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ABSTRACT 
As the complexity of integrated circuit systems 
increases, automated hardware design from higher-
level abstraction is becoming more and more important. 
However, for many high-level programming languages, 
such as C/C++, the description of bitwise access and 
computation is not as direct as hardware description 
languages, and hardware synthesis of algorithmic 
descriptions may generate sub-optimal implement-
tations for bitwise computation-intensive applications. 
In this paper we introduce a bit-level transformation 
and optimization approach to assisting hardware 
synthesis of algorithmic descriptions. We introduce a 
bit-flow graph to capture bit-value information. 
Analysis and optimizing transformations can be 
performed on this representation, and the optimized 
results are transformed back to the standard data-flow 
graphs extended with a few instructions representing 
bitwise access. This allows high-level synthesis tools to 
automatically generate circuits with higher quality. 
Experiments show that our algorithm can reduce slice 
usage by 29.8% on average for a set of real-life 
benchmarks on Xilinx FPGAs. In the meantime, the 
clock period is reduced by 13.6% on average, with an 
11.4% latency reduction. 
1. INTRODUCTION 

Bitwise operations are used extensively in many 
application domains, such as cryptography and 
telecommunications, etc. However, for applications 
written in high-level programming languages and 
executed on general-purpose processors, accessing and 
computing bit-values are relatively expensive, and bit-
level parallelism is not well exploited. This is mainly 
due to the lack of support in target machines, as well as 
high-level programming languages, such as C/C++. 
Most general-purpose processor architectures and high-
level programming languages do not support bitwise 
memory access and require a series of 
load/shift/mask/store instructions to implement simple 
bitwise operations, such as bit accessing and bit setting.  

Customized hardware accelerators provide a 
promising approach to assisting general-purpose 
processors in exploiting performance of bitwise 
computation-intensive applications. Today, we can put 
more than one billion transistors in a single chip [1], 
and modern FPGAs allow users to exploit parallelism 
in applications by hundreds of thousands of logic cells 
and prefabricated IPs [2]. As RTL coding time is 
increasingly recognized as a significant component of 
the overall effort to solution, automated design 
processes and tools which compile higher-level 
abstraction into optimized hardware are gaining more 

and more popularity [3-6]. However, high-quality 
implementations are difficult to achieve automatically, 
especially when the description of the functionality is 
written in a high-level software programming language. 
For bitwise computation-intensive applications, one of 
the main difficulties is the lack of bit-accurate 
descriptions in high-level software programming 
languages. The wide use of bitwise operations in 
certain application domains calls for specific bit-level 
transformation and optimization to assist hardware 
synthesis of algorithmic descriptions. 

Figure 1 shows a motivational example with a bit 
reversing function. The C description of this algorithm 
is shown in Figure 1(a), where the bit_reverse function 
takes a 32-bit integer as input and yields an output in 
the reverse bit order. The data-flow graph for the 
unrolled function is shown in Figure 1(b), while the 
optimal implementation is shown in Figure 1(c). We 
can clearly see that the direct implementation based on 
the data-flow graph would use many more logical 
components and also have a longer latency compared 
to the optimal one, which only uses 32 wires to link the 
bits directly in the reverse order.  
  
int bit_reverse(int input) 
{ 
int i, output = 0; 
for (i = 0; i < 32; i++ )  
output |= (((input>>i)&1) << (31-

i)); 
return output; 

} 
(a) C code for the bit_reverse function. 
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(b) Data-flow graph for unrolled bit_reverse function. 
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(c) Optimal implementation for the bit_reverse function. 

Figure 1: The bit reversing function. 



We can see from the example that efficient bit-level 
transformation and optimization for operations in 
algorithmic descriptions will lead to a much more 
direct and compact description. This will help the high-
level synthesis to generate better RTL designs for 
bitwise computation-intensive designs, and thus 
achieve better final implementations. Otherwise, in the 
absence of such optimization, the synthesis process can 
be misled by inaccurate area and timing estimation and 
thus generate suboptimal microarchitecture. It is often 
too late for the downstream RTL or logic synthesis and 
optimization techniques to make up for the QoR loss 
caused by the mistakes during compiler 
transformations.  

In this paper we propose a novel compiler 
optimization approach to automatically generate 
bitwise operations for hardware synthesis from the 
algorithmic descriptions in high-level programming 
languages. Specifically, we extend the data-flow graph 
with two operations (instructions) representing bitwise 
access to greatly facilitate the hardware synthesis to 
synthesize algorithmic description into efficient 
hardware. We propose an intermediate representation 
called the bit-flow graph (BFG) to analyze and 
optimize bitwise operations, and the optimized BFG is 
transformed to the extended data-flow graph for 
hardware synthesis. To our knowledge, this is the first 
work to systematically analyze and optimize bitwise 
operations to assist hardware synthesis of algorithmic 
description. Experiments show that our approach can 
achieve a 29.8% area reduction, 13.6% clock period 
reduction and 11.4% latency reduction on average for a 
set of real-world applications.  

The remainder of the paper is organized as follows: 
In Section 2 we review the related work. Section 3 
presents the problem statement. In Section 4 we 
describe our bit-level transformation and optimization 
approach. Section 5 presents experimental results. 
Section 6 concludes the discussion of current work and 
proposes future directions.  
2. RELATED WORK 

In this section we discuss previous work on 
optimization for bitwise computation-intensive 
applications.  

Modern optimizing compilers can perform a series 
of transformation passes (typically in the form of 
peephole optimizations) to simplify logical operations 
[7, 8]. For example, algebraic simplifications and 
reassociation can be applied to Boolean and structure 
bit-field types using logical computation properties. 
Constant folding evaluates constant expressions at 
compile time and replaces variable references with 
constants. One of the main characteristics of these 
techniques is that they manipulate operands mainly at 
byte/word level and rarely analyze bit-value flow 
information. This is usually sufficient when the target 
is a general-purpose microprocessor. However, for 
application-specific hardware implementations, we 
may miss many important optimization opportunities 
that potentially lead to better solutions, especially for 
bitwise computation-intensive applications. 

Several modern processors extend their instruction 
sets to accelerate bitwise operations. The counting-
leading-ones, counting-leading-zeros and counting-set-

bits instructions are such extensions existing on some 
general-purpose processors. Hilewitz et al. [9] 
conjectured that the most powerful primitive bit-level 
operation might be the bit matrix multiply (BMM) 
instruction, which currently is found only in 
supercomputers like Cray[10]. They also proposed new 
instructions that implement simpler BMM primitive 
operations. However, the current code-generation 
techniques for these instructions mainly seek for 
special patterns, and efficiently taking use of these 
instructions still much relies on hand-coded assemble 
codes.  

In the logic synthesis field, much research has been 
conducted to simplify logical expressions [11]. 
However, when using high-level programming 
languages, the bit-value accessing, computing and 
storing are indirectly represented and often require a 
series of load/shift/ mask/store instructions. If the 
bitwise computation is not well analyzed and optimized 
during the high-level synthesis step, the resulting RTLs 
can be suboptimal. This would impose difficulty for 
the downstream RTL/logic synthesis and optimization 
to make up the QoR degradation.  

Some hardware modeling languages extend high-
level software programming languages, and most of 
them support bit-accurate description. For example, 
SystemC [12], which is a popular modeling language 
based on C++, introduces bit-accurate data types to 
support description for bit-level access and 
computation. Some related works also extend a base 
sequential language with direct bit- manipulation for 
both software and hardware. For example, [13] 
introduces a new object-oriented language called Lime, 
which can be compiled for JVM or into a synthesizable 
hardware description language. It provides explicit bit-
numeration to describe bitwise operations. 
Nevertheless, most software algorithms and a large 
amount of legacy code are still written in high-level 
software programming language.  

In contrast to the previous work, our approach aims 
at providing bit-level transformation and optimization 
to assist hardware synthesis of algorithmic descriptions. 
Since hardware directly supports bit-value accessing 
and storing, while a large amount of software legacies 
still use load/ shift/mask/store instructions to represent 
bitwise operation, there is a gap between function 
description in high-level programming languages and 
hardware synthesis. To deal with this problem, we 
propose a new intermediate representation for bitwise 
operations. It will facilitate bit-value analysis and 
provide a platform to take advantage of the existing 
logical expression simplification techniques before 
hardware synthesis. 
3. PROBLEM STATEMENT 

In this section we formalize the problem of 
transforming the data-flow graph (DFG) to greatly 
improve the area and performance of the generated 
circuits for bitwise computation-intensive applications.  

We define the BO-DFG as a data-flow graph which 
contains only the basic logical, shift and conversion 
operations, as listed in Table 1. These operations will 
be referred to as bitwise operations in this paper. These 
operations are the ones usually supported by high-level 
programming languages and compiler intermediate 



representations. Given a DFG derived from a software 
description, we extract the BO-DFGs in it for further 
analysis and optimization. 

In order to represent direct bitwise accesses, we 
further introduce three instructions (or operations) into 
DFG, as shown in Table 2.  

Table 1: Basic logical, shift and conversion operations. 
Class Operations 
Logical AND, OR, XOR, NOT 
Shift Shift left, Logical / Arithmetic shift right 
Conversion Truncate, Zero-extension, Sign-extension 

Table 2: Additional instructions to represent bitwise 
access. 

Instruction Symbol Operands and Outputs 
part_select PSel output = part_select(value, low, high) 
part_set PSet output = part_set(value, repl, low, high)
Reverse Revs output = reverse (value) 

value
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low~high value repl

low~ 
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value
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Figure 2: Graphic representation of part_select, part_set 

and reverse operations. 
Their semantics are defined as follows: 
1) The part_select instruction selects the low 

through high bits from value as the output. The 
operand high should be equal to or greater than the 
operand low. We use PSel to symbol it. The graph 
representation is shown in Figure 2 (a).  

2) The part_set instruction replaces the bits between 
low and high (inclusive) of value with the lowest (high 
– low + 1) bits from repl, and output the result. That is 
the 0th bit in repl replaces the low bit in value and etc. 
up to the high bit. The operand high should be equal to 
or greater than the operand low, too. We use PSet as its 
symbol, and the graph representation is shown in 
Figure 2 (b).  

3) The reverse instruction outputs all the bits from 
value in the reverse order. We use Revs as its symbol, 
and the graph representation is shown in Figure 2 (c). 

The data-flow graph for the bit_reverse function 
with the reverse instruction is shown in Figure 3, 
which is much more compact than the one shown in 
Figure 1 (b). 
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Figure 3: The data-flow graph for the bit_reverse function 

with the reverse instruction. 
Let G (V, E) be a BO-DFG which only consists of 

the operations listed in Table 1. We define two types of 
cost functions associated with G: delay cost (D-cost) 
and component cost (C-cost). D-cost is determined by 
the longest path delay of G. C-cost, on the other hand, 
is the weighted sum of all nodes and edges. The nodes 

and edges form a component set (ComSet), and each 
component has an associated weight that corresponds 
to the estimated area of the component.  
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For convenience, we define two graphs G and G’ as 
semantically equivalent if all outputs of the two circuits 
implementing graph G and graph G’ are identical 
under any combination of input values. Then the 
problem can be formalized as follows: 

Problem: Given a BO-DFG G(V, E) derived from a 
high-level description, which only contains the basic 
bitwise operations in Table 1, transform G into a 
semantically equivalent graph G’ extended with 
part_select, part_set and reverse instructions listed in 
Table 2 so that C-cost or D-cost is minimized. 

We believe that solving the above problem 
efficiently will greatly benefit the high-level synthesis 
for bitwise computation-intensive designs. Otherwise, 
in the absence of such transformation, the area and 
timing estimation may be inaccurate, and the high-level 
synthesis process can be misled and thus generate 
suboptimal microarchitecture. The downstream RTL or 
logic synthesis and optimization techniques are often 
too late to make up for the QoR loss caused by the 
mistakes during the early stage.  

In the subsequent sections, we propose an approach 
that derives the bitwise access and operation 
information from the shift and mask (and/or) 
operations in software description and simplifies the 
bitwise operations in this intermediate representation. 
Then a data-flow graph with explicit bitwise accesses 
is generated. With our approach, the cost can always be 
reduced for hardware implementations.  
4. BIT-LEVEL TRANSFORMATION 
AND OPTIMIZATION 

In this section we present our approach of analyzing 
and optimizing bitwise operations. The algorithm 
outline is shown in Figure 4. Given a data-flow graph, 
our algorithm will first extract the BO-DFGs in it and 
construct bit-flow graphs for them, which will be 
described in detail in Subsection 4.1. Then a series of 
transformations is performed to reduce some obvious 
computation redundancy, as presented in Subsection 
4.2, and if needed, various logical expression 
simplification techniques can also be taken. Finally, 
each BFG is transformed back to a data-flow graph, as 
presented in Subsection 4.3. The algorithm complexity 
will be analyzed in Subsection 4.4. 

Bit-flow Graph 
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Transform to 
Data-flow Graph

Simplifying 
Bit-flow Graph

Function 
Description in 
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Figure 4: Algorithm flow. 



4.1 BFG Construction 
We propose a new intermediate representation here 

for BO-DFGs. We observe that for bitwise logical 
operations, the computation for each bit is independent 
from other bits in the same variable. Thus we can 
transform the data-flow graph, viewing each bit as 
independent element and simplifying the representation. 
We propose an intermediate representation called the 
bit-flow graph (BFG) to keep track of various types of 
bit-value information, such as whether the bit is a 
constant, whether it is equivalent to a bit from another 
variable, and the operation to compute this bit, etc.  

BFG is similar to the data-flow graph, except that 
each node or edge in a BFG represents the data 
dependency for the width of only one bit; that is, BFG 
is a directed graph which shows the bit-value 
dependencies between operations. The main data 
structure of a BFG node is shown in Figure 5. 

DFG Node 

BFG Node BFG Node. . .

Bit_Value
Left_BFG_Node* Right_BFG_Node*

Type

DFG_Node* DFG_Index  
Figure 5: BFG node description. 

The nodes in BFG contain the following types: AND, 
OR, XOR, NOT, SET, VARIABLE and CONSTANT. 
Nodes of types VARIABLE and CONSTANT are leaf 
nodes, which are input nodes of the whole graph, and 
each of them has one output port. Nodes of types AND, 
OR and XOR represent one-bit and/or/xor operations 
respectively, each with two input ports and one output 
port. NOT nodes represent one-bit not operation, with 
one input port and one output port. SET node has one 
input port and one output port, representing that the 
bit-value from input port flows to the output port. The 
edges connect output ports and input ports, 
representing the flow of bit-values. The BFG data 
structure also contains two fields indicating the bit’s 
position in the original DFG: DFG Node Pointer and 
DFG Index. If the DFG Node Pointer is nonzero, it 
represents that the BFG node corresponds to the (DFG 
Index)th bit in the DFG node pointed by the DFG Node 
Pointer. 

When building BFG for a BO-DFG, we traverse the 
BO-DFG in postorder, i.e., visiting all operands of an 
operation before visiting the operation node itself. For 
each BO-DFG node, we build BFG nodes and 
corresponding edges in the following manner:  

1) If the current BO-DFG node is a leaf node, we 
build a BFG node for each bit. For a BO-DFG node 
with width N, N BFG nodes will be created and key 
information will be recorded in their data structures, 
such as the bit’s value, the corresponding BO-DFG 
node and the bit order number. 

2) If the current node is not a leaf node, we will 
check its operation type and construct corresponding 
BFG nodes. We take an N-bit SHL (left shift) 
operation as an example. Assume that the shift amount 
is constant M. First, N BFG nodes are created. Since 

the lowest M bits of the result will be zero, the first M 
BFG nodes are all set to be zero. Then for the left (N - 
M) BFG nodes, the operation type for them is set to be 
SET and the input edges are connected to the 
corresponding BFG nodes of the shift variable. Figure 
6 shows the result. 

z 

x
2

x.3 x.2

z.3 z.2

x.1 x.0

z.1 z.0

0

SET SET SET<<

DFG BFG  
Figure 6: A 4-bit shift operation example: z =SHL(x, 2). 

The examples of BFG node construction for each 
class of operations are shown in Figure 7. BFG node 
construction for OR/XOR/NOT is similar to the 
construction for AND in Figure 7 (a); BFG node 
construction for logical right shift and arithmetic right 
shift are similar to the one for left shift in Figure 7 (b); 
BFG nodes construction for truncation and signed 
extension is similar to the one for zero-extension in 
Figure 7 (c). Figure 8 (a) shows the generated BFG for 
the bit_reverse function after direct construction. 

4.2 Simplifying BFG  
After a BFG is built, we simplify the BFG to 

eliminate redundant computations by traversing the 
BFG in postorder and applying the following 
transformation rules: 

1) For a SET/NOT node, if its input node (i-node) is 
a SET node, we change its input node to i-node’s input 
node (see Figure 9 (a)); 

2) For an AND/OR/XOR node, if one of its input 
nodes is a SET node (s-node), we change the input 
node to s-node’s input node; (see Figure 9 (b)); 

3) For a SET/NOT node, if its input node is a 
CONSTANT node, we replace the SET node with the 
corresponding CONSTANT node (see Figure 9 (c)); 

4) For an AND/OR/XOR node, if both of its input 
nodes are CONSTANT nodes, we replace the node 
with a CONSTANT node, whose value is the 
calculated result (see Figure 9 (d)); 

5) For an AND node, if one of its input nodes is 
CONSTANT ZERO, we replace the AND node with 
CONSTANT ZERO (see Figure 9 (e)); If it is a ONE, 
we replace the AND node with a SET node of the other 
input node; 

6) For an OR node, if one of its input nodes is 
CONSTANT ONE, we replace the OR node with 
CONSTANT ONE; If it is a ZERO, we replace the OR 
node with a SET node of the other input node 

7) For an XOR node, if one of its input nodes is a 
CONSTANT ZERO, we replace the XOR node with 
the other input node. If it is a ONE, we replace the 
XOR node with the opposite of the other input node; 

8) For a NOT node, if its input node is a 
CONSTANT node, we replace the NOT node with the 
opposite CONSTANT node of its input node. 
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Figure 7: BFG node construction. “x.i” represents the ith 
bit of x. (a) shows the BFG node construction for z = x & 
y (n bits); (b) shows the BFG node construction for z = x 
<< m (x is n-bit wide); (c) shows the BFG node construc-
tion for z = zero_ext x (z is n-bit wide; x is m-bit wide). 
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Figure 8: The bit_reverse function in BFG. (a)The BFG 
after direct construction; (b)The BFG after simplification. 
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Among these rules, Rules 1 to 3 are like bitwise 

copy-propagations, while the others belong to bitwise 

peephole optimization using the computation rules. We 
can easily prove that the simplifying process of 
iteratively applying the upper rules is the process of 
reducing BFG C-cost. The D-cost will not be increased 
in this process, and sometimes it can be reduced as 
well. The simplified BFG representation of the 
bit_reverse function is shown in Figure 8 (b), which 
describes direct bit settings. 

After building up the BFG, logical expression 
simplification techniques can be performed on this 
graph. Existing approaches can be used to optimize the 
BFGs for different purposes. Since making use of the 
existing optimizations is not the main point of this 
paper, we will not further elaborate this step. 
4.3 Transforming BFG to Extended DFG 

In this subsection, we introduce the process of 
transforming a function in BFG form back to DFG 
form extended with the part_select, part_set and 
reverse operations. 

For convenience of explanation, we define 
consecutive BFG nodes as follows.  

Consecutive BFG nodes are the BFG nodes: 
i) Representing consecutive bits in a variable or 

constants in the original DFG, either in the forward 
order or in the reverse order; 

Or ii) which have the same operations and their 
input nodes are consecutive BFG nodes separately. 

See Figure 10 for example. Since bits 0~1 of x are 
consecutive, two SET nodes (in the dotted border) 
representing setting bit 1 of z with bit 0 of x and setting 
bit 2 of z with bit 1 of x are consecutive BFG nodes, 
and we can generate one single operation: t = part_set 
(0, x, 1, 2) for them. Bit 0 of y is not consecutive with 
bit 1 of x, so we should generate a separate operation: z 
= part_set (t, y, 3, 3) to represent setting bit 3 of z with 
bit 0 of y.  

z

x.1 x.0

0

SET SET

y.1 y.0

SET

z.1 z.0z.3 z.2  
Figure 10: Example of consecutive BFG nodes. 

We call the Trans_to_DFG function for each DFG 
root to transform the corresponding BFG back to an 
extended DFG and then replace the original DFG. The 
algorithm of Trans_to_DFG is shown in Figure 11. In 
the algorithm, we firstly traverse the input DAG and 
mark the vectors of consecutive BFG nodes 
corresponding to the DFG root. Then we call 
Part_trans_to_DFG function iteratively to generate 
DFG for each vector of consecutive BFG nodes. In 
Trans_to_DFG , the size_of function returns the 
number of nodes in a node vector. The gen_node 
function generates and returns a DFG node. The first 
argument of gen_node indicates operation type of the 
node and the following arguments are the operands of 
the operation.  

The Part_trans_to_DFG algorithm is also shown in 
Figure 11. It takes a vector of consecutive BFG nodes 
as input, generates the corresponding DFG for the 
vector of BFG nodes, and returns the root of the 



generated DFG. It generates DFG nodes according to 
the types of the input BFG nodes: 1) If the input BFG 
nodes are CONSTANT nodes, it generates a constant 
DFG node with the value of these bits; 2) If the input 
BFG nodes represent consecutive bits from a variable, 
it firstly checks whether they represent all the bits form 
the variable. If not, a part_select node is generated. 
Then it checks whether the bits from the variable are in 
reverse order to decide whether to generate a reverse 
node; 3) If the input BFG nodes are SET nodes, the 
Part_trans_to_DFG function is called with a new 
vector containing the inputs of these BFG nodes; 4) If 
the input BFG nodes are NOT nodes, the 
Part_trans_to_DFG function is called to generate a 
DFG for the operands. Then it generates and returns a 
NOT DFG node; 5) If the input BFG nodes are 
AND/OR/XOR nodes, the DFGs for the left and right 
operands are generated by the Part_trans_to_DFG 
function and a corresponding AND/ OR/XOR DFG 
node is generated and returned.   

This algorithm can be followed by a local common-
subexpression elimination pass to reduce potential 
redundancy. 

 
Algorithm 1: Trans_to_DFG 
Input: rootVector — a vector of BFG nodes for a DFG root 
Output: a pointer to the root of the generated DFG 
Trans_to_DFG 
begin 

pRoot  a pointer to a DFG node representing ZERO; 
i  0; 
while i < sizeof(rootVector) do 

consNodeVector  consecutive BFG nodes starting 
from the ith node in rootVector; 

tmpNode  Part_trans_to_DFG(consNodeVector); 
len  size_of(consNodeVector); 
//Generate part_set to set the i ~ i+len-1 bits of 

newRoot. 
pRoot gen_node(PART_SET,pRoot, tmpNode, i, 

i+len-1 ); 
i  i + length; 

endwhile 
return pRoot; 

end 
 

Algorithm 2: Part_trans_to_DFG 
Input: nv –– a vector of consecutive BFG nodes 
Output: a pointer to the root of the generated DFG 
Part_trans_to_DFG 
begin 

len  size_of(nv); 
switch (nv[0]-> type) 
case CONSTANT then 

return gen_node (CONSTANT, value_of(nv)); 
case VARIABLE then 

if nv contains BFG nodes corresponding to all the bits 
of a variable then 

tmpNode  nv[0]->DFG_Node; 
elif nv contains BFG nodes representing consecutive 

bits from a variable in reverse order then 
tmpNode gen_node(PART_SELECT, 

nv[0]->DFG_Node, nv[len-1]->DFG_Index,
nv[0]->DFG_Index); 

else 
tmpNode gen_node(PART_SELECT, 

nv[0]->DFG_Node, nv[0]->DFG_Index,  
nv[len-1]->DFG_Index); 

endif 
if nv contains BFG nodes representing consecutive bits 

from a variable in reverse order then 
tmpNode  gen_node (REVERSE, tmpNode); 

endif 
return tmpNode; 

case SET then 
nv_set  All the operands of nodes in nv; 
return Part_trans_to_DFG (nv_set); 

case NOT then 
op_nv  All the operands of nodes in nv; 
op  Part_trans_to_DFG(op_nv); 
return gen_node (NOT, op); 

case AND/OR/XOR then 
//Generate DFG for the left and right  
//operands recursively. 
nv_left  All the left operands of nodes in nv; 
nv_right  All the right operands of nodes in nv; 
l_op  Part_trans_to_DFG(nv_left); 
r_op  Part_trans_to_DFG(nv_right); 
//Generate DFG node for the computation. 
//nv[0]->type indicates the operation type. 
return gen_node (nv[0]->type, l_op, r_op); 

endswitch 
end 

Figure 11: Pseudo code of Trans_to_DFG and 
Part_trans_to_DFG Algorithms. 

With the above algorithms, the resulted data-flow 
graph for the motivational example of the bit_reverse 
function is the same as in Figure 3, which only uses 
one reverse operation.  
4.4 Algorithm Complexity 

Let N denote the number of nodes in the given data-
flow graph. Let W be the width of each node (If the 
width of the variables are different, we can take the 
largest one). According to the BFG construction 
method described in Subsection 4.1, there are at most 
(W * N) BFG nodes, and the computation complexity 
in step 1 is O (W * N). The computation complexities 
of simplifying BFG and transforming BFG back to 
DFG are also O (W * N). The overall complexity is O 
(W * N). 
5. EXPERIMENTAL RESULTS 

In this section, we describe our experimental 
environment and results of a set of real-life designs. 
We have implemented our algorithm in the LLVM 
compiler infrastructure [14]. Two families of intrinsic 
functions — llvm.part.select and llvm.part.set, are 
available in the LLVM virtual instruction set [15]. 
Currently, LLVM does not provide any specific 
analysis or optimization on these intrinsics. 
Nevertheless, they are very useful for expressing how 
bit values flow from one variable to another, and our 
part_select, part_set and reverse instructions can be 
directly mapped to these intrinsics. 

For hardware implementation, we use a leading-edge 
commercial C-to-gates synthesis tool [6] to synthesize 
our optimized design into RTLs. The tool can take 
behavior-level and system-level SystemC/C/C++ as 
input descriptions and is able to target either ASIC or 
FPGA platforms. It also provides an option to 
synthesize the LLVM byte code. In this experiment we 



use Xilinx ISE 9.2 toolset to synthesize the RTL 
outputs and perform placement and routing onto Xilinx 
Virtex-4 FPGAs [2]. 

Our bit-level optimization approach will benefit 
from proper compiler transformations, some of which 
are usually not default options when aiming at general-
purpose processors. We apply constant propagation for 
constant array elements and loop unrolling when they 
could be beneficial to the bit-level optimization.  

We also perform several local transformations in 
advance to transform certain frequent patterns to 
part_select or part_set for further speeding up the 
bitwise analysis process (see Table 3).  

Table 3: Local transforming patterns. 

No. Patterns 
1 t1 = Logical_shift_right (x, a) 

  t1 = part_select (x, a, Width(x) – a ) 
2 t1 = Logical_shift_right (x, a); t2 = And (t1, 2^ b -1)

 t2 = part_select(x, a, a + b - 1) 
3 t1 = And (x , 2^a -1); t2 = Shift_left (t1, b) 

 t2 = part_set (0, x, b, b + a - 1) 
4 t1 = And (x, 2^a – 1); t2 = Shift_left (t1, b ); 

t3 = And (y, 2^(b+a-1) – 2^b); t4 = Or ( t2, t3) 
 t4 = part_set (y, x, b, b+a-1) 

Table 4: Experiment results for bit_reverse function. 
Slices CP (ns) Latency (cycle) Function 

ORIG BTO ORIG BTO ORIG BTO 

bit_reverse 43 0 3.45  0.00  3 0

Firstly, we have a look at the effect of our algorithm 
on the motivating example of bit_reverse function. 
According to Table 4, we can easily generate the 
intended optimal implementation for the bit_reverse 
function. The resulting RTL only uses wires to connect 
the bits in the reverse order using zero slices. Here, the 
“BTO” columns refer to the experiment results using 
our bit-level optimization, while the “ORIG” columns 
refer to the ones generated without our optimization. 
CP refers to clock period. 

We further take a set of real-life designs for 
experiment from the cryptography and 
telecommunication domains, as listed in Table 5. The 
program profiles including the number of C lines, the 
number of LLVM operations, and the percentages of 
the bitwise operations are also shown in Table 5. Here 
the bitwise operations refer to the operations listed 
earlier in Table 1, and the percentages are collected 
from LLVM intermediate representations of these 
benchmarks. We can see that the five benchmarks are 
all bitwise computation-intensive applications, with at 
least 46.1% bitwise operations.Table 6 presents the bit-
level transformation effects on the set of designs. The 
“BTO”columns are collected from LLVM intermediate 
representations of these benchmarks optimized with 
our bit-level transformation pass, while the “ORIG” 
columns are from the ones optimized without our pass. 
We notice that our bit-level transformation algorithm 
will often generate narrower logical instructions. For 
example, when analyzing “(x >> 8) & y” by our pass, 
the bit-level transformation algorithm will see the 
highest 8 bits of x are all zeros. Supposing x and y are 
both 32-bit wide, the algorithm can generate a 24-bit 
AND operation instead of a 32-bit one. In order to see 
the exact reduction of logical operation units, we take 
the bit width of logical operations in consideration and 
collect how many bit logical operations are used for 
each benchmark, as shown in the “Unit Logical OP” 
columns, which refer to the number of unit 
And/Or/Xor/Not operations. The “Shift” columns refer 
to the shift operations as described in Table 1, and the 
“Bit Access” columns refer to the direct bit-accessing 
operations introduced in Table 2. We should notice that 
in many cases, we need one part_select and one 
part_set instructions to describe a bit connection. 
Although the numbers of bit- accessing operations of 
these benchmarks seem to berelatively large, many of 
these operations will be turned into wires and 
significant amounts of parallelism exists in these 
operations. 

Table 5: Benchmark descriptions. 

Benchmark C Lines LLVM OP Bitwise OP Percentage Description 

GSM_pack 123 441 72.8% The post-stage of GSM 06.10 encoder (pack wave).  
GSM_unpack 125 331 81.6% The pre-stage of GSM 06.10 decoder (unpack wave).  
MD5 504 1468 49.9% A widely used cryptographic hash function. 
AES 1318 3342 46.1% A popular algorithm used in symmetric key cryptography. 
3DES 390 3975 89.3% A popular algorithms used in symmetric key cryptography.

Table 6: Bit-level optimization effects on the LLVM intermediate representations of the benchmarks. 

Unit Logical OP Shift Bit Access Other Operations 
Benchmark 

ORIG BTO Reduction ORIG BTO BTO ORIG BTO Reduction

GSM_pack 12136 64 99.5% 124 0 270 123 120 2.4%
GSM_unpack 11328 0 100.0% 90 0 193 64 61 4.7%
MD5 11584 6592 43.1% 234 0 283 872 736 15.6%
AES 31908 14916 53.3% 441 0 3858 1897 1801 5.1%
3DES 29584 588 98.0% 880 0 1164 1090 422 61.3%
Average 19308  4432  78.8% 354 0 1154 809  628  17.8%



We can see from the result that our bit-level 
optimization algorithm can significantly reduce the unit 
logical operations used in the applications. For 
GSM_unpack, our algorithm can reduce all of the 
logical operations. For GSM_pack and 3DES designs, 
our algorithm can reduce 99.5% and 98.0% unit logical 
operations separately. For AES and Md5 designs, our 
bit-level optimization algorithm can also reduce 53.3% 
and 43.1% unit logical operations. On average, 78.8% 
unit logical operations and all the shift operations in 
these benchmarks can be reduced by our bit-level 
optimization algorithm. Other operations of these 
benchmarks are reduced by 17.8% on average, and 
most of the reduction is from the conversion operations 
listed in Table 1. We can see from the comparisons that 
our algorithm can efficiently transform unnecessary 
logical and shift instructions into direct bit-accessing 
instructions, without increasing other operations.  

Finally, we compare the generated implementations 
optimized by our pass with the ones generated without 
our pass. Table 7 presents the results of the 
experiments, where the “BTO” columns refer to the 
experiment results using our bit-level optimization. 
The “ORIG” columns refer to the results which are 
generated by normal flow without the bit-level 
optimization and optimized for speed under area 
constraints. On average, our pass can lead to a 29.8% 
improvement of area, 13.6% clock period reduction 
and 11.4% latency optimization for these benchmarks. 
The experiments show that for bitwise computation-
intensive applications, our algorithm can help the 
hardware synthesis to generate better implementations 
automatically. 

Table 7: Experimental results.  
Slices CP (ns) Latency (cycle)Benchmark 

ORIG BTO ORIG BTO ORIG BTO
GSM_pack 1301 624 4.78 3.85 68 56
GSM_unpac
k 655 304 4.47 3.14 15 14

MD5 2714 2348 13.52 12.92 195 194
AES 2799 2383 4.38 3.77 122 88
3DES 885 754 5.99 5.99 70 67
Average 
Reduction 29.8% 13.6% 11.4%

6. CONCLUSION 
In this paper we have introduced a bit-level 

transformation and optimization approach to assist 
hardware synthesis of arithmetic descriptions for 
functions with a large amount of bitwise operations. 
The proposed bit-flow graph can record and propagate 
bit-value information, allowing bitwise analysis and 
optimizations. The optimized BFG is transformed back 
to DFG extended with a few instructions representing 
bit accessing clearly, so that hardware synthesis of 
algorithmic description can generate corresponding 
hardware directly. Experiments show that our 
algorithm can reduce slices by 29.8%, reduce clock 
period by 13.6% and reduce latency by 11.4% on 
average for the benchmarks. In the future, we will 
consider exploring other application domains and 
supporting transformation for shift operations with 
variable shift-amount arguments to gain further 
improvement. 
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