
1

Re-form: FPGA-powered true codesign flow for

high-performance computing in the post-Moore era

Franck Cappello, Kazutomo Yoshii, Hal Finkel, Jason Cong

Abstract—Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the

end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to

maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,”

an FPGA-powered codesign flow.

F

1 INTRODUCTION

The performance progress of microprocessors has been driven
by Moore’s law, doubling the number of transistors every 18
to 24 months [2]. In the first three decades, every technology
generation with doubled transistor density made the transistor
switching 40 % faster and improved energy efficiency 65 %, an
effect known as MOSFET scaling or Dennard’s law [9]. With
100 nm or smaller feature sizes, however, the static power or the
leakage current became too large to ignore [17], requiring the
frequency scaling to stop. After the end of Dennard’s law, mul-
ticore design became mainstream in order to exploit transistor
density and support more parallelism. Unfortunately multicore
scaling will also end soon primarily because of practical power
limits [25]. In fact, dark silicon [12] and the utilization wall [25]
are becoming a major concern.

The International Technology Roadmap for Semiconductors
forecasts sizes of 7 nm in 2020 and 5 nm in 2023, so there is
still another decade before reaching the limit of CMOS technol-
ogy. However, moving toward a new manufacturing process
requires significant investments (e.g., multi billion U.S. dollars),
and further parametric variations and leakage current may
override the performance benefits from advanced technology.
Thus, the end of the transistor size scaling may come earlier.

To overcome this scaling issue, researchers are intensively
investigating new structures, new materials, new switching
technologies and new manufacturing technologies, includ-
ing tunneling FETs [20], spintronics [3], carbon nanotubes
[24], nanoscale vacuum tubes [16], Josephson junctions [15],
and single-atom transistors [14]. Emerging 3D integration of
CMOS [26] is one of the most promising solutions to extend
the Moore’s law, and it will also improve energy efficiency; but
it poses several technical challenges such as cost, design com-
plexity, and dynamic thermal variability. Unlike the transition
from bipolar to CMOS, however, no technology breakthrough
that offers exponential growth is likely to become ready for
deployment in the foreseeable post-Moore era.

Another direction is to develop specialized architectures
such as Anton [10] and Anton II [23], which were developed
by D. E. Shaw for molecular dynamics. A common limitation
of these systems, however, is that only few applications will
benefit from the special hardware. Clearly, specific architectures
require higher nonrecurring engineering costs (NRE).

• Franck Cappello, Kazutomo Yoshii, Hal Finkel are with Argonne National
Laboratory.

• Jason Cong is with the University of California, Los Angeles.

PMES Workshop, Salt Lake City, 14 Nov 2016. http://j.mp/pmes2016

Modern FPGA platforms with thousands of hardened digi-
tal signal processing (DSP) or floating-point blocks are becom-
ing attractive alternatives because of lower overall NRE com-
pared with specialized architectures. Indeed the adoption rate
in other information technology domains has clearly acceler-
ated in the past two years, with a number of significant events.
One was the public acknowledgment of the use of FPGAs in
datacenters by some of the largest Internet service providers,
such as Microsoft and Baidu, for a number of latency-sensitive
applications, such as search [22] and speech recognition [21].
Another significant event was Intel’s acquisition of Altera,
the second largest FPGA company worldwide. These devel-
opments indicate that FPGA-based customizable computing is
going from advanced research projects into mainstream com-
puting technologies. However, the use of FPGA in scientific
computing has been limited for multiple reasons.

In this paper we present our gap analysis of the adoption
of FPGA technology in high-performance computing, and we
briefly describe “Re-form,” an FPGA-powered true codesign
flow, which is at an early stage of development.

2 GAP ANALYSIS

As of this wiring, multicore or GPU based systems dominate
in the Top 500 supercomputer list. Reconfigurable computing
and FPGAs in particular have not been adopted broadly by
the scientific computing community for five main reasons:
capability limits, cost, compilation time, programmability, and
performance. Concerning capabilities, FPGAs did not feature
enough resources (logic cells and DSPs) to compete with CPUs
and GPUs of the same generation on floating-point perfor-
mance. The cost of high-end FPGAs compared with CPUs
and GPUs was detrimental. The compilation of a complex C
program with high-level synthesis could take tens of hours,
drastically impacting productivity and making performance
optimization and debugging difficult. Until recently no paral-
lel programming model existed for programming FPGAs for
scientific applications. Moreover, compared with CPUs with
similar capabilities, reaching high performance on scientific ap-
plications with FPGAs required much more programmer time
and wider skills (the programmer needs to know hardware
description languages).

The two first reasons (capability limits and cost) are rapidly
fading as high-end FPGAs SoCs are integrating significantly
more resources and are becoming adopted in extreme-scale
data centers. The third reason (compilation time) is related to
the place and route step that is proprietary in the FPGA tool



2

chain and represents a significant issue. Programmability and
performance are the primary factors still blocking adoption.
These are the two major problems that we discuss below.

Programmability: Scientific programmers of large HPC ap-
plications cannot code applications or even kernels at the
hardware level (with a hardware description language). Typ-
ical applications are written in C, C++ or Fortran, exploit-
ing distributed-memory parallelism wtih MPI and node-level
shared-memory parallelism with OpenMP. Moreover, a large
portion of HPC codes are being enhanced, or will be enhanced,
to use OpenMP4 parallelization and target-offloading direc-
tives. However, no production-quality compiler is capable of
compiling OpenMP4 codes for FPGAs. FPGA high-level syn-
thesis (HLS) production tools [7], [27] compile ANSI C and C++
(some tools accept other languages), and recent HLS tools can
compile codes with OpenCL directives [8]. Other tools trans-
late OpenACC- and OpenMP-like codes into OpenCL codes
that HLS tools can compile. The most advanced production-
quality OpenMP-like compiler for FPGA, Merlin from Falcon
Computing Solutions [6], [13], offers only a limited subset
of OpenMP-like constructs. The most advanced OpenMP-like
academic compiler (OmpSs [11] from Barcelona Supercomput-
ing Center) does not provide the same level of performance
optimizations compared with Merlin. Thus, a significant gap
remains between what the programmers need (OpenMP) and
what HLS compilers offer (OpenCL and OpenMP like).

Performance: In theory, programmers can reuse their exist-
ing OpenCL codes, developed for GPUs, and generate an FPGA
design that runs the codes without requiring any hardware
skills. In practice, however, this is not the case, as demon-
strated by the paper on Gzip compression [1]. The authors used
multiple optimizations at the C code level, including rewriting
loop cores to optimize the hardware produced by the OpenCL
compiler and the rest of the tool chain. This effort required not
only deep knowledge of circuit design and FPGA hardware but
also a profound understanding of how the OpenCL compiler
and tool chain transforms a given code into an FPGA hardware
configuration. Thus, an important gap remains between the
optimizations that scientific programmers are used to and the
optimizations that FPGA requires.

3 APPROACH

Figure 1 outlines “Re-form,” our true codesign flow. Our objec-
tive is to provide a compiler frontend that accepts OpenMP4-
based codes, applies automatic source-level optimizations,
and generates an intermediate representation (e.g., SPIR-V,
OpenCL) for underlying HLS tools.

Programmability: We leverage many pre-existing FPGA
software technologies and components. Because no OpenMP4
compiler yet exists for FPGA, we will first explore and de-
velop a path for the compilation of OpenMP4 applications,
reusing the open-source LLVM/Clang compiler [19] infrastruc-
ture and vendor OpenCL/C-based high-level-synthesis (HLS)
tools. The parsing, semantic analysis, basic code generation,
and runtime system for OpenMP4 have been implemented in
the LLVM/Clang compiler framework by contributors to the
LLVM project. The output of Clang consumed by the optimizer
when processing source code with OpenMP4 directives can be
logically divided into two pieces: (1) host (i.e., CPU-targeted)
code, which calls the OpenMP runtime library to transfer data
between the host and the accelerator and to run functions on the
accelerator; and (2) target (i.e., accelerator-targeted) code, which
is to run on the accelerator. The OpenMP4 directives provide
information to the compiler both about the parallelism in the

Apps: HACC, OpenMC, GAMESS, Spate, HPCG, etc

OpenMP4

frontend

OpenMP

runtime

Src to src

Optimization

High-level

Synthesis

HPC

Optimizations

Computation,

Dynamic memory,

Systolic,

etc

FPGA configuration

Host code C kernels

Host executable

Fig. 1. “Re-form” codesign flow

algorithms and about the data required to run those algorithms
on an accelerator. That data is consolidated and transformed by
Clang into calls to the OpenMP4 runtime library on the host
side. This library is hardware agnostic and supports plug-ins
for different kinds of accelerator hardware.

On a related node, longer FPGA compilation times nega-
tively impacts productively and programmability. Addressing
compile-time issues without significantly degrading perfor-
mance will be challenging. There are some techniques with the
potential to help: Creating regular grids of smaller individually-
routed elements has been shown to significantly decrease over-
all place-and-route time [4]. Overlay architectures, running at
nearly peak speed, have been demonstrated [5], [18], and tar-
geting a family of such pre-place-and-routed architectures with
more-traditional compiler technology may be able to restrict the
compile-time problem to cases where tuned synthesis inputs
are deemed worthwhile.

Performance: We will explore and develop optimizations
at the software and hardware level to improve the perfor-
mance/watt of the generated FPGA configurations following
a cyclical codesign approach: we will design optimizations for
software (OpenMP4 parallelization, OpenMP4 compiler, HLS)
and hardware (computing and memory interface structures) for
HPC motifs, in a coordinated way.

Especially pertaining to off-chip memory, we will employ
a library approach to optimize expensive off-chip memory
accesses and implement memory interfaces as predefined hard-
ware libraries that can be selected via “extended pragmas,”
focusing on three memory interface techniques: per-data struc-
ture memory hierarchy, irregular access optimization, and data
reduction.

4 CONCLUSION

FPGAs are gaining the spotlight as a computing resource;
modern FPGAs include thousands of hard DSPs or floating-
point units. In the preparatory stages, we addressed the tech-
nology gaps in adopting FPGA technology for HPC. Our goal
is to design and implement “Re-form,” an FPGA-powered true
codesign flow that significantly improves the energy efficiency
of the post-Moore era supercomputers.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy Office of Science, under contract DE-AC02-
06CH11357.



3

REFERENCES

[1] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on
a chip: High performance lossless data compression on
FPGAs using OpenCL,” in Proceedings of the International
Workshop on OpenCL 2013 & 2014, ser. IWOCL ’14. New
York, NY, USA: ACM, 2014, pp. 4:1–4:9. [Online]. Available:
http://doi.acm.org/10.1145/2664666.2664670

[2] D. C. Brock and G. E. Moore, Understanding Moore’s law: four
decades of innovation. Chemical Heritage Foundation, 2006.

[3] M. Cahay, “Spin transistors: Closer to an all-electric device,”
Nature nanotechnology, vol. 10, no. 1, pp. 21–22, 2015.

[4] D. Capalija and T. S. Abdelrahman, “Tile-based bottom-up com-
pilation of custom mesh-of-functional-units fpga overlays,” in
2014 24th International Conference on Field Programmable Logic and
Applications (FPL), Sept 2014, pp. 1–8.

[5] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “idea: A dsp block
based fpga soft processor,” in Field-Programmable Technology (FPT),
2012 International Conference on, Dec 2012, pp. 151–158.

[6] J. Cong, M. Huang et al., “Source-to-source optimization for HLS,”
in FPGAs for Software Programmers. Springer, 2016, pp. 137–163.

[7] J. Cong, B. Liu et al., “High-level synthesis for FPGAs: From
prototyping to deployment,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491,
2011.

[8] T. S. Czajkowski, U. Aydonat et al., “From OpenCL to high-
performance hardware on FPGAs,” in 22nd International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2012, pp.
531–534.

[9] R. H. Dennard, F. H. Gaensslen et al., “Design of ion-implanted
MOSFET’s with very small physical dimensions,” IEEE Journal of
Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[10] R. O. Dror, C. Young, and D. E. Shaw, “Anton, a special-purpose
molecular simulation machine,” in Encyclopedia of Parallel Comput-
ing. Springer, 2011, pp. 60–71.

[11] A. Duran, E. Ayguadé et al., “OmpSs: a proposal for programming
heterogeneous multi-core architectures,” Parallel Processing Letters,
vol. 21, no. 02, pp. 173–193, 2011.

[12] H. Esmaeilzadeh, E. Blem et al., “Dark silicon and the end of mul-
ticore scaling,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on. IEEE, 2011, pp. 365–376.

[13] Falcon Computing Solutions, http://www.falcon-
computing.com/index.php/solutions/merlin-compiler/.

[14] M. Fuechsle, J. A. Miwa et al., “A single-atom transistor,” Nature
Nanotechnology, vol. 7, no. 4, pp. 242–246, 2012.

[15] F. Giazotto, “Superconducting transistors: A boost for quantum
computing,” Nature Physics, vol. 11, no. 7, pp. 527–528, 2015.

[16] J. W. Han and M. Meyyappan, “Nanoscale vacuum channel tran-
sistor,” in 14th IEEE International Conference on Nanotechnology, Aug
2014, pp. 172–175.

[17] N. S. Kim, T. Austin et al., “Leakage current: Moore’s law meets
static power,” computer, vol. 36, no. 12, pp. 68–75, 2003.

[18] C. E. LaForest and J. G. Steffan, “Octavo: An fpga-centric
processor family,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’12.
New York, NY, USA: ACM, 2012, pp. 219–228. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145731

[19] C. Lattner, “LLVM and Clang: Next generation compiler technol-
ogy,” in The BSD Conference, 2008, pp. 1–2.

[20] H. Lu and A. Seabaugh, “Tunnel field-effect transistors: State-of-
the-art,” IEEE Journal of the Electron Devices Society, vol. 2, no. 4,
pp. 44–49, July 2014.

[21] J. Ouyang, S. Lin et al., “SDA: Software-defined accelerator for
large-scale DNN systems,” in Proceedings of the HotChips26, Cuper-
tino, CA, 2014.

[22] A. Putnam, A. M. Caulfield et al., “A reconfigurable fabric for
accelerating large-scale datacenter services,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), June
2014, pp. 13–24.

[23] D. E. Shaw, J. Grossman et al., “Anton 2: Raising the bar for
performance and programmability in a special-purpose molecu-
lar dynamics supercomputer,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Press, 2014, pp. 41–53.

[24] M. M. Shulaker, G. Hills et al., “Carbon nanotube computer,”
Nature, vol. 501, no. 7468, pp. 526–530, 2013.

[25] G. Venkatesh, J. Sampson et al., “Conservation cores: reducing
the energy of mature computations,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 1. ACM, 2010, pp. 205–218.

[26] Y. Xie, J. Cong, and S. S. Sapatnekar, Three-dimensional integrated
circuit design. Springer, 2010.

[27] Z. Zhang, Y. Fan et al., “AutoPilot: A platform-based ESL synthesis
system,” in High-Level Synthesis. Springer, 2008, pp. 99–112.



4

GOVERNMENT LICENSE

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government.


