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Abstract. Convolutional Neural Networks (CNNs) have been successfully used
for many computer vision applications. It would be beneficial to these applica-
tions if the computational workload of CNNs could be reduced. In this work we
analyze the linear algebraic properties of CNNs and propose an algorithmic mod-
ification to reduce their computational workload. An up to a 47% reduction can
be achieved without any change in the image recognition results or the addition
of any hardware accelerators.

1 Introduction

Biologically inspired convolutional neural networks (CNNs) have achieved good suc-
cess in computer vision applications, e.g., the recognition of handwritten digits [7, 10],
and the detection of faces [2, 8]. In the 2012 ImageNet contest [1], a CNN-based ap-
proach named SuperVision [6] outperformed all the other traditional image recognition
algorithms. On one hand, CNNs keep the advantage of artificial neural networks which
use a massive network of neurons and synapses to automatically extract features from
data. On the other hand, CNNs further customize their synapse topologies for computer
vision applications to exploit the feature locality in image data.

The success of CNNs promises wide use for many future platforms to recognize
images, e.g., micro-robots, portable devices, and image search engines in data centers.
It will be beneficial to improve the implementation of the CNN algorithm to reduce
computational cost. One direction is to improve the CNN algorithm using hardware
accelerators, e.g., GPUs and field-programmable gate arrays (FPGAs) [3,5,9]. Another
orthogonal direction is to reduce the theoretical number of basic operations needed in
the CNN computation from the algorithmic aspect, as will be discussed in this work.
Here, we first reveal the linear algebraic properties in the CNN computation, and based
on these properties, we propose an efficient algorithm that can be applied to generic
CNN architectures to reduce the computational workload without any penalty on the
image recognition quality or hardware cost.

2 Background

2.1 Algorithm Review of CNNs

Convolutional neural networks (CNNs) were extended from artificial neural networks
(ANNs) and customized for computer vision [7]. An example of a CNN is given in
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Fig. 1. An example of a convolutional neural network

Fig. 1. As shown in this figure, the intermediate results in a CNN are different sets
of feature maps. The main working principle of a CNN is to gradually extract local
features from feature maps of higher resolutions, and then to combine these features into
more abstract feature maps of lower resolutions. This is realized by the two alternating
types of layers in a CNN: convolution layers and subsampling layers. The last few
layers in the CNN still use fully connected ANN classifiers to produce the abstracted
classification results. The detailed computation patterns of different layers in the CNN
are described as below:

Convolution Layer. In this layer, features, such as edges, corners, and crossings, are
extracted from the input feature maps via different convolution kernels, and are com-
bined into more abstract output feature maps. Assume there are Q input feature maps
and R output feature maps, and the feature map size is M ×N . Also assume the con-
volution kernel size is K × L. Then the computation in the convolution layer can be
represented in a nested-loop description, as shown in Fig. 2. The array X contains the
input feature maps, and the array Y contains the output feature maps which are initial-
ized to zeros. The arrayW contains the weights in the convolution kernels. To regularize
the computation pattern, we do not explicitly add the network bias to the output feature
maps. Instead, we put a dummy input feature map of all 1’s in array X and put the bias
on the weights associated with this dummy input map in array W . The computational
workload in the convolution layer is in the order of O(R ·Q ·M ·N ·K · L).

Fig. 2. Example loop-nest representing the computation in a convolution layer of a CNN

Subsampling Layer. The purpose of this layer is to achieve spatial invariance by
reducing the resolution of feature maps. In the example of Fig. 1, each feature map is
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scaled down by a subsample factor 2 × 2. The computational workload in this layer is
in the order of O(Q ·M ·N), which is much smaller than that in the convolution layer.

At the output of each layer, an activation function is further applied to each pixel in
the feature maps to mimic the neuron activation.

2.2 Architecture of Real-Life CNN

The architecture of a real-life CNN that was used in the 2012 ImageNet contest [6] is
shown in Fig. 3. It consists of eight layers. The first layer contains three 224×224 input
images that are obtained from the original 256× 256 image via data augmentation. The
1,000 neurons in the last layer report the likelihoods of the 1,000 categories that the
input image might belong to. Layer 2 contains 96 feature maps, and each feature map
is sized 55 × 55. They are partitioned into two sets, each containing 48 feature maps,
so as to fit into two GPUs used in [6]. The other layers also follow notations similar to
Fig. 3. Note that the convolution layer and the subsampling layer are merged together
in Layers 1, 2, 3, and 6 of this architecture. There are no subsampling layers but only
convolution layers in the other layers. The convolution kernel size is 11 in Layer 1, 5 in
Layer 2, and 3 in the other layers. The default subsample factor is 2, except for a factor
of 4 in Layer 1. The subsampling operations are not trainable in this architecture, but
the function max is applied to the 2×2 or 4×4 pixel windows in each feature map, and
is marked as max pooling in Fig. 3. The activation function is simplified to the Rectified
Linear Unit (ReLU) function, max(0, x), as discussed in [6]. In Layer 2, 4, and 5, to
avoid the inter-GPU communication, the features extracted from the two partitioned
sets of input feature maps are not combined together at the output. The design choice
of removing this combination is made by trial and error, and proves effective in [6].

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6-8

Fig. 3. A real-life CNN that was used in the 2012 ImageNet contest [6]

2.3 Runtime Breakdown of Real-Life CNN

To better understand the time-consuming part of the process of image recognition via a
CNN, we reimplement the CNN in Fig. 3 in a single-thread CPU so that the workload
can be measured by runtime. A breakdown of runtime is given in Table 1. We see that
the runtime is dominated by the convolution layers. The main focus of this work is to
optimize the computation in the convolution layers.
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Table 1. Breakdown of CNN runtime in the recognition of 256 images

Convolution Layer Subsampling Layer ReLU Activation Fully Connected ANN

Layer 1 364s 720s 1.83s -
Layer 2 1728s 416s 1.19s -
Layer 3 5710s 147s 0.42s -
Layer 4 2564s - 0.42s -
Layer 5 2652s - 0.27s -
Layer 6 - 29s 0.12 8.60s
Layer 7 - - 0.12s 5.63s
Layer 8 - - 0.03s 1.78s

Total 13018s 1313s 4.41s 16.0s
Breakdown 90.7% 9.15% 0.03% 0.11%

3 Properties of CNN Computation

3.1 Another View of CNN Computation

In this section we offer another view of the CNN computation in Fig. 2 that enables
optimization of the computational workload. First denote the Q input feature maps as
x1, x2, ...xQ, and the R output feature maps as y1, y2, ..., yR. Also denote the R × Q
convolution kernels (each sized K×L) as wrq where r = 1, 2, ..., R and q = 1, 2, ..., Q.
We further denote the convolution operation between a kernel wrq and a feature map
xq as

wrq ∗ xq = z, where z(m,n) =
K−1∑

k=0

L−1∑

l=0

wrq(k, l)xq(m+ k, n+ l). (1)

Here z represents the convolution result in the form of an M × N image, and z(m,n)
represents an image pixel in z. Then the computation in Fig. 2 can be represented as

y1 = w11 ∗ x1 + w12 ∗ x2 + · · ·+ w1Q ∗ xQ

y2 = w21 ∗ x1 + w22 ∗ x2 + · · ·+ w2Q ∗ xQ

y3 = w31 ∗ x1 + w32 ∗ x2 + · · ·+ w3Q ∗ xQ

· · ·
yR = wR1 ∗ x1 + wR2 ∗ x2 + · · ·+ wRQ ∗ xQ

. (2)

If we reorganize these xq , yr and wrq in the form of column vectors and matrices

−→x =

⎛

⎜⎜⎜⎝

x1

x2

...
xQ

⎞

⎟⎟⎟⎠ , −→y =

⎛

⎜⎜⎜⎝

y1
y2
...
yR

⎞

⎟⎟⎟⎠ , W =

⎛

⎜⎜⎜⎝

w11 w12 · · · w1Q

w21 w22 · · · w2Q

...
...

. . .
...

wR1 wR2 · · · wRQ

⎞

⎟⎟⎟⎠ ,

then the computation in Eq. (2) can be redefined as a special matrix/vector multiplica-
tion −→y = W ×−→x .
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Each element in the left operand W is a convolution kernel. Each element in the right
operand −→x is an input feature map. Each element in the result −→y is an output fea-
ture map. The element-wise multiplication is redefined as the convolution between
a kernel wrq and a feature map xq in Eq. (1). If a web server provider receives a
batch of P images to recognize, we will have −→x 1,

−→x 2, · · · ,−→x P as parallel inputs,
and −→y 1,

−→y 2, · · · ,−→y P as parallel outputs. Their computation can be merged as

(−→y 1,
−→y 2, · · · ,−→y P ) = (W×−→x 1,W×−→x 2, · · · ,W×−→x P ) = W×(−→x 1,

−→x 2, · · · ,−→x P ).

This can be further simplified to a matrix multiplication

Y = W ×X,

where
X = (−→x 1,

−→x 2, · · · ,−→x P ), Y = (−→y 1,
−→y 2, · · · ,−→y P ).

Both the left operandX and the result Y are matrices of feature maps. This matrix mul-
tiplication representation provides a new view of the computation in convolution layers
of CNNs. We name this representation Convolutional Matrix Multiplication (Convolu-
tional MM).

3.2 Enabling New Optimization Opportunities

We can optimize the computation of Convolutional MM by revisiting techniques that
have been built for normal matrix multiplication (Normal MM). For example, we can
use the classical Strassen algorithm [11] to reduce the computational workload. In each
recursion of matrix partitioning, the Strassen algorithm can reduce the number of mul-
tiplications by 1/8, but it incurs many extra additions. Note that in Normal MM, the
element-wise multiplication is a multiplication between two numbers, while in our Con-
volutional MM, the element-wise multiplication is redefined as the convolution between
a kernel and a feature map, which has a sufficiently high complexity to make the extra
additions negligible. Our Convolutional MM is expected to experience more benefits
from the Strassen algorithm than the Normal MM; this will be discussed in Section 4.

3.3 Properties of Convolutional MM

Before we go through any optimization, we first identify the properties of our Convo-
lutional MM. If the addition of two convolution kernel matrices W1 and W2 of the
same size are intuitively defined as the additions of all the pairs of weights at the same
positions, i.e.,

W1 +W2 = W3, where w3rq(k, l) = w1rq(k, l) + w2rq(k, l),

combined with the linearity of the operation defined in Eq. (1), we have

(W1 +W2)×X = W1×X +W2×X. (3)

Similarly, if the addition of two feature map matrices X1 and X2 of the same size are
intuitively defined as additions of all the pairs of pixels at the same positions, we have

W × (X1 +X2) = W ×X1 +W ×X2. (4)
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4 Computation Optimization

In this section we show how to extend the Strassen algorithm [11] from Normal MM to
reduce the computational workload of our Convolutional MM. We start from

Y = W ×X,

where the number of elements in both rows and columns of Y,W,X is assumed to be
even. We partition W , X and Y into equally sized block matrices

W =

(
W1,1 W1,2

W2,1 W2,2

)
, X =

(
X1,1 X1,2

X2,1 X2,2

)
, Y =

(
Y1,1 Y1,2

Y2,1 Y2,2

)
.

Then we have
Y1,1 = W1,1 ×X1,1 +W1,2 ×X2,1

Y1,2 = W1,1 ×X1,2 +W1,2 ×X2,2

Y2,1 = W2,1 ×X1,1 +W2,2 ×X2,1

Y2,2 = W2,1 ×X1,2 +W2,2 ×X2,2

. (5)

Here, we still need 8 multiplications, the same number that we need in matrix multipli-
cation before partitioning. We define new matrices

M1 := (W1,1 +W2,2)× (X1,1 +X2,2)
M2 := (W2,1 +W2,2)×X1,1

M3 := W1,1 × (X1,2 −X2,2)
M4 := W2,2 × (X2,1 −X1,1)
M5 := (W1,1 +W1,2)×X2,2

M6 := (W2,1 −W1,1)× (X1,1 +X1,2)
M7 := (W1,2 −W2,2)× (X2,1 +X2,2)

. (6)

Followed by the properties in Eq. (3) and Eq. (4), we can compute the result of the
matrix multiplication from the 7 multiplications in Eq. (6) as follows:

Y1,1 = M1 +M4 −M5 +M7

Y1,2 = M3 +M5

Y2,1 = M2 +M4

Y2,2 = M1 −M2 +M3 +M6.

Here, we reduce the number of the redefined multiplications from 8 to 7 without chang-
ing the computation results. We can iterate this matrix partitioning process recursively
until the submatrices degenerate into basic elements, i.e., separate convolution kernels
and feature maps in our Convolutional MM. We can see that each recursion will reduce
the number of multiplications by 1/8, but will incur 18 additions on the submatrices.
In the Normal MM, all the elements are numbers, and either multiplications or addi-
tions are performed between these numbers. The overhead of 18 additions could com-
pletely eliminate the benefits brought by the multiplication savings in normal MMs. In
our Convolutional MM, however, the element-wise multiplication is redefined as the
convolution between a kernel and a feature map in Eq. (1). Suppose the convolution
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Table 2. The FLOPS comparison of different operations in the Normal MM and our Convolu-
tional MM

element-wise addition element-wise multiplication
the Normal MM 1 1

our Convolutional MM K · L or M ·N 2K · L ·M ·N

kernel size is K × L, and the feature map size is M × N . As shown in Table 2, the
number of FLOPS (floating-point operations) in an element-wise multiplication will be
2K · L ·M ·N , which is much larger than either K · L FLOPS in a kernel addition or
M · N FLOPS in a feature map addition. This makes the reduction of the number of
multiplications very meaningful to our Convolutional MM.

5 Experimental Results

A comparison of our Convolutional MM with the Normal MM in terms of the savings
of GFLOPS by the Strassen algorithm is shown in Fig. 4. We use the convolution kernel
size 5 × 5 and the feature map size 55 × 55 in Layer 2 of Fig. 3, and sweep different
square sizes for matrices W,X, Y in this experiment. We see that for the Normal MM,
the Strassen algorithm may not bring benefits, but could lead to a >100% overhead,
especially when the matrix size is small. In [4], even if the nested loops in Fig. 2 are
unrolled and the computation is represented in a Normal MM to make the Strassen
algorithm applicable, the Strassen algorithm still cannot bring too many benefits. But
if the computation is represented in our Convolutional MM, much greater benefits can
be achieved due to the redefined granularities of matrix elements and element-wise
multiplications.
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Fig. 4. Comparison of our Convolutional MM with the Normal MM in terms of the savings of
GFLOPS by the Strassen algorithm

A sensitivity study on the convolution kernel size and the feature map size is provided
in Fig. 5. Here we fix the matrix size to 256. As shown in Fig. 5(a), the convolution
kernel size has a high impact on GFLOPS savings. This matches the analysis that the
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Fig. 5. A sensitivity study on convolution kernel size and feature map size

FLOPS difference between the element-wise multiplication and the element-wise ad-
dition of our Convolutional MM is proportional to the kernel size (assume the feature
map size is much larger than the kernel size). Since the matrix size is limited to 256,
there could be at most 8 recursions of the Strassen algorithm, which imposes an up-
per bound of 1 − (7/8)8 = 65.64% on the GFLOPS savings. Fig. 5(a) shows that we
approach this upper bound as the convolution kernel size increases. The GFLOPS sav-
ings are invariant with the increase of the feature map size, as shown in Fig. 5(b), since
the computational workloads of both the element-wise multiplication and addition will
increase.

We reimplement the real-life CNN in Fig. 3 and apply the Strassen algorithm to re-
duce the computational workload. Experimental results are listed in Table 3. As shown
in this table, no matrices are square, and no matrices have sizes equal to the power
of 2. To deal with the non-square matrices, we stop matrix partitioning once either
the row size or the column size becomes small. To solve the not-the-power-of-2 prob-
lem, we pad a dummy row or column in the matrices once we encounter an odd num-
ber of rows or columns during matrix partitioning. Note that the Strassen algorithm
is based on recursive matrix partitioning, which is a cache-oblivious algorithm that
can take advantage of a CPU cache without knowing the cache size. For the sake of

Table 3. Workload reduction by extending the Strassen algorithm to the real-life CNN in Fig. 3
via our Convolutional MM

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Q 3 48 256 192 192

Matrix R 96 128 384 192 128
Parameters K,L 11 5 3 3 3

M,N 224 55 27 13 13
original 364s 865s 5710s 1282s 1326s

Runtime our optimization 433s 864s 3863s 683s 998s
savings -18% 27% 32% 47% 24%
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fairness, we also implement the baseline matrix multiplication in a cache-oblivious
algorithm in Eq. (5). The hardware platform is a Xeon server with CPUs running at
2GHz. We limit the number of threads initialized by our Convolutional MM computa-
tion to 1 since we are measuring the reduction of total workloads by the runtime. Table 3
shows that we can get up to a 47% savings in certain convolution layers. Note that this
gain is achieved without any change in image recognition results or the addition of any
hardware accelerators.

6 Conclusion

In this work the computation in the convolution layers of a CNN is expressed in a
new representation — Convolutional Matrix Multiplication (Convolutional MM). This
representation helps identify the linear algebraic properties of the CNN computation,
and enables extension of state-of-art algorithms that have been built for Normal Matrix
Multiplication (Normal MM) to CNNs for computational workload reduction. This kind
reduction does not change any image recognition results, and does not require any extra
hardware accelerators. We use the Strassen algorithm as an example to show the nec-
essary algorithmic extension from Normal MM to our Convolutional MM, and to show
the extra benefits that can be gained by this Convolutional MM. Our methodology is
verified on a real-life CNN. Experimental results show that we can reduce the com-
putation by up to 47%. More well-studied algorithms on linear algebra can be further
extended to our Convolutional MM to optimize the CNN computation.
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