
Bit-Level Transformation and Optimization for
Hardware Synthesis of Algorithmic Descriptions

Jiyu Zhang*† , Zhiru Zhang+, Sheng Zhou+, Mingxing Tan*, Xianhua Liu*, Xu Cheng*, Jason Cong†
*MicroProcessor Research and Development Center, Peking University, Beijing, PRC

† Computer Science Department, University Of California, Los Angeles, CA 90095, USA
+AutoESL Design Technologies, Los Angeles, CA 90064, USA

{zhangjiyu, tanmingxing, liuxianhua, chengxu}@mprc.pku.edu.cn
{zhiruz, zhousheng}@autoesl.com, cong@cs.ucla.edu

ABSTRACT
As the complexity of integrated circuit systems
increases, automated hardware design from higher-
level abstraction is becoming more and more important.
However, for many high-level programming languages,
such as C/C++, the description of bitwise access and
computation is not as direct as hardware description
languages, and hardware synthesis of algorithmic
descriptions may generate sub-optimal implement-
tations for bitwise computation-intensive applications.
In this paper we introduce a bit-level transformation
and optimization approach to assisting hardware
synthesis of algorithmic descriptions. We introduce a
bit-flow graph to capture bit-value information.
Analysis and optimizing transformations can be
performed on this representation, and the optimized
results are transformed back to the standard data-flow
graphs extended with a few instructions representing
bitwise access. This allows high-level synthesis tools to
automatically generate circuits with higher quality.
Experiments show that our algorithm can reduce slice
usage by 29.8% on average for a set of real-life
benchmarks on Xilinx FPGAs. In the meantime, the
clock period is reduced by 13.6% on average, with an
11.4% latency reduction.
1. INTRODUCTION

Bitwise operations are used extensively in many
application domains, such as cryptography and
telecommunications, etc. However, for applications
written in high-level programming languages and
executed on general-purpose processors, accessing and
computing bit-values are relatively expensive, and bit-
level parallelism is not well exploited. This is mainly
due to the lack of support in target machines, as well as
high-level programming languages, such as C/C++.
Most general-purpose processor architectures and high-
level programming languages do not support bitwise
memory access and require a series of
load/shift/mask/store instructions to implement simple
bitwise operations, such as bit accessing and bit setting.

Customized hardware accelerators provide a
promising approach to assisting general-purpose
processors in exploiting performance of bitwise
computation-intensive applications. Today, we can put
more than one billion transistors in a single chip [1],
and modern FPGAs allow users to exploit parallelism
in applications by hundreds of thousands of logic cells
and prefabricated IPs [2]. As RTL coding time is
increasingly recognized as a significant component of
the overall effort to solution, automated design
processes and tools which compile higher-level
abstraction into optimized hardware are gaining more

and more popularity [3-6]. However, high-quality
implementations are difficult to achieve automatically,
especially when the description of the functionality is
written in a high-level software programming language.
For bitwise computation-intensive applications, one of
the main difficulties is the lack of bit-accurate
descriptions in high-level software programming
languages. The wide use of bitwise operations in
certain application domains calls for specific bit-level
transformation and optimization to assist hardware
synthesis of algorithmic descriptions.

Figure 1 shows a motivational example with a bit
reversing function. The C description of this algorithm
is shown in Figure 1(a), where the bit_reverse function
takes a 32-bit integer as input and yields an output in
the reverse bit order. The data-flow graph for the
unrolled function is shown in Figure 1(b), while the
optimal implementation is shown in Figure 1(c). We
can clearly see that the direct implementation based on
the data-flow graph would use many more logical
components and also have a longer latency compared
to the optimal one, which only uses 32 wires to link the
bits directly in the reverse order.

int bit_reverse(int input)
{
int i, output = 0;
for (i = 0; i < 32; i++)
output |= (((input>>i)&1) << (31-

i));
return output;

}
(a) C code for the bit_reverse function.
input 0

>> 1

<<

31

outputOR

31

>>

AND

1

<<

0

input

OR

0
. . .

. . .
AND

(b) Data-flow graph for unrolled bit_reverse function.

0

10 0 1

00 . . .

. . .

. . .
input

. . .

0

output

0

31

31

1 0 1 11

1 1 00

(c) Optimal implementation for the bit_reverse function.

Figure 1: The bit reversing function.

We can see from the example that efficient bit-level
transformation and optimization for operations in
algorithmic descriptions will lead to a much more
direct and compact description. This will help the high-
level synthesis to generate better RTL designs for
bitwise computation-intensive designs, and thus
achieve better final implementations. Otherwise, in the
absence of such optimization, the synthesis process can
be misled by inaccurate area and timing estimation and
thus generate suboptimal microarchitecture. It is often
too late for the downstream RTL or logic synthesis and
optimization techniques to make up for the QoR loss
caused by the mistakes during compiler
transformations.

In this paper we propose a novel compiler
optimization approach to automatically generate
bitwise operations for hardware synthesis from the
algorithmic descriptions in high-level programming
languages. Specifically, we extend the data-flow graph
with two operations (instructions) representing bitwise
access to greatly facilitate the hardware synthesis to
synthesize algorithmic description into efficient
hardware. We propose an intermediate representation
called the bit-flow graph (BFG) to analyze and
optimize bitwise operations, and the optimized BFG is
transformed to the extended data-flow graph for
hardware synthesis. To our knowledge, this is the first
work to systematically analyze and optimize bitwise
operations to assist hardware synthesis of algorithmic
description. Experiments show that our approach can
achieve a 29.8% area reduction, 13.6% clock period
reduction and 11.4% latency reduction on average for a
set of real-world applications.

The remainder of the paper is organized as follows:
In Section 2 we review the related work. Section 3
presents the problem statement. In Section 4 we
describe our bit-level transformation and optimization
approach. Section 5 presents experimental results.
Section 6 concludes the discussion of current work and
proposes future directions.
2. RELATED WORK

In this section we discuss previous work on
optimization for bitwise computation-intensive
applications.

Modern optimizing compilers can perform a series
of transformation passes (typically in the form of
peephole optimizations) to simplify logical operations
[7, 8]. For example, algebraic simplifications and
reassociation can be applied to Boolean and structure
bit-field types using logical computation properties.
Constant folding evaluates constant expressions at
compile time and replaces variable references with
constants. One of the main characteristics of these
techniques is that they manipulate operands mainly at
byte/word level and rarely analyze bit-value flow
information. This is usually sufficient when the target
is a general-purpose microprocessor. However, for
application-specific hardware implementations, we
may miss many important optimization opportunities
that potentially lead to better solutions, especially for
bitwise computation-intensive applications.

Several modern processors extend their instruction
sets to accelerate bitwise operations. The counting-
leading-ones, counting-leading-zeros and counting-set-

bits instructions are such extensions existing on some
general-purpose processors. Hilewitz et al. [9]
conjectured that the most powerful primitive bit-level
operation might be the bit matrix multiply (BMM)
instruction, which currently is found only in
supercomputers like Cray[10]. They also proposed new
instructions that implement simpler BMM primitive
operations. However, the current code-generation
techniques for these instructions mainly seek for
special patterns, and efficiently taking use of these
instructions still much relies on hand-coded assemble
codes.

In the logic synthesis field, much research has been
conducted to simplify logical expressions [11].
However, when using high-level programming
languages, the bit-value accessing, computing and
storing are indirectly represented and often require a
series of load/shift/ mask/store instructions. If the
bitwise computation is not well analyzed and optimized
during the high-level synthesis step, the resulting RTLs
can be suboptimal. This would impose difficulty for
the downstream RTL/logic synthesis and optimization
to make up the QoR degradation.

Some hardware modeling languages extend high-
level software programming languages, and most of
them support bit-accurate description. For example,
SystemC [12], which is a popular modeling language
based on C++, introduces bit-accurate data types to
support description for bit-level access and
computation. Some related works also extend a base
sequential language with direct bit- manipulation for
both software and hardware. For example, [13]
introduces a new object-oriented language called Lime,
which can be compiled for JVM or into a synthesizable
hardware description language. It provides explicit bit-
numeration to describe bitwise operations.
Nevertheless, most software algorithms and a large
amount of legacy code are still written in high-level
software programming language.

In contrast to the previous work, our approach aims
at providing bit-level transformation and optimization
to assist hardware synthesis of algorithmic descriptions.
Since hardware directly supports bit-value accessing
and storing, while a large amount of software legacies
still use load/ shift/mask/store instructions to represent
bitwise operation, there is a gap between function
description in high-level programming languages and
hardware synthesis. To deal with this problem, we
propose a new intermediate representation for bitwise
operations. It will facilitate bit-value analysis and
provide a platform to take advantage of the existing
logical expression simplification techniques before
hardware synthesis.
3. PROBLEM STATEMENT

In this section we formalize the problem of
transforming the data-flow graph (DFG) to greatly
improve the area and performance of the generated
circuits for bitwise computation-intensive applications.

We define the BO-DFG as a data-flow graph which
contains only the basic logical, shift and conversion
operations, as listed in Table 1. These operations will
be referred to as bitwise operations in this paper. These
operations are the ones usually supported by high-level
programming languages and compiler intermediate

representations. Given a DFG derived from a software
description, we extract the BO-DFGs in it for further
analysis and optimization.

In order to represent direct bitwise accesses, we
further introduce three instructions (or operations) into
DFG, as shown in Table 2.

Table 1: Basic logical, shift and conversion operations.
Class Operations
Logical AND, OR, XOR, NOT
Shift Shift left, Logical / Arithmetic shift right
Conversion Truncate, Zero-extension, Sign-extension

Table 2: Additional instructions to represent bitwise
access.

Instruction Symbol Operands and Outputs
part_select PSel output = part_select(value, low, high)
part_set PSet output = part_set(value, repl, low, high)
Reverse Revs output = reverse (value)

value

PSet

low~high value repl

low~
high

(a) (b)

value

Revs

(c)

PSel

Figure 2: Graphic representation of part_select, part_set

and reverse operations.
Their semantics are defined as follows:
1) The part_select instruction selects the low

through high bits from value as the output. The
operand high should be equal to or greater than the
operand low. We use PSel to symbol it. The graph
representation is shown in Figure 2 (a).

2) The part_set instruction replaces the bits between
low and high (inclusive) of value with the lowest (high
– low + 1) bits from repl, and output the result. That is
the 0th bit in repl replaces the low bit in value and etc.
up to the high bit. The operand high should be equal to
or greater than the operand low, too. We use PSet as its
symbol, and the graph representation is shown in
Figure 2 (b).

3) The reverse instruction outputs all the bits from
value in the reverse order. We use Revs as its symbol,
and the graph representation is shown in Figure 2 (c).

The data-flow graph for the bit_reverse function
with the reverse instruction is shown in Figure 3,
which is much more compact than the one shown in
Figure 1 (b).

input

output

Revs

Figure 3: The data-flow graph for the bit_reverse function

with the reverse instruction.
Let G (V, E) be a BO-DFG which only consists of

the operations listed in Table 1. We define two types of
cost functions associated with G: delay cost (D-cost)
and component cost (C-cost). D-cost is determined by
the longest path delay of G. C-cost, on the other hand,
is the weighted sum of all nodes and edges. The nodes

and edges form a component set (ComSet), and each
component has an associated weight that corresponds
to the estimated area of the component.

() () *
i i

i

com com
com ComSet

C Cost G Count G Weight
∈

− = ∑

For convenience, we define two graphs G and G’ as
semantically equivalent if all outputs of the two circuits
implementing graph G and graph G’ are identical
under any combination of input values. Then the
problem can be formalized as follows:

Problem: Given a BO-DFG G(V, E) derived from a
high-level description, which only contains the basic
bitwise operations in Table 1, transform G into a
semantically equivalent graph G’ extended with
part_select, part_set and reverse instructions listed in
Table 2 so that C-cost or D-cost is minimized.

We believe that solving the above problem
efficiently will greatly benefit the high-level synthesis
for bitwise computation-intensive designs. Otherwise,
in the absence of such transformation, the area and
timing estimation may be inaccurate, and the high-level
synthesis process can be misled and thus generate
suboptimal microarchitecture. The downstream RTL or
logic synthesis and optimization techniques are often
too late to make up for the QoR loss caused by the
mistakes during the early stage.

In the subsequent sections, we propose an approach
that derives the bitwise access and operation
information from the shift and mask (and/or)
operations in software description and simplifies the
bitwise operations in this intermediate representation.
Then a data-flow graph with explicit bitwise accesses
is generated. With our approach, the cost can always be
reduced for hardware implementations.
4. BIT-LEVEL TRANSFORMATION
AND OPTIMIZATION

In this section we present our approach of analyzing
and optimizing bitwise operations. The algorithm
outline is shown in Figure 4. Given a data-flow graph,
our algorithm will first extract the BO-DFGs in it and
construct bit-flow graphs for them, which will be
described in detail in Subsection 4.1. Then a series of
transformations is performed to reduce some obvious
computation redundancy, as presented in Subsection
4.2, and if needed, various logical expression
simplification techniques can also be taken. Finally,
each BFG is transformed back to a data-flow graph, as
presented in Subsection 4.3. The algorithm complexity
will be analyzed in Subsection 4.4.

Bit-flow Graph
Construction

Logical Expression
Simplifications

Transform to
Data-flow Graph

Simplifying
Bit-flow Graph

Function
Description in

Data-flow Graph

Function
Description in

Data-flow Graph

Figure 4: Algorithm flow.

4.1 BFG Construction
We propose a new intermediate representation here

for BO-DFGs. We observe that for bitwise logical
operations, the computation for each bit is independent
from other bits in the same variable. Thus we can
transform the data-flow graph, viewing each bit as
independent element and simplifying the representation.
We propose an intermediate representation called the
bit-flow graph (BFG) to keep track of various types of
bit-value information, such as whether the bit is a
constant, whether it is equivalent to a bit from another
variable, and the operation to compute this bit, etc.

BFG is similar to the data-flow graph, except that
each node or edge in a BFG represents the data
dependency for the width of only one bit; that is, BFG
is a directed graph which shows the bit-value
dependencies between operations. The main data
structure of a BFG node is shown in Figure 5.

DFG Node

BFG Node BFG Node. . .

Bit_Value
Left_BFG_Node* Right_BFG_Node*

Type

DFG_Node* DFG_Index
Figure 5: BFG node description.

The nodes in BFG contain the following types: AND,
OR, XOR, NOT, SET, VARIABLE and CONSTANT.
Nodes of types VARIABLE and CONSTANT are leaf
nodes, which are input nodes of the whole graph, and
each of them has one output port. Nodes of types AND,
OR and XOR represent one-bit and/or/xor operations
respectively, each with two input ports and one output
port. NOT nodes represent one-bit not operation, with
one input port and one output port. SET node has one
input port and one output port, representing that the
bit-value from input port flows to the output port. The
edges connect output ports and input ports,
representing the flow of bit-values. The BFG data
structure also contains two fields indicating the bit’s
position in the original DFG: DFG Node Pointer and
DFG Index. If the DFG Node Pointer is nonzero, it
represents that the BFG node corresponds to the (DFG
Index)th bit in the DFG node pointed by the DFG Node
Pointer.

When building BFG for a BO-DFG, we traverse the
BO-DFG in postorder, i.e., visiting all operands of an
operation before visiting the operation node itself. For
each BO-DFG node, we build BFG nodes and
corresponding edges in the following manner:

1) If the current BO-DFG node is a leaf node, we
build a BFG node for each bit. For a BO-DFG node
with width N, N BFG nodes will be created and key
information will be recorded in their data structures,
such as the bit’s value, the corresponding BO-DFG
node and the bit order number.

2) If the current node is not a leaf node, we will
check its operation type and construct corresponding
BFG nodes. We take an N-bit SHL (left shift)
operation as an example. Assume that the shift amount
is constant M. First, N BFG nodes are created. Since

the lowest M bits of the result will be zero, the first M
BFG nodes are all set to be zero. Then for the left (N -
M) BFG nodes, the operation type for them is set to be
SET and the input edges are connected to the
corresponding BFG nodes of the shift variable. Figure
6 shows the result.

z

x
2

x.3 x.2

z.3 z.2

x.1 x.0

z.1 z.0

0

SET SET SET<<

DFG BFG
Figure 6: A 4-bit shift operation example: z =SHL(x, 2).

The examples of BFG node construction for each
class of operations are shown in Figure 7. BFG node
construction for OR/XOR/NOT is similar to the
construction for AND in Figure 7 (a); BFG node
construction for logical right shift and arithmetic right
shift are similar to the one for left shift in Figure 7 (b);
BFG nodes construction for truncation and signed
extension is similar to the one for zero-extension in
Figure 7 (c). Figure 8 (a) shows the generated BFG for
the bit_reverse function after direct construction.

4.2 Simplifying BFG
After a BFG is built, we simplify the BFG to

eliminate redundant computations by traversing the
BFG in postorder and applying the following
transformation rules:

1) For a SET/NOT node, if its input node (i-node) is
a SET node, we change its input node to i-node’s input
node (see Figure 9 (a));

2) For an AND/OR/XOR node, if one of its input
nodes is a SET node (s-node), we change the input
node to s-node’s input node; (see Figure 9 (b));

3) For a SET/NOT node, if its input node is a
CONSTANT node, we replace the SET node with the
corresponding CONSTANT node (see Figure 9 (c));

4) For an AND/OR/XOR node, if both of its input
nodes are CONSTANT nodes, we replace the node
with a CONSTANT node, whose value is the
calculated result (see Figure 9 (d));

5) For an AND node, if one of its input nodes is
CONSTANT ZERO, we replace the AND node with
CONSTANT ZERO (see Figure 9 (e)); If it is a ONE,
we replace the AND node with a SET node of the other
input node;

6) For an OR node, if one of its input nodes is
CONSTANT ONE, we replace the OR node with
CONSTANT ONE; If it is a ZERO, we replace the OR
node with a SET node of the other input node

7) For an XOR node, if one of its input nodes is a
CONSTANT ZERO, we replace the XOR node with
the other input node. If it is a ONE, we replace the
XOR node with the opposite of the other input node;

8) For a NOT node, if its input node is a
CONSTANT node, we replace the NOT node with the
opposite CONSTANT node of its input node.

(a)

(b)

(c)
z

Zext

x

SET

0

z.n-1

. SET

0

z.m

SET

x.m-1

z.m-1

SET

x.0

z.0

z

<<

x m

SET

x.n-m-1

z.n-1

. SET

x.0

z.m

SET

0

z.m-1

SET

0

z.0

z

AND

x y

AND

x.n-1

. . .
z.n-1

y.n-1

AND

x.1

z.1

y.1

AND

x.0

z.0

y.0

Figure 7: BFG node construction. “x.i” represents the ith
bit of x. (a) shows the BFG node construction for z = x &
y (n bits); (b) shows the BFG node construction for z = x
<< m (x is n-bit wide); (c) shows the BFG node construc-
tion for z = zero_ext x (z is n-bit wide; x is m-bit wide).

input.31

1

input.0

output.31 output.0

...

SET

AND

SET

1

SET

AND

SET

...

input.31 input.0

output.31 output.0

...

SET SET

...

 (a) (b)

Figure 8: The bit_reverse function in BFG. (a)The BFG
after direct construction; (b)The BFG after simplification.

B

(a)

SET

A

C

SET C

SET

A

B

(b)

SET

A

D

OR D

OR

A

C

C

A
(c)

SET

Const

Const

A

OR

Const1

Const

Const2

(d)
B

AND

ZERO

(e)

A

ZERO

Figure 9: Examples of transformation rules.
Among these rules, Rules 1 to 3 are like bitwise

copy-propagations, while the others belong to bitwise

peephole optimization using the computation rules. We
can easily prove that the simplifying process of
iteratively applying the upper rules is the process of
reducing BFG C-cost. The D-cost will not be increased
in this process, and sometimes it can be reduced as
well. The simplified BFG representation of the
bit_reverse function is shown in Figure 8 (b), which
describes direct bit settings.

After building up the BFG, logical expression
simplification techniques can be performed on this
graph. Existing approaches can be used to optimize the
BFGs for different purposes. Since making use of the
existing optimizations is not the main point of this
paper, we will not further elaborate this step.
4.3 Transforming BFG to Extended DFG

In this subsection, we introduce the process of
transforming a function in BFG form back to DFG
form extended with the part_select, part_set and
reverse operations.

For convenience of explanation, we define
consecutive BFG nodes as follows.

Consecutive BFG nodes are the BFG nodes:
i) Representing consecutive bits in a variable or

constants in the original DFG, either in the forward
order or in the reverse order;

Or ii) which have the same operations and their
input nodes are consecutive BFG nodes separately.

See Figure 10 for example. Since bits 0~1 of x are
consecutive, two SET nodes (in the dotted border)
representing setting bit 1 of z with bit 0 of x and setting
bit 2 of z with bit 1 of x are consecutive BFG nodes,
and we can generate one single operation: t = part_set
(0, x, 1, 2) for them. Bit 0 of y is not consecutive with
bit 1 of x, so we should generate a separate operation: z
= part_set (t, y, 3, 3) to represent setting bit 3 of z with
bit 0 of y.

z

x.1 x.0

0

SET SET

y.1 y.0

SET

z.1 z.0z.3 z.2
Figure 10: Example of consecutive BFG nodes.

We call the Trans_to_DFG function for each DFG
root to transform the corresponding BFG back to an
extended DFG and then replace the original DFG. The
algorithm of Trans_to_DFG is shown in Figure 11. In
the algorithm, we firstly traverse the input DAG and
mark the vectors of consecutive BFG nodes
corresponding to the DFG root. Then we call
Part_trans_to_DFG function iteratively to generate
DFG for each vector of consecutive BFG nodes. In
Trans_to_DFG , the size_of function returns the
number of nodes in a node vector. The gen_node
function generates and returns a DFG node. The first
argument of gen_node indicates operation type of the
node and the following arguments are the operands of
the operation.

The Part_trans_to_DFG algorithm is also shown in
Figure 11. It takes a vector of consecutive BFG nodes
as input, generates the corresponding DFG for the
vector of BFG nodes, and returns the root of the

generated DFG. It generates DFG nodes according to
the types of the input BFG nodes: 1) If the input BFG
nodes are CONSTANT nodes, it generates a constant
DFG node with the value of these bits; 2) If the input
BFG nodes represent consecutive bits from a variable,
it firstly checks whether they represent all the bits form
the variable. If not, a part_select node is generated.
Then it checks whether the bits from the variable are in
reverse order to decide whether to generate a reverse
node; 3) If the input BFG nodes are SET nodes, the
Part_trans_to_DFG function is called with a new
vector containing the inputs of these BFG nodes; 4) If
the input BFG nodes are NOT nodes, the
Part_trans_to_DFG function is called to generate a
DFG for the operands. Then it generates and returns a
NOT DFG node; 5) If the input BFG nodes are
AND/OR/XOR nodes, the DFGs for the left and right
operands are generated by the Part_trans_to_DFG
function and a corresponding AND/ OR/XOR DFG
node is generated and returned.

This algorithm can be followed by a local common-
subexpression elimination pass to reduce potential
redundancy.

Algorithm 1: Trans_to_DFG
Input: rootVector — a vector of BFG nodes for a DFG root
Output: a pointer to the root of the generated DFG
Trans_to_DFG
begin

pRoot a pointer to a DFG node representing ZERO;
i 0;
while i < sizeof(rootVector) do

consNodeVector consecutive BFG nodes starting
from the ith node in rootVector;

tmpNode Part_trans_to_DFG(consNodeVector);
len size_of(consNodeVector);
//Generate part_set to set the i ~ i+len-1 bits of

newRoot.
pRoot gen_node(PART_SET,pRoot, tmpNode, i,

i+len-1);
i i + length;

endwhile
return pRoot;

end

Algorithm 2: Part_trans_to_DFG
Input: nv –– a vector of consecutive BFG nodes
Output: a pointer to the root of the generated DFG
Part_trans_to_DFG
begin

len size_of(nv);
switch (nv[0]-> type)
case CONSTANT then

return gen_node (CONSTANT, value_of(nv));
case VARIABLE then

if nv contains BFG nodes corresponding to all the bits
of a variable then

tmpNode nv[0]->DFG_Node;
elif nv contains BFG nodes representing consecutive

bits from a variable in reverse order then
tmpNode gen_node(PART_SELECT,

nv[0]->DFG_Node, nv[len-1]->DFG_Index,
nv[0]->DFG_Index);

else
tmpNode gen_node(PART_SELECT,

nv[0]->DFG_Node, nv[0]->DFG_Index,
nv[len-1]->DFG_Index);

endif
if nv contains BFG nodes representing consecutive bits

from a variable in reverse order then
tmpNode gen_node (REVERSE, tmpNode);

endif
return tmpNode;

case SET then
nv_set All the operands of nodes in nv;
return Part_trans_to_DFG (nv_set);

case NOT then
op_nv All the operands of nodes in nv;
op Part_trans_to_DFG(op_nv);
return gen_node (NOT, op);

case AND/OR/XOR then
//Generate DFG for the left and right
//operands recursively.
nv_left All the left operands of nodes in nv;
nv_right All the right operands of nodes in nv;
l_op Part_trans_to_DFG(nv_left);
r_op Part_trans_to_DFG(nv_right);
//Generate DFG node for the computation.
//nv[0]->type indicates the operation type.
return gen_node (nv[0]->type, l_op, r_op);

endswitch
end

Figure 11: Pseudo code of Trans_to_DFG and
Part_trans_to_DFG Algorithms.

With the above algorithms, the resulted data-flow
graph for the motivational example of the bit_reverse
function is the same as in Figure 3, which only uses
one reverse operation.
4.4 Algorithm Complexity

Let N denote the number of nodes in the given data-
flow graph. Let W be the width of each node (If the
width of the variables are different, we can take the
largest one). According to the BFG construction
method described in Subsection 4.1, there are at most
(W * N) BFG nodes, and the computation complexity
in step 1 is O (W * N). The computation complexities
of simplifying BFG and transforming BFG back to
DFG are also O (W * N). The overall complexity is O
(W * N).
5. EXPERIMENTAL RESULTS

In this section, we describe our experimental
environment and results of a set of real-life designs.
We have implemented our algorithm in the LLVM
compiler infrastructure [14]. Two families of intrinsic
functions — llvm.part.select and llvm.part.set, are
available in the LLVM virtual instruction set [15].
Currently, LLVM does not provide any specific
analysis or optimization on these intrinsics.
Nevertheless, they are very useful for expressing how
bit values flow from one variable to another, and our
part_select, part_set and reverse instructions can be
directly mapped to these intrinsics.

For hardware implementation, we use a leading-edge
commercial C-to-gates synthesis tool [6] to synthesize
our optimized design into RTLs. The tool can take
behavior-level and system-level SystemC/C/C++ as
input descriptions and is able to target either ASIC or
FPGA platforms. It also provides an option to
synthesize the LLVM byte code. In this experiment we

use Xilinx ISE 9.2 toolset to synthesize the RTL
outputs and perform placement and routing onto Xilinx
Virtex-4 FPGAs [2].

Our bit-level optimization approach will benefit
from proper compiler transformations, some of which
are usually not default options when aiming at general-
purpose processors. We apply constant propagation for
constant array elements and loop unrolling when they
could be beneficial to the bit-level optimization.

We also perform several local transformations in
advance to transform certain frequent patterns to
part_select or part_set for further speeding up the
bitwise analysis process (see Table 3).

Table 3: Local transforming patterns.

No. Patterns
1 t1 = Logical_shift_right (x, a)

 t1 = part_select (x, a, Width(x) – a)
2 t1 = Logical_shift_right (x, a); t2 = And (t1, 2^ b -1)

 t2 = part_select(x, a, a + b - 1)
3 t1 = And (x , 2^a -1); t2 = Shift_left (t1, b)

 t2 = part_set (0, x, b, b + a - 1)
4 t1 = And (x, 2^a – 1); t2 = Shift_left (t1, b);

t3 = And (y, 2^(b+a-1) – 2^b); t4 = Or (t2, t3)
 t4 = part_set (y, x, b, b+a-1)

Table 4: Experiment results for bit_reverse function.
Slices CP (ns) Latency (cycle) Function

ORIG BTO ORIG BTO ORIG BTO

bit_reverse 43 0 3.45 0.00 3 0

Firstly, we have a look at the effect of our algorithm
on the motivating example of bit_reverse function.
According to Table 4, we can easily generate the
intended optimal implementation for the bit_reverse
function. The resulting RTL only uses wires to connect
the bits in the reverse order using zero slices. Here, the
“BTO” columns refer to the experiment results using
our bit-level optimization, while the “ORIG” columns
refer to the ones generated without our optimization.
CP refers to clock period.

We further take a set of real-life designs for
experiment from the cryptography and
telecommunication domains, as listed in Table 5. The
program profiles including the number of C lines, the
number of LLVM operations, and the percentages of
the bitwise operations are also shown in Table 5. Here
the bitwise operations refer to the operations listed
earlier in Table 1, and the percentages are collected
from LLVM intermediate representations of these
benchmarks. We can see that the five benchmarks are
all bitwise computation-intensive applications, with at
least 46.1% bitwise operations.Table 6 presents the bit-
level transformation effects on the set of designs. The
“BTO”columns are collected from LLVM intermediate
representations of these benchmarks optimized with
our bit-level transformation pass, while the “ORIG”
columns are from the ones optimized without our pass.
We notice that our bit-level transformation algorithm
will often generate narrower logical instructions. For
example, when analyzing “(x >> 8) & y” by our pass,
the bit-level transformation algorithm will see the
highest 8 bits of x are all zeros. Supposing x and y are
both 32-bit wide, the algorithm can generate a 24-bit
AND operation instead of a 32-bit one. In order to see
the exact reduction of logical operation units, we take
the bit width of logical operations in consideration and
collect how many bit logical operations are used for
each benchmark, as shown in the “Unit Logical OP”
columns, which refer to the number of unit
And/Or/Xor/Not operations. The “Shift” columns refer
to the shift operations as described in Table 1, and the
“Bit Access” columns refer to the direct bit-accessing
operations introduced in Table 2. We should notice that
in many cases, we need one part_select and one
part_set instructions to describe a bit connection.
Although the numbers of bit- accessing operations of
these benchmarks seem to berelatively large, many of
these operations will be turned into wires and
significant amounts of parallelism exists in these
operations.

Table 5: Benchmark descriptions.

Benchmark C Lines LLVM OP Bitwise OP Percentage Description

GSM_pack 123 441 72.8% The post-stage of GSM 06.10 encoder (pack wave).
GSM_unpack 125 331 81.6% The pre-stage of GSM 06.10 decoder (unpack wave).
MD5 504 1468 49.9% A widely used cryptographic hash function.
AES 1318 3342 46.1% A popular algorithm used in symmetric key cryptography.
3DES 390 3975 89.3% A popular algorithms used in symmetric key cryptography.

Table 6: Bit-level optimization effects on the LLVM intermediate representations of the benchmarks.

Unit Logical OP Shift Bit Access Other Operations
Benchmark

ORIG BTO Reduction ORIG BTO BTO ORIG BTO Reduction

GSM_pack 12136 64 99.5% 124 0 270 123 120 2.4%
GSM_unpack 11328 0 100.0% 90 0 193 64 61 4.7%
MD5 11584 6592 43.1% 234 0 283 872 736 15.6%
AES 31908 14916 53.3% 441 0 3858 1897 1801 5.1%
3DES 29584 588 98.0% 880 0 1164 1090 422 61.3%
Average 19308 4432 78.8% 354 0 1154 809 628 17.8%

We can see from the result that our bit-level
optimization algorithm can significantly reduce the unit
logical operations used in the applications. For
GSM_unpack, our algorithm can reduce all of the
logical operations. For GSM_pack and 3DES designs,
our algorithm can reduce 99.5% and 98.0% unit logical
operations separately. For AES and Md5 designs, our
bit-level optimization algorithm can also reduce 53.3%
and 43.1% unit logical operations. On average, 78.8%
unit logical operations and all the shift operations in
these benchmarks can be reduced by our bit-level
optimization algorithm. Other operations of these
benchmarks are reduced by 17.8% on average, and
most of the reduction is from the conversion operations
listed in Table 1. We can see from the comparisons that
our algorithm can efficiently transform unnecessary
logical and shift instructions into direct bit-accessing
instructions, without increasing other operations.

Finally, we compare the generated implementations
optimized by our pass with the ones generated without
our pass. Table 7 presents the results of the
experiments, where the “BTO” columns refer to the
experiment results using our bit-level optimization.
The “ORIG” columns refer to the results which are
generated by normal flow without the bit-level
optimization and optimized for speed under area
constraints. On average, our pass can lead to a 29.8%
improvement of area, 13.6% clock period reduction
and 11.4% latency optimization for these benchmarks.
The experiments show that for bitwise computation-
intensive applications, our algorithm can help the
hardware synthesis to generate better implementations
automatically.

Table 7: Experimental results.
Slices CP (ns) Latency (cycle)Benchmark

ORIG BTO ORIG BTO ORIG BTO
GSM_pack 1301 624 4.78 3.85 68 56
GSM_unpac
k 655 304 4.47 3.14 15 14

MD5 2714 2348 13.52 12.92 195 194
AES 2799 2383 4.38 3.77 122 88
3DES 885 754 5.99 5.99 70 67
Average
Reduction 29.8% 13.6% 11.4%

6. CONCLUSION
In this paper we have introduced a bit-level

transformation and optimization approach to assist
hardware synthesis of arithmetic descriptions for
functions with a large amount of bitwise operations.
The proposed bit-flow graph can record and propagate
bit-value information, allowing bitwise analysis and
optimizations. The optimized BFG is transformed back
to DFG extended with a few instructions representing
bit accessing clearly, so that hardware synthesis of
algorithmic description can generate corresponding
hardware directly. Experiments show that our
algorithm can reduce slices by 29.8%, reduce clock
period by 13.6% and reduce latency by 11.4% on
average for the benchmarks. In the future, we will
consider exploring other application domains and
supporting transformation for shift operations with
variable shift-amount arguments to gain further
improvement.

7. ACKNOWLEDGEMENT
Financial supports from the National Science

Foundation (US) under award CCF-0530261 and the
Natural Science Foundation of China under award
60728205 are greatly acknowledged.
8. REFERENCES

[1] "International Technology Roadmap for
Semiconductors, 2007 Edition", Semiconductor
Industry Association.

[2] http://www.xilinx.com, Xilinx Website.
[3] T. Bollaert, "Catapult Synthesis: A Practical

Introduction to Iterative C Synthesis", in High-
Level Synthesis: From Algorithm to Digital Circuit,
Eds. P. Coussy and A. Morawiec: Springer
Publishers, 2008.

[4] M. Meredith, "High-level SystemC Synthesis with
Forte's Cynthesizer", in High-Level Synthesis:
From Algorithm to Digital Circuit, Eds. P. Coussy
and A. Morawiec: Springer Publishers, 2008.

[5] S. Aditya and V. Kathail, "Algorithmic Synthesis
Using PICO", in High-Level Synthesis: From
Algorithm to Digital Circuit, Eds. P. Coussy and A.
Morawiec: Springer Publishers, 2008.

[6] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J.
Cong, "AutoPilot: A Platform-Based ESL Synthesis
System", in High-Level Synthesis: From Algorithm
to Digital Circuit, Eds. P. Coussy and A. Morawiec:
Springer Publishers, 2008.

[7] S. S. Muchnick, Advanced Compiler Design and
Implementation. San Francisco, CA: Morgan
Kaufmann Publishers, 1998.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques, and Tools (2nd
Edition). Boston, MA, USA Addison-Wesley
Longman Publishing Co., Inc, 2006.

[9] Y. Hilewitz, C. Lauradoux, and R. B. Lee, "Bit
Matrix Multiplication in Commodity Processors",
in 19th IEEE International Conference on
Application-specific Systems, Architectures and
Processors, 2008.

[10] "Cray Assembly Language (CAL) for Cray X1
Systems Reference Manual, version 1.2", Cray Inc.
2003.

[11] G. De Micheli, Synthesis and Optimization of
Digital Circuits: McGraw-Hill Higher Education,
1994.

[12] Open SystemC Initiative, "IEEE Standard
SystemC® Language Reference Manual", 2006.

[13] S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah,
"Liquid Metal: Object-Oriented Programming
across the Hardware/Software Boundary", in
Proceedings of the 22nd European conference on
Object-Oriented Programming, Paphos, Cypress,
2008.

[14] C. Lattner and V. Adve, "LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation", in Proceedings of the
international symposium on Code Generation and
Optimization, Palo Alto, California, 2004.

[15] "LLVM Language Reference Manual",
http://www.llvm.org/docs/LangRef.html.

View publication stats

https://www.researchgate.net/publication/228807715

