
Energy-Efficient Computing Using Adaptive Table Lookup

Jason Cong∗, Milos Ercegovac∗, Muhuan Huang∗, Sen Li∗, Bingjun Xiao†
∗Computer Science Department and †Electrical Engineering Department

University of California, Los Angeles
Los Angeles, California, 90095

{cong, milos, mhhuang, senli, xiao}@cs.ucla.edu

Abstract—Table lookup based function computation can significantly
save energy consumption. However existing table lookup methods are
mostly used in ASIC designs for some fixed functions. The goal of this
paper is to enable table lookup computation in general-purpose proces-
sors, which requires adaptive lookup tables for different applications.
We provide a complete design flow to support this requirement. We
propose a novel approach to build the reconfigurable lookup tables based
on emerging nonvolatile memories (NVMs), which takes full advantages
of NVMs over conventional SRAMs and avoids the limitation of NVMs.
We provide compiler support to optimize table resource allocation
among functions within a program. We also develop a runtime table
manager that can learn from history and improve its arbitration of the
limited on-chip table resources among programs.

I. INTRODUCTION

Application-specific accelerators can fully exploit parallelism and
customization while providing orders-of-magnitude improvement
in power-efficiency over CPUs [1]. The extreme example of an
accelerator is the table lookup which allows computing functions
with very low energy consumption. For example, the computation
of the commonly-used function sin(x) involves many hundreds of
instructions. Our experiments using the Simics [2] and Gems [3]
simulator on the Ultra-SPARC-III processor shows 226 clock cycles
in a single execution of sin(x) with an energy consumption of
104nJ — 450x the energy of an instruction of integer add. If all
possible results of sin(x) are pre-stored in a large table, then a single
table lookup is sufficient for each function call of sin(x), and the
computation of sin(x) becomes very energy-efficient. Table lookup
methods are representative cases that trade space for time and energy
savings. They have been the subject of research for many years [4–
7]. Since the straightforward table lookup implementation needs a
very large table (>16GB for a 32-bit operand), bipartite methods
have been proposed to reduce the table size [4]. This method uses
two smaller tables, but needs one extra operation to add the two
lookup results. Multipartite methods were further proposed to allow
more design choices for the number and size of lookup tables, and
thus more flexibility in optimizing total table size and number of
additions [6]. These works focus on the optimal table lookup design
for a specific function, e.g., sin(x), log(x), exp(x), etc.

Existing table lookup methods are applied to ASICs only. How-
ever the rapid increase of non-recurring engineering cost and design
cycle of ASICs in nanometer technologies makes it impractical to
implement most applications in ASICs. The goal of this paper is to
popularize table lookup methods in general-purpose processors to
achieve significant energy savings. Since general-purpose processors
execute numerous user applications (see examples in Table I), we
cannot afford to have a fixed lookup table for each function. Instead,
we need to adapt table content to users’ applications.

There are two main challenges to realizing adaptive table lookup.
First, in order to reconfigure lookup tables according to users’ de-
mands, tables can no longer be implemented in read-only memories
or silicon anti-fuse with near-zero area overhead. Tables will be
implemented in writable memories which have much lower storage
density and may consume leakage power. For example, the on-chip

memory, cache, is usually built from SRAMs which need at least
six transistors to store one bit. A 32MB cache in an Intel®Itanium
processor [8] occupies about 50% of the total chip area. In addition,
SRAMs need a power supply to keep the stored value during
standby, which consumes about 35% of the total chip power [8].
The second challenge is that once lookup tables can be composed
to cover different functions in different programs, these functions
and programs will compete for the limited table resource. Functions
and programs have different impacts on the overall processor energy
efficiency. Given the total reconfigurable table size available on
a chip, an interesting research problem is to explore smart table
allocations among functions and programs to achieve the maximum
energy savings of the system.

To enable table lookup in general-purpose processor, we will
solve all the challenges discussed in Section I. The contributions
of this paper are as follows:

• We provide a novel approach to build the reconfigurable lookup
tables based on emerging nonvolatile memories (NVMs), which
takes full advantages of NVMs over conventional SRAMs and
avoids the limitation of NVMs.

• We provide compiler support for adaptive lookup tables so that
within each compiled program and with any given table size
allocated to the program, we optimize the distribution of the
table resource among table-accelerated functions.

• We develop a runtime table manager which can learn from
history and improve its arbitration of the limited on-chip table
resources among programs.

II. NVM-BASED TABLE LOOKUP

A. Emerging Nonvolatile Memory

With the advancement of material and device technology, emerg-
ing nonvolatile memories (NVMs) are gaining maturitive. NVMs
include spin-transfer torque RAM (STTRAM), phase-change RAM
(PCRAM), and resistive RAM (RRAM). While the fabrication
choice of RRAM is still in hot debate [9], various semiconductor
companies (e.g., Samsung and Hynix) are manufacturing STTRAM
and PCRAM in mass volume. All the emerging NVMs have CMOS-
compatible fabrication process, and show a significantly higher
storage density than conventional SRAMs and competitive read
performance, as shown in Table II. The nonvolatility of NVMs
also greatly reduce the leakage power during standby. The main
disadvantage of NVMs is the poor performance of write operations
concerning latency, energy, and endurance. There are numerous
papers that explore methods for reducing the number of writes
to NVMs which are used as cache or main memory [13–16].
From our perspective, since the asymmetry of NVMs’ between read
performance and write performance is more than three orders of
magnitude (as shown in Table II), it is difficult to apply NVMs to
cache or main memory where read frequency and write frequency
are at the same scale. The task of finding a suitable application
for NVMs that matches their asymmetry will benefit greatly from

Based on Nonvolatile Memories

978-1-4799-1235-3/13/$31.00 ©2013 IEEE 280 Symposium on Low Power Electronics and Design

Table I: Computation-intensive functions in different applications where table lookups have potential energy savings.
Application Computation
Geometry sin(x), tan(x), arcsin(x), ...

Statistics Error function erf(x) = 2√
π

xR
0

e−t2dt, chi-squared function, ...

Wave propagation Bessel function Jα(x) = 1
2π

2πR
0

cos(ατ − xsinτ)dτ , ...

Field potential calculation Legendre polynomial Pn(x) = 1
2nn!

dn

dxn [(x2 − 1)n], ...

Analytical chemistry Gaussian equation for Spectra AA = CAεA

σ
√

2π
e(λ−λmaxA)2/(2p2), ...

Financial Black-Scholes φ(x) = 1√
2π

xR
0

e−t2/2dt, ...

Medical imaging Riciandenoise3D f(r) =
r(2.38944+r(0.950037+r))

4.65314+r(2.57541+r(1.48937+r))
, ...

Table II: Comparison of SRAM, STTRAM [10] and PCRAM [11] at 32nm technology node and 512KB by NVSIM [12]. F : feature size.
technology cell size read latency read energy write latency write energy write cycles leakage power

SRAM 140F 2 1.90ns 103pJ 1.449ns 0.102nJ 3× 1016 0.16mW
STTRAM 20F 2 1.73ns 91.3pJ 101ns 19.5nJ 1× 1012 ∼0
PCRAM 4F 2 1.43ns 92.4pJ 301ns 10.3nJ 1× 109 ∼0

the progress of this advanced technology. NVM-based FPGAs [17–
19] are a good example since there are write accesses only during
FPGA programming and the number of programming cycles is
expected to be small (<500) for typical FPGA users. We believe
that reconfigurable lookup tables for function acceleration will be
another promising application since the tables are frequently read
(upon each lookup) but are much less often updated (only upon
launching a new program).1

B. Direct Impact of NVMs on a Single Lookup Table

Compared to SRAMs, the direct impact of NVMs on a single
lookup table is that energy consumption is reduced for each table
size, as shown in Fig. 1. For each table size in the figure, we

y (
pJ

/o
p)

4000
5000
6000

SRAM (with leakage)

ag
e E

ne
rg

y

1000
2000
3000
4000

(g)

Av
er

a

0
1000 NVM

Table Size

1

Figure 1: The direct impact of NVMs on a single lookup table.

compute the energy consumption per read operation for SRAMs and
NVMs using the memory modeling tool NVSIM [12]. The leakage
power of SRAMs is converted into the energy consumption per read
operation based on the average ratio of total runtime over the total
number of read accesses among a set of benchmarks. We can clearly
observe that NVMs can save huge energy consumption compared
to SRAMs, especially when the table size is large.

C. Scheme and Tradeoff of Table Lookup Design

Now we want to optimize the table lookup design of the computa-
tion of a function. The basic design tradeoff is that larger table size
leads to fewer arithmetic operations. The extreme case is that if we

1FPGAs also contain an array of look-up tables but with much smaller
size (16 bits to 64 bits per table). The programmability of FPGAs mainly
comes from their reconfigurable interconnects.

want to implement a function with a 32-bit (wl = 32) operand
into a single table lookup without any post-processing, a 16GB
table will be needed to store all possible results. It is not possible
to allocate such a large table to a single function. Bipartite and
multipartite methods are proposed to enable tradeoff between table
size and arithmetic operations [4, 6]. The design scheme of the most
general multipartite method is shown in Fig. 2. The 32-bit operand

1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α=12 γ1=7

α=12

β1=5 γ2=6 β2=6 γ3=4 β3=8

γ1+β1=12 γ2+β2=12 γ3+β3=12

LUT LUT LUT LUT

ADD ADD

ADD

1

Figure 2: Execution flow of the computation by the multipartite
method [6]. This method keeps the full precision of the output
allowed by the 32-bit data width and offers tradeoff between lookup
tables and arithmetic additions.

is decomposed into m = 4 partitions in this example. The most
significant α = 12 bits (let’s say A) will index 212 segments out
of the 232 possible inputs. For each segment, an initial value is
looked up by A and the other values are interpolated by adding,
to this initial value, offsets computed out of the 32 − 12 = 20
least significant bits of the input word, as shown in Fig. 3. The
idea behind the multipartite method is further decompose the 20
least significant bits into βi-bit fragments (i = 1, 2, ..., m − 1).
For each βi-bit fragment, the method groups the 2α input intervals
into 2γi larger intervals such that the slope of the segments can be
considered constant at cost of accuracy loss. As long as the accuracy
loss is smaller than the precision of 32-bit digit representation, the
result will remain correct. Since the least significant βi, β2, β3 bits
B1, B2, B3 have decreasing impact on the final results, the precision
of their corresponding slopes to multiply can be relaxed to fewer

f(x)

x
α β1 β2β3

2

x
Figure 3: Illustration of how the final result is computed by the
multipartite method [6].

bits γ1, γ2, γ3, as shown in Fig. 2. The multipartite fomula is written
as

f(x) =F0(A) + F1(A1, B1) + F2(A2, B2)

+ · · ·+ Fm−1(Am−1, Bm−1)

In this way, we only need to store 2α initial values plus 2β1+γ1 +
2β2+γ2 + · · ·+ 2βm−1+γm−1 offsets, i.e., 214 values in all for this
case, much less than the original 232 values.2 There are flexible
design choices on the number of tables and the exploration of values
(α, βi, γi) that lead to different table sizes and addition cost.

D. Impact of NVM on Table Lookup Design

When a designer decides the number of lookup tables m, the
multipartite method [6] will give the optimal setting of (α, βi, γi).
For each design choice concerning how many tables to implement,
we can calculate the corresponding energy consumption of all the
lookup tables implemented in SRAMs and NVMs. When added
to the energy consumption of ALUs (scaled with m), we arrive
at the total energy consumption of one lookup-based execution of
the function as shown in Fig. 4. We observe that while SRAM-

900

1000

10000
12000

y (
pJ

/o
p)

 (p
J/o

p)

700

800

4000
6000
8000 SRAM

ag
e E

ne
rg

y

opt

NVM

ge
 E

ne
rg

y

opt

600

700

2 3 4 5 6 7 8 9
0

2000

2 3 4 5 6 7 8 9

Av
er

a

Av
er

ag

of lookup tables in a design # of lookup tables in a design

4

Figure 4: For each design choice on # of tables, Total energy
consumption (table lookups plus adders).

based table lookup prefers more tables with smaller table sizes,
NVM-based table lookup prefers fewer tables with larger table sizes,
because NVM-based implementation does not need to pay leakage
overhead for larger tables.

E. Design Curve for NVM-Based Table Lookup

Note that although we get the optimal energy consumption for any
design choice in the number of lookup tables, the number of tables
is just a tunable design parameter. What constrains a table lookup
design is the table size that is allocated for the design. Since the
available table size cannot be adjusted by programmers and might
change according to runtime system resource utilization, what we
can do is always try to get the maximum energy savings under an

2The choice of (α, βi, γi) in this example is not generated by the
multipartite method but set for illustration only.

arbitrary table size constraint. To realize this goal, we also calculate
the total size of lookup tables for each design choice that concerns
the number of tables, as shown in Fig. 5. Then we combine it with

10

ze
 (M

B)

6

8

10

Ta
bl

e S
iz

2

4

of lookup tables in a design

0
2 3 4 5 6 7 8 9

6

Figure 5: For each design choice on # of tables, minimum table
size to be allocated. The table size graduality is 128 bytes under the
assumpiton of 32x32 memory subarrays to fit the default NVsim
settings.

Fig. 4 and get the design curve of the NVM-based table lookup,
as shown in Fig. 6. This curve will be provided to tools at higher

100,000
d i i t / LUTdesign point w/o LUT

1000

900

(p
J)

700

800

en
er

gy

600

700e

8
0 1 2 3 4

600

table size (MB)

Figure 6: Design curve of NVM-based table lookup. Design point
with table size = 0 means using a conventional processor without
help of any lookup table.

levels to determine the size of the table that will be allocated to
this function. Note that the design point at the number of tables
equal to two is removed in the curve since it is not a pareto-optimal
point. The design point at three tables is strictly better concerning
both table size and energy consumption. Also we added the design
point at table size equal to zero because it corresponds to the case
in which computation is performed in the conventional way without
table lookup.

III. COMPILER SUPPORT

We allow programmers to specify in their codes whether an
attempt should be made to implement a function in lookup tables
or not, as shown in Fig. 7.3 Within a program, multiple functions
may be marked for table lookups. For the example shown in Fig. 4,
the optimal table lookup design needs 3MB size. If we increase
processor size by 0.5% for NVM-based lookup tables, there will be
only 10MB in total (assume 4F 2 cell size in Table II).4 Multiple
programs running in the processor will compete for the limited table
resource. Multiple functions within a program will compete for the
table resource as well. Since the impact of each function on the total
energy consumption of the program can be analyzed during compile
time, we first enhance the compiler to optimize the allocation of

3Our flow does not support floating point computation yet.
4We use this setting in our first attempt of adaptive table lookup. After

wide acceptance of this technology, it will be interesting to do design space
exploration on this setting.

……

3

Figure 7: Pragma to allow programmers to specify in their codes
whether to attempt to implement a function in lookup tables or not.

table resource among functions within a program. In this section,
we describe our compiler support to perform such an optimization.
The arbitration policy for table allocation among programs will be
discussed in Section IV.

A. Problem Formulation

table size

+

table size

+ …

table size

en
er
gy

en
er
gy

en
er
gy

Figure 8: Composition of program pareto curve from function pareto
curves.

As shown in Section. II, for each function that may be imple-
mented using lookup tables, we will generate a pareto curve that
trades off the energy and table size. We refer to such a pareto curve
as a function pareto curve. A program can have several function
pareto curves. By composing function pareto curves, we can arrive
at a pareto curve for the program, which is referred as the program
pareto curve. Figure. 8 shows the relationship between the function
pareto curve and the program pareto curve. Such program pareto
curve will be provided to the runtime table manager. During runtime
given the current available table size in the system, the table manager
can derive the minimum energy consumption from the program
pareto curve. The pareto curve is not continuous in real applications.
Instead, we are given a set of discrete points on the pareto curve. We
refer to this set of discrete points as a pareto set. Thus our problem
can be formulated as the following: given a pareto set (that trades
off energy and area) for each function which can be implemented by
table lookup techniques, derive a pareto set for the whole program.

B. Dynamic Programming Algorithm for Program Pareto Curve
Generation

We propose an algorithm to generate the program pareto curve
based on dynamic programming. Suppose the number of functions
which can be implemented using lookup tables is n. The pareto set
of the ith function is F i. F i

j is the jth pareto point of function i. The
pareto set of the program is P , and P i is the ith pareto point of the
program. Each P i consists of 1) the value of energy consumption
Ei for the ith pareto point, and 2) an array T i of size n where
T i

j represents the table size allocated for function j in pareto point
P i. For easy demonstration, we assume that the sizes of the pareto
sets of the functions and the program are all m which equals to the
total available table size, whereas in reality the size of the pareto
set of each function and the program could be different, and our
algorithm can be easily adapted to such scenario. The goal now is
to compute Ei, i ∈ {1, 2, . . . , m}.

Basically we compute the value of Ei as follows:

Ei = mini−1
j=0(E

j + Φ(i− j, j))

Φ(t, i) = minn
j=1(F

j

T i
j +t

− F j

T i
j
).

The function Φ(t, i) computes the maximum energy savings if we
allocate t table size to one of the functions based on the table
allocation of the ith pareto point of the program. We first compute
E0 which represents the energy consumption of the program when
no table is allocated to any of the functions. In order to compute Ei,
for each of the computed Ej , j ∈ {0, 1, 2, . . . , i− 1}, we compute
the sum of Ej and Φ(i− j, j), and select the minimum sum to be
the value of Ei. The time complexity of our algorithm is O(nm2).
The space complexity is O(nm).

Overall our compiler support for table resource allocation contains
the following two steps:

1) Profiling to capture the occurrence of the functions that can
be implemented by table lookup. Within a program, different
functions are called at different times. We should accelerate
the functions that are called more frequently by allocating
more resource to them. Therefore, we collect the number of
function calls by profiling, and then scale up the energy for
the function pareto curve.

2) Given the function pareto curves, we generate the program
pareto curve using the dynamic programming algorithm dis-
cussed above.

2700

2900
)

program pareto curve

1900

2100

2300

2500

0 2 4 6 8 10

en
e
rg
y(
p
J)

table size (MB)

Figure 9: Generated program pareto curve.

C. Experimental Results for Compiler Support and Discussions

In Fig. 9, we show the program pareto curve generated in our
experiment. The program in our experiment contains three function
pareto curves, each has eight pareto points on its curve. The
combined program pareto curve of a program is fed into the runtime
table manager. During runtime, the table manager maximizes the
overall energy efficiency by allocating a certain amount of table
size to each incoming program using the method discussed in the
next section.

Since a program will be among different pareto points under
different table size allocations, the contents of tables used by this
program will be changed dynamically. Dynamic creation of table
contents is not a good solution since it involves lots of computation
during program loading. Instead, we pre-calculate the table contents
of each pareto point of each function in a program during compile
time and store them in separate binaries. The table contents of some
typical functions (e.g., sin(x)) can even be provided by public maths
libraries on the internet. After a program is allocated with a table
size during the runtime (i.e., which program pareto point for the
program to run on is decided), the corresponding binaries will be
linked the function calls in the main program.

IV. RUNTIME TABLE MANAGER

In this section we discuss how we allocate table resources to
each incoming application in order to maximize the overall energy
efficiency. We first describe the problem formulation, and present an
efficient machine-learning-based online table management approach.

A. Problem Formulation

During runtime, each job/application arrives at the system with
the pareto curve generated in the previous section representing its
table size/energy consumption tradeoff. We define a step to be the
time between two successively arrived jobs. The goal for the runtime
table manager here is to continuously decide and allocate the size
of table resource to each incoming job so that the average system
energy consumption per step is minimized.

One simple and intuitive approach is to use the greedy strategy
where the runtime table manager allocates the amount of table size
corresponding to the minimum energy consumption for each job.
While it is a reasonable heuristic in such a resource-constrained
environment, it makes decisions based only on the current system
status and incoming application — regardless of the past and future
job executions, and consequently may result in a less optimal
solution.

This paper addresses the shortcomings of the greedy algorithm
by formulating the problem as a Markov Decision Process (MDP)
which can by solved by the Reinforcement Learning (RL) method-
ology [20] [21]. We first describe the MDP formulation below and
then introduce our RL-based runtime table management algorithm
in the next subsection.

An MDP for a single agent (in our case the runtime table
manager) can be described by a quadruple (S, A, r, T) [20] where
• S: a finite set of states
• A: a finite set of actions
• r: a reward function S ×A× S → R
• T : a state transition function S × A → PD(S) mapping

the current state and action of the agent into the probability
distributions of S.

At each step t, the agent observes the system’s current state st ∈
S and selects an action at ∈ A accordingly. The system state then
changes from st to st+1 according to T . The agent then receives a
reward r(st, at, st+1). The goal for the agent is to find a stationary
policy π : S → A that maximizes the average reward per step
starting from any initial state. This is mathematically defined as:

ρπ = lim
T→∞

1

T

T−1X
t=0

r(st, π(st), st+1).

B. Algorithm for Runtime Table Management

The key components of the management approach are 1) predict-
ing the expected future energy efficiency per step, and 2) updating
the prediction based on the action taken in the current step.

For the first problem, the most common approach is to design
some learning function approximation architecture with tunable
parameters (such as an artificial neural network) which can be
adjusted to improve the quality of approximation. Regarding the
second problem, a reinforcement learning (RL) process can be used
to tune the parameters in the learning functions. As a demonstration,
we adopt the approach in [21] to our problem using a fuzzy rulebase
to approximate learning functions and RL process to update the
fuzzy rulebase.

The overall runtime table management algorithm of allocating
table to each incoming job is of the following steps:

1) Compute the input vector of the fuzzy rulebase xi for each
of the pareto point i in the pareto curve.

2) Compute Vi representing the expected energy consumption
per step using the computed vector xi and the fuzzy rulebase.

3) Select the smallest Vi and allocate the corresponding table
size to the job.

4) Update parameters in the fuzzy rulebase using the RL process
which is an iterative process and guarantees the convergence
if certain conditions are satisfied [21].

C. Experiments and Results of Runtime Table Management

We implemented the runtime table management method by build-
ing a software runtime layer and instrumenting the management
codes using LLVM [22]. The benchmarks we used in our experiment
are listed in Table III. Jobs arrived continuously at different time
steps — each having its own pareto curve. The runtime table
manager allocates the table size for each of the incoming job based
on the algorithm described in the previous subsection.

We compared our algorithm with 1) a simple greedy algorithm
in which each incoming job receives the table size corresponding
to the minimum energy consumption, and 2) a golden table man-
agement algorithm that has complete knowledge of the information
of applications and provides an upperbound of the potential energy
savings. The result is shown in Fig. 10.

2

2.2

av
in
gs

upperbound

1.8

2

ne
rg
y
Sa

ours

1.6

la
tiv

e
En our algorithm

golden algorithm
greedy algorithm

1 2

1.4

Ac
cu
m
u greedy algorithm

1

1.2

m
al
ize

d
A

baseline

0.8

0 2 4 6 8 10

N
or
m

Number of Rounds

Figure 10: Energy savings of our approach compared with greedy
algorithm.

The energy savings of our algorithm and the golden algorithm are
normalized to the greedy algorithm. The x-axis shows the number of
rounds of executions. During each round, each of the six benchmarks
arrives at the system at a certain probability successively. The energy
saving at each round is the cumulative energy saving from the
beginning of the first round. From the results, we can make the
following observations:

1) In the beginning of the execution there is little difference
among the three approaches because the available table size
is enough to be allocated to the incoming jobs and the greedy
algorithm itself is optimal.

2) In the following several rounds the available table size begins
to saturate. In this case both the golden algorithm and our
algorithm perform better than the greedy algorithm since
the golden algorithm performs global optimization with full
information of arrived jobs, and our algorithm allocates table
size by learning from the previous execution patterns of jobs.
However since the number of rounds is not enough to fully
train the fuzzy rulebase, the gap of energy savings between
our algorithm and the golden algorithm is still relatively large.

3) In the later rounds, since the fuzzy rulebase is trained by a
sufficient number of rounds of executions, the energy saving
of our algorithm begins to converge to a fixed number (around

Table III: Benchmarks for runtime table management.
Benchmark Description
SimSpectra Simulation of Spectra with Gaussian equation
Blackschole Pricing a portfolio of options with the Black-Scholes equation
Fluidanimate Simulation of fluid motion for realtiime animation purposes with SPH algorithm

Riciandenoise3D Denoise of 3D medical images with rician noise
Acousticradiation Solving for acoustical radiation with Bessel functions

ERF Computation of error function

1.9x), and the gap between our algorithm and the golden
algorithm decreases.

V. CONCLUSION AND FUTURE WORK

This paper provides the complete flow for adaptive table lookup
in general-purpose processors as shown in Fig. 11. As the first
attempt to enhance table lookup methods in order to actively meet
users’ demands, this paper primarily focuses on the key technologies
of bringing it to the reality. Many opportunities exist for further
improvement. For example, some functions have mathematical rela-
tionships, such as cos(x) = sin(π

2
−x) and tan(x) = sin(x)

cos(x)
. These

functions can use common lookup tables, and compilers can allocate
table resources for this group of functions rather than approaching
the problem function by function. Another example is that certain
function, such as sin(x), can appear in several programs, and the
runtime table manger can take this information into account for
further improvement. We believe that adaptive table lookups will
play an important role in processors where energy efficiency is one
of the primary design goals.

900

1000

) Optimize table design for
Device Circuit Co-design

700

800

en
er

gy
 (p

J) Optimize table design for
a specific function

0 1 2 3 4
x 106

600

table size (bytes)

O ti i t bl ll ti Compiler Support Optimize table allocation
among functions within
a program

Runtime Table Manager Learn and improve
runtime table arbitration

1
among programs

Figure 11: The overall flow for adaptive table lookup in a general-
purpose processor.

VI. ACKNOWLEDGEMENTS

This work was supported by the Center for Domain-Specific
Computing (CDSC) funded by NSF “Expeditions in Computing”
award 0926127. It is also supported in part by C-FAR, one of
six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

REFERENCES

[1] J. Cong et al., “Architecture Support for Accelerator-Rich CMPs,”
DAC, pp. 843–849, 2012.

[2] P. Magnusson et al., “Simics: A full system simulation platform,”
Computer, pp. 50–58, 2002.

[3] M. M. K. Martin et al., “Multifacet’s general execution-driven mul-
tiprocessor simulator (gems) toolset,” SIGARCH Comput. Archit.
News, pp. 92–99, 2005.

[4] D. Das Sarma and D. Matula, “Faithful bipartite rom reciprocal
tables,” in Proc. of Computer Arithmetic, 1995, pp. 17–28.

[5] J. Stine and M. Schulte, “The symmetric table addition method
for accurate function approximation,” Journal of VLSI signal
processing systems for signal, image and video technology, vol. 21,
pp. 167–177, 1999.

[6] F. de Dinechin and A. Tisserand, “Multipartite table methods,”
Computers, IEEE Transactions on, pp. 319–330, 2005.

[7] N. Brisebarre et al., “(m, p, k)-friendly points: a table-based
method for trigonometric function evaluation,” in ASAP, 2012, pp.
46–52.

[8] R. Riedlinger et al., “A 32nm 3.1 billion transistor 12-wide-issue
itanium processor for mission-critical servers,” in ISSCC, pp. 84–
86.

[9] R. Huang et al., “Resistive switching of silicon-rich-oxide featur-
ing high compatibility with CMOS technology for 3D stackable
and embedded applications,” Applied Physics A, pp. 927–931,
2011.

[10] K. Tsuchida et al., “A 64mb mram with clamped-reference and
adequate-reference schemes,” in ISSCC, 2010, pp. 258–259.

[11] S. Kang et al., “A 0.1um 1.8-v 256-mb phase-change random
access memory (pram) with 66-mhz synchronous burst-read op-
eration,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp.
210–218, 2007.

[12] X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging nonvolatile memory,” ISSCC, pp. 994–
1007, 2012.

[13] G. Sun et al., “Improving energy efficiency of write-asymmetric
memories by log style write,” in ISLPED, 2012, pp. 173–178.

[14] Y.-T. Chen et al., “Static and dynamic co-optimizations for blocks
mapping in hybrid caches,” in ISLPED, 2012, pp. 237–242.

[15] D. Lee et al., “High-performance low-energy stt mram based on
balanced write scheme,” in ISLPED, 2012, pp. 9–14.

[16] Y. Li et al., “A software approach for combating asymmetries of
non-volatile memories,” in ISLPED, 2012, pp. 191–196.

[17] J. Cong and B. Xiao, “mrFPGA: A Novel FPGA Architecture with
Memristor-Based Reconfiguration,” in NANOARCH, 2011, pp. 1–
8.

[18] Y. Chen et al., “3D-nonFAR: Three-Dimensional Non-Volatile
FPGA ARchitecture Using Phase Change Memory,” in ISLPED,
2010, p. 55.

[19] C. Wen et al., “A Non-volatile Look-Up Table Design Using PCM
(Phase-Change Memory) Cells,” in Symposium on VLSI Circuits
(VLSIC), 2011, pp. 302–303.

[20] D. Vengerov, “A reinforcement learning approach to dynamic
resource allocation,” Engineering Applications of Artificial Intelli-
gence, pp. 383–390, 2007.

[21] D. Vengerov, “A reinforcement learning framework for utility-
based scheduling in resource-constrained systems,” Future Gen-
eration Computer Systems, pp. 728–736, 2009.

[22] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in CGO, 2004, pp.
75–86.

