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Abstract—Many researchers studying the performance tuning of
systolic arrays have based their works on oversimplified assump-
tions like considering only divisors for loop tiling or pruning based
on off-chip data communication to reduce the design space. In this
paper, we present a comprehensive design space exploration tool
named Odyssey for systolic array optimization. Odyssey results
show that limiting tiling factors to only divisors of the problem
size can cause up to 39% performance loss, and pruning the
design space based on off-chip data movement can miss optimal
designs. We tested Odyssey using various matrix multiplication
and convolution kernels and validated the results with FPGA
implementations.

1. Introduction

Performance optimization for a given class of microarchitec-
tures, also called performance tuning, has long been an important
topic given the complexity of hardware systems and applications.
This issue is intensified on domain-specific architectures (DSA),
which grant designers explicit control over the software stack and
hardware architecture, opening up a vast design space to explore.

This paper focuses on the performance tuning of systolic
arrays. A complete design space of systolic arrays contains multiple
dimensions, such as the selection of dataflows, loop permutation,
and loop tiling. These factors impact the final design performance
in an intertwined manner and compose a vast design space that
is intractable to explore exhaustively, especially for large problem
sizes.

Many previous works have attempted this challenging task by
looking into different dimensions of the design space and proposing
various auto-tuning methods [17, 9, 8, 10, 5, 3, 14, 19]. However,
after a thorough examination of the previous works, we identified
several limitations that need to be addressed.

Limitation 1: Incomplete coverage of the design space.
When selecting the tiling factors, many previous works only con-
sidered problem size divisors to reduce the design space [5, 19, 3,
8]. Such a simplification, though, could lead to inferior designs.
We compare the throughput and DSP usage of best systolic arrays
that are found by limiting the tiling factors to 1) divisors only
and 2) both divisors and non-divisors for a 1024 × 1024 × 1024
matrix multiplication (MM). Restricting tiling factors to divisors
leads to a 39% performance loss. With the limited design space,
the divisor-only design fails to fully exploit the on-chip resource,
with a mere 60% DSP usage.

Limitation 2: Inaccurate performance modeling. An inac-
curate performance model could also hurt the quality of search
results. For example, the previous work TENET [14] estimated the
design latency as the maximum of computation and communication
latency. This model overlooks the prologue/epilogue phases when
loading the first tile of data and writing out the final results. For

the same MM problem, the best design identified by using the
simplified maximum-based performance model results in a 9%
slower design than the best design uncovered by a more accurate
performance model that accounts for prologue/epilogue latencies.

Limitation 3: Inefficient search methods and imperfect
pruning heuristics. When searching the design space, many pre-
vious works adopted pruning-based exhaustive search which may
not scale to large-sized problems [5, 19, 3, 14]. To make matters
worse, several works chose imperfect pruning heuristics, failing to
cover optimal designs. For example, the previous work Marvel [3]
pruned the design space based on the off-chip data communication
and applied an exhaustive search in the pruned sub-space. However,
an optimal design needs to balance both the data communication
and computation and does not necessarily minimize the off-chip
memory accesses. For the same MM example, we found that the
design with the optimal performance has a 3.5× more off-chip
data movement and a 1.9× higher throughput than the design with
minimum off-chip data movement.

All of these limitations affect the quality of search results
and further impact the architectural decisions that designers derive
based on these results. To overcome this challenge, in this paper,
we propose a new automatic design space exploration framework
for systolic arrays, Odyssey1, with the following contributions:

1) A comprehensive design space construction and accurate
performance modeling for systolic arrays

2) Two design space explorers:

a) A hybrid method using mathematical program-
ming and a genetic algorithm

b) A more accurate method using a novel padding-
based search algorithm

3) A fully automated and open-source framework

2. Background

2.1. Automatic Systolic Array Generation

Automatic systolic array generation is an important research
topic given the high performance of the systolic array architecture
and the complexities of the designing process [12, 15]. The recent
work, AutoSA [18], reported the best performance results in this
field.

AutoSA takes in a C program as the input and applies a
sequence of program transformations on this program to build and
optimize systolic arrays.

With comprehensive coverage of hardware optimization tech-
niques, AutoSA generates high-performance systolic arrays with

1. Odyssey is abbreviated from AUtomatic DEsign space exploration for
SYstolic arrays.



comparable or better performance than previous works [18]. How-
ever, such a vast design also poses significant challenges to per-
formance tuning. As an example, considering all the available
tuning options, the size of design space bloats to O(240) for a
1024 × 1024 × 1024 MM. This challenge has motivated us to
develop Odyssey which provides efficient auto-tuning support to
explore such a design space.

2.2. Previous Search Methods
The vast design space makes it infeasible to explore with an

exhaustive search. Prior works have offered various approaches to
tackle this challenge as summarized in Table 1.

An ideal performance tuning framework should achieve: 1)
a comprehensive coverage and accurate modeling of the design
space, and 2) efficient search methods to explore the design space.
The failure in either of the two targets will impact the quality
of search results, as well as the architecture conclusions derived
from these results. Unfortunately, regardless of the plethora of past
studies, we observe no prior work that reached a balance between
these two goals. This situation has motivated us to tackle this
challenge.

TABLE 1: Comparison between different architecture performance
tuning frameworks

Design Space Performance Models Search Methods On-board

Non-Divisors Prologue/
Epilogue Generation Validation

Timeloop [17] N N Manual Exhaustive w/ Pruning
Random Search N

dMazeRunner [5] N N Manual Exhaustive w/ Pruning N
Interstellar [19] N N/A Manual Exhaustive w/ Pruning N

Marvel [3] N Y Manual Mathematical Programming
Exhaustive w/ Pruning N

ConfuciuX [9] N/A Y Manual RL
Evolutionary Search N

CoSA [8] N Y Manual Mathematical Programming GPU
TENET [14] N/A N Manual Exhaustive w/ Pruning N

Odyssey Y Y Auto
Mathematical Programming

Evolutionary Search
Padding-based Algorithm

FPGA

3. Odyssey Design Space Construction
We consider all three dimensions of the design space of sys-

tolic arrays: dataflows, loop permutation, and loop tiling (array
partitioning, latency hiding, and SIMD vectorization factors2).

// Logical sub-array partitions
for (int i.0 = 0; i.0 < I/T_I1; i.0++)

for (int j.0 = 0; j.0 < J/J_T1; j.0++)
for (int k.0 = 0; k.0 < K/K_T1; k.0++)

// Physical array
for (int i.1 = 0; i.1 < T_I1/T_I2; i.1++)

for (int j.1 = 0; j.1 < T_J1/T_J2; j.1++)
// PE
for (int k.1 = 0; k.1 < T_K1/T_K2; k.1++)

for (int i.2 = 0; i.2 < T_I2; i.2++)
for (int j.2 = 0; j.2 < T_J2; j.2++)

for (int k.2 = 0; k.2 < T_K2; k.2++)
C[...] += A[...] * B[...];

Input Code of MM:

for (int i = 0; i < I; i++)
for (int j = 0; j < J; j++) 

for (int k = 0; k < K; k++)
C[i][j] += A[i][k] * B[k][j];

Note: Initialization of C omitted for brevity.

Space-Time Transformation 2: [𝑖, 𝑗]

for (int i = 0; i < I; i++)
for (int j = 0; j < J; j++) 

for (int k = 0; k < K; k++)
C[i][j] += A[i][k] * B[k][j];

space

time

PE PE

PE PE

* The generated systolic array:

𝑖
𝑗

A

B

⋯

⋯

⋯ ⋯

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.0 = 0; j.0 < J/T_J1; j.0++) 

for (int k.0 = 0; k.0 < K/T_K1; k.0++)
for (int i.1 = 0; i.1 < T_I1; i.1++)

for (int j.1 = 0; j.1 < T_J1; j.1++)
for (int k.1 = 0; k.1 < T_K1; k.1++)

C[...] += A[...] * B[...];

Loop Permutation 1: < 𝑖. 0, 𝑗. 0, 𝑘. 0 >

Sub-array loops

Array partitioning loops

* Off-Chip Data Communication:
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* The generated systolic array:

for (int i = 0; i < I; i++)
for (int j = 0; j < J; j++) 

for (int k = 0; k < K; k++)
C[i][j] += A[i][k] * B[k][j];

space

time

PE PE

* The generated systolic array:

𝑖A

B ⋯

Space-Time Transformation 1: [𝑖]

𝑖
𝑗

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int k.0 = 0; k.0 < K/T_K1; k.0++) 

for (int j.0 = 0; j.0 < J/T_J1; j.0++)
for (int i.1 = 0; i.1 < T_I1; i.1++)

for (int j.1 = 0; j.1 < T_J1; j.1++)
for (int k.1 = 0; k.1 < T_K1; k.1++)

C[...] += A[...] * B[...];

Loop Permutation 2: < 𝑖. 0, 𝑘. 0, 𝑗. 0 >

Sub-array loops

Array partitioning loops

* Off-Chip Data Communication:
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* The generated systolic array:

𝑖
𝑗
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𝐷𝑀 𝐶 = 2
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Latency Hiding

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.0 = 0; j.0 < J/T_J1; j.0++) 

for (int k.0 = 0; k.0 < K/T_K1; k.0++)
for (int i.1 = 0; i.1 < T_I1/T_I2; i.1++)

for (int j.1 = 0; j.1 < T_J1/T_J2; j.1++)
for (int k.1 = 0; k.1 < T_K1; k.1++)

for (int i.2 = 0; i.2 < T_I2; i.2++)
for (int j.2 = 0; j.2 < T_J2; j.2++)

C[...] += A[...] * B[...];

Latency hiding loops

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.0 = 0; j.0 < J/T_J1; j.0++) 

for (int k.0 = 0; k.0 < K/T_K1; k.0++)
for (int i.1 = 0; i.1 < T_I1/T_I2; i.1++)

for (int j.1 = 0; j.1 < T_J1/T_J2; j.1++)
for (int k.1 = 0; k.1 < T_K1/T_K2; k.1++)

for (int i.2 = 0; i.2 < T_I2; i.2++)
for (int j.2 = 0; j.2 < T_J2; j.2++)

for (int k.2 = 0; k.2 < T_K2; k.2++)
C[...] += A[...] * B[...];

SIMD loop

SIMD Vectorization

Array partitioning
(Loop permutation 

+ loop tiling)

Space-time 
mapping

Latency hiding
(Loop tiling)

SIMD Vectorization
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Figure 1: Two loop permutation examples for MM

Dataflows: Previous works [19, 11] utilized the term dataflow
to identify different array topologies and execution patterns, which

2. Refer to the AutoSA paper [18] for an explanation of these terms.

TABLE 2: Parameters set to construct the whole design space for
MM and convolution

Application MM CNN

Dataflows [i], [j], [k], [i,j], [i,k], [j,k]
[o], [h], [w], [i],

[o,h], [o,w], [o,i], [h,w], [h,i], [w,i]
Loop Permutation <[i,j],k>, <[j,k],i>, <[i,k], j> <[o,h,w],[i,p,q]>, <[o,i,p,q],[h,w]>, <[i,h,w,p,q],o>

# of Unique Designs 6 dataflows × 3 permutations = 18 10 dataflows × 3 permutations = 30

Tiling Factors per Design Ti1, Tj1, Tk1, Ti2, Tj2, Tk2 Ti1, To1, Th1, Tw1, Ti2, To2, Th2, Tw2

are equivalent to different space-time mappings within the scope
of systolic arrays. In the rest of the paper, we use dataflow to refer
to different space-time mappings. We annotate each dataflow in the
format of [i, j] that marks the selected space loops for this array
(see Table 2).

Loop Permutation: Odyssey explores different loop permu-
tation orderings in the array partitioning. Different loop orderings
may lead to various array architectures. AutoSA enumerates all the
loop permutation orderings. For MM, there are 3! = 6 different
orderings to consider. The number grows larger for more compli-
cated applications like 2-D convolution. The six-level nested loops
lead to 6! = 720 different loop orderings. However, as pointed out
by previous works [13, 5], among all the loop orderings, many of
them are dominated by a few orderings in performance, thus can
be safely pruned without leaving out the optimal points. Next, we
show that with proper pruning, we can reduce the number of loop
orderings to consider for both MM and CNN to only 3.

We consider resource usage and latency when assessing the
design performance. Different loop orderings will impact the struc-
ture of the I/O network, resulting in different resource usage. For
example, in MM, after hoisting the loop k.0 from the innermost
position of the array partitioning loop band, additional I/O modules
for transferring the intermediate results of matrix C are added,
increasing the total resource usage. The key takeaway is: By plac-
ing loops that carry the flow dependences innermost in the array
partitioning loop band, intermediate data are accumulated on-chip,
eliminating the resource overheads brought by the additional I/O
modules.

Latency-wise, different loop orderings will affect off-chip
data communication. We compute the off-chip data movement
for the two example designs in Figure 1. For the first ordering
< i.0, j.0, k.0 >, final results of matrix C are only drained out
at the last iteration of loop k.0, leading to a total amount of data
movement as:

DM(C) = ⌈ I

T I1
⌉⌈ J

T J1
⌉T I1 · T J1 (1)

As for the second ordering < i.0, k.0, j.0 >, the intermediate
results of matrix C are swapped off-chip at each loop iteration of
j.0. We compute the total data movement of matrix C as:

DM(C) = 2⌈ I

T I1
⌉⌈ K

T K1
⌉⌈ J

T J1
⌉T I1 · T J1 (2)

To take into account both the inbound and outbound traffic of
matrix C, we multiply the factor 2. Compared to the first ordering,
the second ordering introduces a higher amount of data movement
for matrix C. For communication-bound designs, this could lead
to a longer latency. In addition to the loops that carry the flow
dependence, loops that carry the read dependence will impact the
data communication as well. We use matrix A as an example.
As shown in Figure 1, with the loop ordering < i.0, j.0, k.0 >,
at each array partition, we load new array tiles with a size of
T I1×T K1 from array A. In comparison, with the loop ordering
< i.0, k.0, j.0 >, data of matrix A are reused along the loop j.0.
New data tiles are only loaded at each new loop iteration of loop
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k.0, reducing the data communication for matrix A compared to
the first ordering. Detailed equations of data movement for matrix
A can be found in Figure 1. The key takeaway is: By placing array
partitioning loops that carry the flow/read dependences innermost,
data are reused on-chip, reducing the off-chip data communication
and design latency.

Putting it all together, we have a complete picture of the
pruning strategy.
Theorem 3.1. Given a program that can be mapped to systolic
arrays, let RL(r) be the set of array partitioning loops that carry
the read/flow dependences associated with the array reference r,
and NRL(r) be the rest of the loops in the array partitioning
loop band, the set of unique loop orderings O can be obtained as
the union of loop orderings in the form of < NRL(r), RL(r) >
for each array reference r. All the other loop orderings are
dominated by O in terms of resource usage and latency. Note that
RL(r) could be an empty set if there is no read/flow dependence
associated with the r. For this case, the loop ordering is in the
form of < NRL(r) >, and is added into O for consideration.

Proof Sketch. Assume the above statement is false, i.e., there is a
loop ordering o′ out of the set O that achieves better performance
than loop orderings in O. Then, there exists at least one loop lrl
in o′ that carries the read/flow dependences for a certain array
reference r, and is placed above a certain loop lnrl that belongs
to NRL(r). We group all such loops lrl into a set RL′(r) and
permute them to the innermost of the array partitioning loop band
to generate a new loop ordering ô that belongs to O. If r is
associated with flow dependences, o′ introduces additional I/O
modules for loading in the intermediate results, increasing the
resource usage compared to ô. If r is associated with read/flow
dependences, o′ increases off-chip data communication, and could
lead to a longer latency than ô if the design is bound with data
communication of r. Overall, this loop ordering o′ is dominated
by ô in both resource usage and design latency, which contradicts
the initial assumption that o′ dominates loop orderings from O in
performance.

For the MM example, loop i.0 carries the read dependence
for array B, loop j.0 carries the read dependence for array A,
and loop k.0 carries the flow dependence for array C. In total,
there are three loop-ordering candidates which lead to systolic
arrays with potentially different performances. Note that as long
as the innermost loop is fixed, the ordering of other loops will
not impact the performance. In the rest of this paper, we use
the annotation < [i.0, j, 0], [k.0] > to identify the set of loop
orderings. All the loops in the same brackets can be permuted
freely with equivalent performance. We will choose one ordering
randomly in practice. Table 2 shows all the unique loop orderings
for MM and Convolution.

To summarize, given an input program, we use AutoSA to
generate different dataflows and loop permutation orderings of the
array partitioning loops and leave the tiling factors as tunable
parameters to be handled by Odyssey design space explorers as
detailed in Table 2.

4. Odyssey DSE Methodology

In this section, we introduce our automatic performance model
generation and the two design space exploration approaches for
loop tiling.

4.1. Automatic Performance Model Generation

The accuracy of performance models plays an important role
in performance tuning. In Section 1, we discussed the issue of
using a simplified performance model that overlooks the epilogue
and prologue phases of the hardware execution. Table 1 highlights
several previous works with a similar issue [17, 5, 14]. In addition,
such performance models are usually derived manually which is
time-consuming and error-prone. Odyssey distinguishes itself from
the prior works in that it automatically creates performance models
by leveraging the AutoSA compiler. We have extended AutoSA
to generate a design descriptor that contains all the necessary
information for estimating the design performance.

The auto-tuner utilizes this description file to create a Python
file containing functions for estimating the design performance.
All the performance models are symbolic expressions of the tuning
parameters. During the search, the auto-tuner samples the design
space and plugs in different tuning parameters into the performance
models for assessing the design performance.

4.2. Genetic-MP Hybrid Method

4.2.1. Genetic algorithm. For Odyssey’s first explorer, we select
evolutionary search as the backbone search method. Evolutionary
search [7] is a generic meta-heuristic algorithm inspired by bio-
logical evolution, in which individuals of a population gradually
improve themselves through a series of biological mechanisms
such as mutation, crossover, and selection. In the context of
hardware design space exploration, we have:

Encoding scheme: Each individual is encoded by the tiling
factors used in AutoSA compilation passes. The encoded genome
includes the problem size and the tiling factors used for each
compilation pass.

Mutation: We randomly select one loop l2 and mutate this
loop by changing the loop bound to a random value s ∈ [1, l2].
Next, we select another corresponding loop l1 and change its loop
bound to a new value s′ computed by s′ = ceil(l1 × l2/s).
Figure 2 displays one example of mutation where the new tiling
factor Tj1 = 36 is not a divisor of 64.

I 64

J 64

K 64

Ti1 32

Tj1 32

Tk1 32

Ti2 16

Tj2 8

Tk2 8

i.0 2

j.0 2

k.0 2

i.1 2

j.1 4

k.1 4

i.2 16

j.2 8

k.2 8

I 64

J 64

K 64

Ti1 32

Tj1 36

Tk1 32

Ti2 16

Tj2 6

Tk2 8

i.0 2

j.0 2

k.0 2

i.1 2

j.1 6

k.1 4

i.2 16

j.2 6

k.2 8

Problem
Size

Array
Partitioning

Latency
Hiding

SIMD
Vectorization

Genome Before Mutation Genome After MutationLoop Bounds Mutation

⌈(4×8)/6⌉=6

Figure 2: Example of a MM genome mutation
When performing the mutation, we assign a probability α to

execute the mutation. Based on a grid search, we set α to 0.4 by
default.

Crossover The crossover operation exchanges the genomes of
two individuals. To guarantee the validness of the offspring, we
exchange the tiling factors associated with the same original loop
together.

4.2.2. Mathematical Programming. Although the mathematical
programming (MP)-based method fails to identify the optimal
design, the design it finds achieves relatively good performance and
could be used as the initial population of the evolutionary search.
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Odyssey implements a MP-based optimizer to produce high-quality
seeds for the evolutionary search. We formulate the optimization
problem as follows.

Objective Function: Given the high complexity of the hard-
ware designs, it is usually difficult to have a close-formed per-
formance model suitable for the solvers as the objective function.
Instead, previous works chose different high-order functions that
impact the performance as the objective functions [13, 3, 8]. We
conducted an experiment on evaluating the effectiveness of several
objective functions.

Objective 1: Computation resource We employ the total DSP
usage UDSP as the optimization target. The heuristic is that a
design with higher performance utilizes more DSPs.

Obj1 : min(−UDSP ) (3)

Objective 2: Off-chip communication We aggregate the
off-chip data movement of all the arrays in the program. For
communication-bound applications, reducing off-chip communica-
tion could improve a design’s performance.

Obj2 : min
∑

a∈Arrays

DM(a) (4)

Objective 3: Off-chip communication - computation re-
source This objective function takes both computation and com-
munication into consideration. Ideally, we would like to maximize
the computation resource and reduce the off-chip communication.

Obj3 : min(
∑

a∈Arrays

DM(a)− UDSP ) (5)

Constraints: A valid hardware design should not overuse the
available memory and computation resource. For FPGA designs,
we consider the BRAM and DSP usage.

Umem ≤ Memavailable, UDSP ≤ DSPavailable (6)

Where UDSP and Umem are the sum of the DSP and memory
usage of each hardware module in the systolic array.

Figure 3: Search traces of the evolutionary search initiated with
designs found by the MP-based optimizer with different objective
functions

We engage the off-the-shelf solver (AMPL [6] with Ipopt [4])
to implement the optimization problem. All the metrics have been
normalized. The best solution obtained from the solver is then fed
to the evolutionary search as the initial population. Figure 3 shows
the search traces of the evolutionary search with different opti-
mization targets. As seen in the figure, all three objective functions
help reduce the convergence time and yield better results compared
to the evolutionary search-only method (annotated as No Solver).
Specifically, Obj3 helps significantly reduce the convergence time.
With Obj3, the auto-tuner locates a better design than the baseline
(No Solver) within 2000 epochs. Thus, we utilize Obj3 as the
optimization target of the solver.

4.3. Padding-based Algorithm

In Section 1, we established that limiting the tiling factors to
the divisors of the problem size can lead to inferior designs. The
reason is that sometimes divisor tiling factors do not allow the full
utilization of the available resources such as DSPs, BRAMs, or
bandwidth. Thus, considering non-divisor tiling factors can help
maximize some or all of these resources.

Also, note that when tiling factors are non-divisors, the original
problem size needs to be padded with zeros to yield integer values
for the outer loops’ trip counts. Therefore, considering non-divisor
tiling factors in the search is equivalent to first finding a set of the
possible zero-padded problem sizes, and then only searching for
the divisor tiling factors of each zero-padded problem size.

Heuristic: Since zero padding adds computation and commu-
nication overheads, we should explore the design space in the
direction of increasing the zero-padding.

Termination criterion: A naive termination criterion for the
algorithm would be to search fixed N padded candidates on each
dimension. However, this approach can easily miss optimal points
if they are beyond the N th padded candidate. A better termination
criterion would be to employ adaptive counters with thresholds.
The counters are reset to zero whenever a better design is found
allowing the algorithm to explore more points in that direction;
otherwise, if there is no improvement in threshold consecutive
candidates, it breaks. Empirically, we found that setting thresholds
to be

⌈
0.5

√
dim

⌉
achieves the optimal solutions identified by the

exhaustive search for most of the cases.
In fact, this behavior is independent of the architecture/accel-

erator because it is fundamentally related to the properties of the
factorization of integers. In Figure 4, we plot the design space
of a MM toy example using a 1-level tiling performance model
(Equation 7) with 5000 DSPs as the only constraint (Equation 8).
The plot shows the optimal divisor-only designs for each zero-
padded candidate on the I and J dimensions (like 32× 33× 32,
32× 34× 32, etc.). Allowing non-divisor tiling factors (the green
point at 33 × 33 × 32) results in a 1.78× speedup compared to
considering divisors only (the blue point at 32× 32× 32).

Cycles =

⌈
I

Ti

⌉⌈
J

Tj

⌉⌈
K

Tk

⌉
(7)

5× TiTjTk ≤ DSPavailable (5000 DSPs) (8)

i padding

35 40 45 50 55 60 j padding35 40 45 50 55 60

cy
cle

s

40

60

80

100

120

Optimal Non-divisor Design
Optimal Divisor Design

Figure 4: Design space for a 32× 32× 32 MM toy example
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5. Evaluation Results

First, we evaluate the performance and sample efficiency of
our genetic-MP hybrid method against prior iterative and random
search methods. Since our work targets the design space of systolic
arrays while the previous works targeted different design spaces,
it is difficult to conduct direct quantitative comparisons. Thus,
we use the search methods adopted in these works and compare
their quality with Odyssey. Next, we compare the performance of
the padding-based algorithm. Finally, we validate our findings by
implementing two systolic arrays for 1024× 1024× 1024 MM.

5.1. Genetic-MP Hybrid Method

Workloads: We assess the performance of the genetic-MP
hybrid method with a 1024× 1024× 1024 MM kernel.

Baselines: We use the following methods as baselines.
1) Random search. We randomly sample the design space and

update the best solutions.
2) Exhaustive search with pruning. We extend the random

search by pruning the design samples based on the DSP utilization.
As the smallest design among the 18 designs utilizes 30% of DSPs,
we set the DSP pruning threshold to 25%.

3) Simulated annealing. We use the Python package [1] as the
baseline. Based on a grid search, we designate the hyper-parameter
temperature T to be 200. We implement a customized step-taking
function employing the proposed mutation method for evolutionary
search.

4) Bayesian optimization. We use the Python package [16] as
the baseline.

5) OpenTuner [2]. OpenTuner is an auto-tuning framework
built on an ensemble of several efficient search techniques. We use
the latest release of OpenTuner from its GitHub repository [2].

6) Reinforcement learning (RL). RL is a machine-learning
algorithm that can be utilized for hardware optimization.

The previous work ConfuciuX [9] implemented a two-step
search algorithm for tuning the dataflow architectures which em-
ploys RL as the first step to locate a good sub-design-space and
utilizes evolutionary search to perform a more fine-grained search
later to find the best design. We use the open-source implementa-
tion from ConfuciuX as the RL baseline [9]. ConfuciuX applied a
3-layer multi-layer perceptron (MLP) neural network for the policy
network.

Designs: We compare our tuning methods against the baselines
on all 18 different designs generated for MM by AutoSA (Table 2).

Evaluation setup: For each systolic array design, we run the
search method for 5 minutes3 and repeat it 3 times. The final results
are averaged from the 3 runs after each method converged. All the
search methods are executed with a single CPU thread. RL baseline
uses Pytorch which implements multi-threading during the training
of MLP. All experiments are executed on a workstation with an
Intel Xeon E5-2680 v4 CPU.

Search results quality: Figure 5 compares the best throughput
(1/latency) achieved by each tuning method on the 18 systolic
array designs. The throughput is normalized against the optimal
performance found by exhaustive search4. The genetic-MP method
found design configurations with the best performance on 13

3. All search methods converged within 5 minutes.
4. We run an exhaustive search until it finishes.

Figure 5: Comparison of the best designs found by different tuning
methods considering all dataflows and loop permutations in Table 2

designs out of the total 18 designs. For the remaining 5 designs, the
performance gap is within 1% of the best performance identified
by other baselines (OpenTuner and simulated annealing). Overall,
the genetic-MP method locates designs that achieve more than 95%
of the optimal performance.

Figure 6: Comparison of sample efficiency of different tuning
methods

Sample efficiency: In addition to the high-quality search re-
sults, the genetic-MP method achieves high sample efficiency.
Figure 6 compares the convergence traces of all the tuning methods
on the design with the highest optimal throughput. As shown by
the figure, Odyssey detects a good design configuration resulting
in 93% of the optimal performance after evaluating 3000 design
samples. Simulated annealing earns the second-best performance,
locating a design that reaches 66% of the optimal performance.
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Figure 7: Normalized throughput comparisons for 4 MM kernels
and 4 convolution layers

5.2. Padding-based Algorithm

We compare the padding-based algorithm against the divisor-
only exhaustive search, the complete exhaustive search (including
non-divisors), and the genetic-MP hybrid method in terms of
performance and runtime. We used 4 MM kernels (K0 - K3)
and 4 convolution layers from four famous CNNs (K4 - K7). We
employed the complete exhaustive search as a baseline, except for
K3 and K7 as these kernels have huge design spaces with more than
200 billion points. Figure 7 shows the best performance found by
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each search method across all dataflows and loop permutations (18
unique designs for MM and 30 for convolution). Using thresholds
of

⌈
0.5

√
dim

⌉
, the padding-based algorithm identifies the optimal

points for 15 out of the 16 kernels whose exhaustive search is
completed (showing only 6 kernels in Figure 7 for page limit). For
K6, increasing the threshold to

⌈
0.6

√
dim

⌉
locates the optimal

point as well. Moreover, the designs found by the genetic-MP
method are within less than 11% of the optimal designs.

Design
Exhaustive Search Padding-Based Algorithm Design Space Runtime

# of Searched Runtime # of Searched Runtime Reduction Speedup
Designs (hours) Designs (hours)

K0 3.66 B 1.59 28.64 M 0.06 127.7× 25.3×
K1 7.75 B 3.24 41.27 M 0.09 187.7× 36.7×
K2 33.17 B 13.83 105.99 M 0.19 312.9× 73.1×
K4 34.80 B 14.71 198.17 M 0.19 175.6× 78.6×
K5 53.06 B 26.44 620.03 M 0.54 85.6× 49.0×
K6 84.68 B 34.56 356.91 M 0.28 237.3× 122.1×

TABLE 3: Comparing exhaustive search and padding-based algo-
rithm in terms of the explored design space and runtime

Table 3 illustrates the design space reduction and runtime
speedups of the padding-based algorithm compared to the complete
exhaustive search. Both search methods are run using 72 threads
on Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz.

5.3. On-Board Validation Results
To validate the results of this work, we implemented two

systolic arrays for 1024× 1024× 1024 MM on the Xilinx/AMD
Alveo U250 FPGA. The first design is the best design identified
by the exhaustive search considering divisor tiling factors only.
The second design is found by Odyssey considering non-divisor
tiling factors. The on-board results match our analysis in Section 1,
and the non-divisor systolic array delivers a 1.72× throughput
improvement.

Search Method
Padded Problem Size SA Size

DSPs BRAMs
Frequency Throughput

Speedup
(I, J,K) (Cols,Rows, SIMD) (MHz) GFLOP/s

Divisor only (1024, 1024, 1024) (32, 4, 8) 5133 2543 257 506.71 1×
Odyssey (1032, 1040, 1024) (43, 5, 8) 9258 2932 279 869.97 1.72×

TABLE 4: FPGA validation results

6. Conclusion
This paper presents Odyssey, an automatic design space explo-

ration framework for systolic arrays. Odyssey covers a comprehen-
sive and accurate design space of systolic arrays and incorporates
two design space explorers: A hybrid search method consisting
of the MP-based optimizer and evolutionary search, and a novel
padding-based algorithm that locates the optimal designs discov-
ered by the exhaustive search in most of the cases. The evaluation
and validation results demonstrate the effectiveness of Odyssey in
handling the huge design space of systolic arrays.
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