An FPGA-based BWT Accelerator
for Bzip2 Data Compression

Weikang Qiao*, Zhenman Fang', Mau-Chung Frank Chang*, Jason Cong*

* Center for Domain-Specific Computing, UCLA

T Simon Fraser University

wkqiao2015 @ucla.edu, zhenman_fang @sfu.ca, mfchang@ee.ucla.edu, cong@cs.ucla.edu

Abstract—The Burrows-Wheeler Transform (BWT) has played
an important role in lossless data compression algorithms. To
achieve a good compression ratio, the BWT block size needs to
be several hundreds of kilobytes, which requires a large amount
of on-chip memory resources and limits effective hardware
implementations. In this paper, we analyze the bottleneck of the
BWT acceleration and present a novel design to map the anti-
sequential suffix sorting algorithm to FPGAs. Our design can
perform BWT with a block size of up to S00KB (i.e., bzip2 level 5
compression) on the Xilinx Virtex UltraScale+ VCU1525 board,
while the state-of-art FPGA implementation can only support
4KB block size. Experiments show our FPGA design can achieve
“2x speedup compared to the best CPU implementation using
standard large Corpus benchmarks.

I. INTRODUCTION

The Burrows-Wheeler Transform (BWT) [1], invented by
Burrows and Wheeler in 1994, has played an important role
in information technology. One of the key applications for
BWT is data compression, as BWT tends to place the same
characters together for easier compression. The widely used
bzip2 [2] compression algorithm, which combines BWT with
run-length encoding and huffman encoding [3], is reported to
have much higher compression ratio than many other lossless
compression standards such as ZLIB [4] and GZIP [5].

Input string: B ANANA 5‘
0B ANANA S O|A NANAS!
1A NANASB 1A N A S B A
2|N ANA S B A 2/|A $ B ANA
3|ANASBAN 3|/BANANA
4N A S BANA 4N AN A $ B
5|A $BANAN 5|N A S B A N;
6[$BANANA 6/$ B ANANE

Rotation Matrix Ordered Matrix *

BWT output: B NNSAAA
Index i: 3

Fig. 1. Example of the BWT on a string "banana”

The basic idea of BWT is illustrated in Figure 1: given a
string of length N, we first append it with a unique sentinel
symbol $ and assume $ is larger than any input symbols. Then
we generate all rotations of the string, sort the N+1 rotations in
lexicographical order and store them into the ordered matrix.
The last column of the ordered matrix will be the BWT output
of the string; and an index i is also recorded, where i is the
position of the original string in the ordered matrix.

Here the length N is usually referred to as the BWT block
size and it determines the compression ratio of the bzip2
compression algorithm. The larger the BWT block size is,
the better compression ratio will be achieved. On the other
hand, the execution time of BWT also depends on the block
size: a direct implementation of this rotation and sorting based
algorithm takes O(N?2logN) time. So the execution of BWT is
very time-consuming when N is a large number, i.e., when we
try to achieve a high compression ratio. In fact, our profiling
results show that the BWT execution takes up to 90% of the
whole bzip2 software runtime and has an average compression
throughput of 6.7 MB/s when the BWT block size is 300KB.

Implementing BWT with such a huge block size inherently
poses great challenges to both software and hardware de-
signs. For software implementations, several optimized sorting
algorithms have been proposed [6], [7], [8]. Among them
the fastest design is the ternary-split quicksort method [8],
which works well for less repetitive text but has a very
slow speed when the text has many repetitive symbols. For
hardware implementations, the situation becomes even worse.
First, FPGA-based sorting network cannot be extremely large,
especially in the case where each key to be compared is
long. Second, the algorithm requires a lot of on-chip memory
resources: for example, the fastest software implementation
of BWT needs at least 9 x blocksize memory, which is well
beyond the limit of current FPGA on-chip memory. In fact,
state-of-the-art FPGA implementations can only perform the
BWT sorting part on a block size of 4KB and no complete
implementation is reported against the fastest CPU solution.

In this paper, we present the first FPGA-based hardware
design of the entire BWT algorithm that can perform BWT
with a block size of hundreds of kilobytes. The implementation
is based on the antisequential suffix sorting algorithm [9],
which is originally proposed to reduce the worst-case com-
plexity issue (highly repetitive symbols) of the ternary-split
quicksort method. In most cases (less repetitive symbols), it is
slower than the ternary-split quicksort method on CPUs due to
the high cache miss rate. However, we find FPGAs are good
candidates to implement such an algorithm since there are a
large amount of distributed on-chip memories. We implement
two acceleration architectures—direct suffix list design and
two-level suffix list design—on a Xilinx Virtex UltraScale+
VCU1525 board. Our designs have a good scalability as long
as there are enough on-chip memory resources: we support
up to S00KB block size on this device. Using standard large
Corpus benchmarks, we can achieve an average speedup of 2x
over the fastest software implementation of BWT [2].

II. BACKGROUND AND RELATED WORK
A. Prior FPGA-based Designs and Their Limitations

Current hardware implementations [10], [11], [12] usually
choose the suffix sorting as their core algorithm and focus
on building high-performance parallel sorting networks. The
state-of-the-art work [12] builds a sorting network that can
process up to 4KB block size in parallel in 4,049 cycles.
However, those sorting networks can only do one iteration
of the sorting. To achieve a complete BWT implementation,
the string needs to be stored and fed into the sorting networks
multiple times until no equal consecutive characters appear
any more, making the total execution still time-consuming.
Besides, the block size that the sorting networks can process
is very small. In fact, it takes O(NN) stages for such a sorting
network to process N characters, making the total number
of the compare and swap elements O(N?). Considering the
bzip2 standard requires performing BWT on a block size of
100s of KB to achieve good compression ratio, it is impractical
to implement BWT with such sorter-based approach for the
bzip2 standards.

B. Antisequential Suffix Sorting (ASS) Algorithm

1) Algorithm Overview: An antisequential suffix sorting
algorithm is proposed in [9], aiming to reduce the worst case
complexity of the ternary-split quicksort approach. It works as
below: each rotation can be denoted using a suf fiz, which is
the position of its first byte in the original string, and then
the corresponding last byte for that rotation is at position
suf fix — 1. We also denote the sequence of z;z;y1...z; as
xi . Given a string x1x2..xy and suffix ¢, we define the suffix
string of suffix ¢ as s; = va for 1 < ¢ < N. Since the last
byte of each suffix string is x, which is the sentinel symbol
$ and is larger than any input symbol, each suffix string is
unique. In other words, sorting each rotation is equivalent to
sorting its suffix string.

Now assume input symbols come in antisequentially from
xn to z1, we can form a sorted list of previously processed
suffix strings. When a new symbol x; comes in, we only need
to insert its suffix ¢ into the right position of previously sorted
suffix list, based on the relative order of its suffix string s; =
2;5;4+1. Consider s; such that j > i, suffix j is already in the
sort list. We define a bucket S;:

Si={sj:j>1,2; =i 8541 > Sit1} (1)

If S, is not empty, then its smallest element is the right suffix
J in front of whom the input suffix ¢ should be inserted. It can
be easily found since the position of suffix ¢ 4 1 in the list is
already known and we can scan up the list from suffix i+ 1 to
check if such suffix j whose corresponding z;_1 = x; exists.
If it exists, we insert the suffix ¢ before j — 1. An example
illustrating such process is shown in Figure 2.

If no such match found, that means either the input sym-
bol x; never appeared before or its suffix string s; is the
largest suffix string that starts with symbol z;. To deal with
the two special cases, a dictionary table is established. The
table records if each type of symbol appeared before and
if appeared, the largest suffix whose suffix string starts with
that symbol. In the first case, we find the largest symbol that

read inputs in the reverse way
-

input suffixi: 0 1 2 3 4 5 6
input symbol: B A N A N A §
NN NN
suffix list i: | 3 5 2 4 6 |» already sort the string of “NANAS$”,
x[i—1]: [N N A A A next inputis x; = A

LN
suffix listi: |3 5 2 4 6 » start to search from suffix 1+1 =2,
x[i—1]: |N N A A A find a match atsuffix j = 4,x;_; =x3 =4

suffix list i: [1 3 5 2 4 6 | insert mcomlrfg suffix 1 right in front of the
x[i—1]:|B N N A A A - finded suffixj—1=3

Fig. 2. Example of the BWT by antisequential suffix sorting

is lexicographically smaller than x; and insert suffix ¢ right
after its largest suffix. In the second case, since z; already
appeared, we insert suffix ¢ right after the previously largest
suffix starting with ;. In both cases we also need to update
the dictionary table with the latest suffix ¢ for symbol z;.

Since the ASS algorithm greatly reduces the required on-
chip memory amount, it makes the acceleration of BWT with
large block sizes (i.e., 100s KB) possible on an FPGA.

2) Bottleneck of CPU Implementation: In [9], the authors
did some software implementations to compare the perfor-
mance of ASS algorithm with the ternary-split quicksort based
BWT algorithm [8]. Their experiments show the ASS is on
average 4x slower. Our profiling on Intel Xeon CPU ES5-
2680 shows it is mainly because of the high L2 cache miss
rate, as the memory access pattern for accessing the suffix
list is quite irregular and the 256KB L2 cache cannot hold
all the suffix list. On the other hand, FPGAs feature a large
amount of distributed on-chip memory resources, which can
be customized to ensure the fast on-chip data accesses.

III. ANTISEQUENTIAL SUFFIX SORTING IN HARDWARE

In this section, we first present a straightforward design of
ASS and discuss its design trade-offs. Then we introduce a
two-level suffix list approach to accelerate ASS by reducing
suffix list search time.

A. Direct Suffix List Design

Figure 3 shows the architecture of the direct suffix list
design. At each cycle one symbol will be fed into the design.
The input symbol will be first compared with the entries
in the dictionary table to find if the same symbol appeared
before, and the finding results will be sent to the controller.
If no such symbol appeared before, the controller will insert
the input suffix after the previously largest suffix and update
the dictionary table. If the input symbol has appeared, the
controller will start searching the suffix list until it finds a
match or reaches the tail of the list. After that the input suffix
will be inserted into the right position and the dictionary table
will get updated correspondingly.

Although the overall procedure is quite sequential, we can
exploit some inherent parallelism and design optimizations to
increase the performance of the design as below.

1) Dictionary Table Design: The dictionary table can be
implemented as a simple hash ram of 128 entries (since regular
text files have 128 ascii codes) and be accessed through the

suffix list
<prev, next, symbol> >

)

dictionary table

le—n

alepdn

input symbol
search/update

appeared?

controller

Fig. 3. Block diagram for direct suffix list design

8-bit input symbol value. This configuration works well when
the input symbol already exists in the table. However, when the
input symbol never appeared, we need to search through the
whole table to find the largest symbol. For example, consider
the case where the first two symbols coming in are “A”
and 7z, for input ’z”, it takes 57 cycles to find the largest
existing symbol (57 is the difference of the two symbols’
ascii value). To speedup this process, the dictionary table is
optimized as a ram of 32 entries and each entry contains 4
consecutive symbols’ index information. Reading 1 entry can
get the largest appeared symbol index in the 4-symbol entry in
1 cycle through encoding and a priority multiplexer. Thus, in
the previous example the total cycle to find the largest existing
symbol is reduced to 15.

2) Suffix List Design: The suffix list is also implemented
as a ram whose depth is rounded to the BWT block size. The
content of the suffix list entry is < prev, next, symbol >. For
a block size of 100kB design, each entry takes 42 bits, since
the prev and next pointers take 17 bits each and another 8 bits
are used to store the corresponding symbol x;_;. The BRAM
is configured as a dual-port ram and each cycle one read and
one write operations are allowed to perform. There is no read
output register so read latency is only 1 cycle. To access the
next element of current node, we only need to read the content
of current node and use its 17-bit next part as the next read
address. In general, it takes 1 cycle to search the next element
and 2-3 cycles to insert a new element depending on if the
node to be inserted is a head or not.

3) Tasks Overlap: Since it takes only 1 cycle to update
the dictionary table and 3 cycles to insert a new entry into the
suffix list, these two parts can be overlapped after searching the
list. We also overlap the dictionary table references between
even and odd input symbols. The only sequential part left is
the suffix list searching.

B. Two-Level Suffix List Design

In the direct suffix list design, the performance is determined
by the total search depth of the suffix list, which takes up to
90% of the total execution time on an FPGA. To reduce this
searching procedure, a two-level suffix list is suggested in [9]
where the lower level is the original suffix list and the upper
level is a sparse version of the lower list. Each upper-level
node collects the information of what symbols are in its K

direct suffix list

two-level suffix list

1
,—_'l:i L_..: i:'_—_‘ upper level
1

_______ J
!

1 vector contains
20-39 nodes

Fig. 4. Two-level suffix list

lower-level nodes; here we call these K nodes as a vector.
This approach again does not show good performance in the
software implementation, due to the high cache miss rate.
However, the two-level suffix list design can be very effective
for FPGA acceleration due to its rich amount of distributed
BRAMs. We choose K = 20 as suggested by the theoretical
analysis in [9].

1) Lower-Level Suffix List: The content of the lower-level
suffix list entry now becomes < prev, next, upper, bound >.
The prev and next pointers are the same as those in the
direct suffix list design; the up pointer is the address of its
corresponding node in the upper-level list; the 1-bit bound
indicates if the entry is at the boundary of its vector. When
insert a new node after the boundary node, the bound bit of
the new node is copied from the original boundary node and
the bound bit of the old boundary node is cleared.

2) Upper-Level List: The organization of each upper-level
node is < prev,next,lower, flag, count,last >. The prev
and next pointers records the positions of its previous and next
upper-level nodes; the lower pointer indicates the smallest
suffix of its lower-level nodes; the flag is 128 bits and each
bit indicates if its corresponding symbol exists in the lower-
level vector; the 6-bit count records the size of the vector
and the 1-bit last signal indicates if it is the last node in the
upper-level. For a block size of 100kB design, the number of
upper-level list entries is 100k/20 = 5k.

3) Maintaining the Upper-Level List: In general, to insert a
new entry into the lower-level list, we only need to update the
flag bits and add count by 1 in its corresponding upper-level
node. If the new entry is inserted before the original smallest
suffix, we also update the lower pointer with the new suffix.
To ensure the updating flags part not be the critical path, we
allocate 1 extra clock cycle for it.

A special case is when the size of vector becomes larger.
We maintain the size of the vector between 20 and 39. If a
new entry is inserted and the size of the vector is about to
become 40, we will split the vector into two size-20 vectors.
Since the flag information needs to be recorded precisely for
each vector, we need to refer to all the lower-level nodes in
the original vector to get the updated flag information.

1V. EVALUATION

A. Experimental Setup

To better understand the performance difference, we per-
form experiments using both software and hardware. On the

software side, we implement the basic antisequential suffix
sorting algorithm and the fastest BWT algorithm extracted
from the bzip2 software on a Intel Xeon E5-2689 CPU with
256KB L2 cache and 35MB L3 cache. On the hardware side,
we implement both the direct suffix sorting and the two-
level suffix sorting designs and measure the kernel execution
time on a Xilinx Virtex UltraScale+ VCU1525 board. The
benchmarks we use are selected from the standard Calgory
Corpus and Large Corpus benchmarks whose file size is more
than 500kB.

B. Resource Utilization

Our hardware implementation uses less than 1% of LUTs
slices and Flip-Flops, 0 DSPs, as the ASS algorithm is not
computation-intensive. The BRAM usage of both the direct
suffix list design and the two-level suffix list design is reported
in Table I: it increases with the BWT block size. The two-
level suffix list design for 500KB block size only takes 35.5%
BRAM resources, indicating this FPGA is even capable of
perform BWT with a block size of 900KB to satisfy the
highest compression ratio in the bzip2 compression standard.
The BRAM usage for the direct suffix list design is even less.

We did not include the data for a block size more than
500KB, as the clock frequency that the designs can run drops
as the block size increases, and the expected hardware speedup
goes below 1.5x. This is because the critical path sits between
the operation of reading the suffix list and send its result to the
controller to decide which element to read for the next time.

TABLE I
RESOURCES UTILIZATION

Block Size BRAM Utilization | Frequency (MHz)
two-level(100KB) 141 (6.53%) 222
two-level(300KB) 462 (21.4%) 187
two-level(S00KB) 768 (35.5%) 156

direct (100KB) 120.5 (5.58%) 231
direct (300KB) 385 (17.82%) 192
direct (500KB) 642 (29.7%) 157

C. Performance Evaluation

A performance comparison of various designs with a block
size of 300KB is shown in Figure 5. Although the software
implementation of the antisequential suffix sorting algorithm
is the slowest in the four cases, our FPGA implementations
of the two-level suffix list achieves an average speedup of 2x
over the fastest bzip2 BWT kernel on the CPU. The average
speedups for 100KB and 500KB block sizes are 2.3x and 1.6x,
and detailed breakdown is omitted due to space constraints.

As shown in Figure 5, in general, the direct suffix list
design is slower than the CPU bzip2 BWT kernel. However,
an interesting observation is for benchmark E.coli, the direct
suffix list method works the best. This is because E.coli is
a genomic sequence file whose input symbols have only 4
types and in most cases only a few searches are needed to get
a match. For the rest four benchmarks whose input symbols
are more diverse, the two-level suffix list design is the best
and outperforms the direct suffix list design by around 10x.
This gives us the options to select between the two designs
depending on the input file characteristics

2.5
2
S15
el
(7]
[
g1
0.5
0
E.coli bible.txt world192.txt book1 book2
W bwt in bzip2 ass-software direct suffix list two-level suffix list

Fig. 5. Performance comparison when the BWT block size = 300kB

V. CONCLUSION

In this paper, we designed and implemented the first com-
plete BWT solution on FPGAs with a block size up to S00KB,
which supports high quality compression on FPGAs. Although
the original antisequential suffix sorting algorithm slows down
in CPUs due to its high cache miss rate, we find it is a good
fit for FPGA acceleration since FPGAs feature a rich set of
distributed on-chip BRAMs. Experiments show that our FPGA
implementations achieve around 2x speedup over the fastest
CPU solution. In future work, we will optimize the clock
frequency of our BTW accelerator and accelerate the entire
bzip2 compression standard on FPGAs.

VI. ACKNOWLEDGEMENT

This work is partially supported by Mentor Graphics under
the Center for Domain-Specific Computing Industrial Partner-
ship Program. We would like to thank Fedor Pikus for his
valuable support.

REFERENCES

[1] M. Burrows et al., “A block-sorting lossless data compression algo-
rithm,” SRC Research Report, 1994.

[2] “Bzip2 Compression Library,” http://www.bzip.org, [Online; accessed
13-Jan-2019].

[3] D. A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098—
1101, Sept 1952.

[4] “Zlib Compression Library,” http://www.zlib.net/, [Online; accessed 13-
Jan-2019].

[5] “Gzip file format specification version 4.3,” https://tools.ietf.org/html/
rfc1952.

[6] J. L. Bentley et al., “Fast Algorithms for Sorting and Searching Strings,”
in Proceeding of Data Compression Conference. ACM, 1997, pp. 360—
369.

[71 N. J. Larsson et al., “Fast Suffix Sorting,” technical report LU-CS-TR,
1999.

[8] J. Seward, “On the Performance of BWT Sorting Algorithms,” in
Proceeding of Data Compression Conference, ser. DCC ’00. IEEE,
2000, pp. 173-182.

[9]1 D. Baron et al., “Antisequential Suffix Sorting For BWT-Based Data

Compression,” IEEE Transactions on Computers, vol. 54, no. 4, pp.

385-397, April 2005.

U. Cheema et al., “A High Performance Architecture for Computing

Burrows-Wheeler Transform on FPGAs,” in International Conference

on Reconfigurable Computing and FPGAs, ser. ReConFig 13. IEEE,

2013.

J. A. Perez-Celis et al., “An FPGA Architecture to Accelerate the

Burrows Wheeler Transform by Using a Linear Sorter,” in Parallel and

Distributed Processing Symposium Workshops, ser. IPDPS *16. 1EEE,

2016, pp. 156-161.

B. Zhao et al., “Streaming Sorting Network Based BWT Acceleration

on FPGA for Lossless Compression,” in Proceedings of the 2017

International Conference on Field-Programmable technology, ser. FPT

’17, 2017, pp. 247-250.

(10]

(11]

[12]

http://www.bzip.org
http://www.zlib.net/
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952

