-8.

[71 S. Che et al., “Accelerating compute-intensive applications with gpus
and fpgas,” in SASP’2008, pp. 101-107.

[8] K. Krommydas et al., “On the characterization of opencl dwarfs on
fixed and reconfigurable platforms,” in ASAP’2014, pp. 153-160.

[9]1 H. R. Zohouri et al., “Evaluating and optimizing opencl kernels for
high performance computing with fpgas,” in SC’2016, pp. 35:1-35:12.

