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Abstract—Recent advancement in miniaturized calcium imag-
ing microscope enables monitoring the cell activity from hundreds
of neurons simultaneously in vivo. However, extracting calcium
traces from a large population of cells in real time under a
strict resource and energy constraint remains a challenge. To
overcome it, we design a customized accelerator on a low-power
FPGA for fast calcium trace extraction. This enables us to
extract calcium traces from hundreds of cells in real time with a
short and deterministic latency. In addition, we propose a series
of techniques, including the region segmentation, the double
buffering and the fast forward mechanisms, to further reduce the
latency with minimal overhead. Applying these techniques, our
implementation can achieve real-time calcium trace extraction
for a maximum of 1024 cells from a 512×512 calcium video with
sub-ms latency, which is promising in support of closed loop
neurofeedback applications.

Index Terms—Calcium image, FPGA, latency, trace extraction

I. INTRODUCTION

The miniaturized calcium imaging microscope is one of

the most exciting advancements in the neural recording field

during the past decade [1], [2]. It can be head-mounted on

a freely behaving rodent and record spike-related calcium

fluorescence from hundreds of cells at a certain brain region

in real time. Fig. 1(a) shows the experimental setup of a

rat wearing a head-mounted miniaturized microscope (also

”Miniscope” in Fig. 1(b), http://www.miniscope.org). Fig. 1(c)

presents a cropped 512×512 field-of-view (FOV) calcium

image captured by the Miniscope with 760 detected and

superimposed cell contours. Miniaturized microscopes with

ever increasing spatial resolution and imaging quality are

widely used in different neuroscience research fields, including

memory, navigation, and social behavior, to name a few.

Several real-time calcium image processing pipelines have

been proposed [3]–[5]. [3] used the constrained non-negative

matrix factorization (CNMF) approach to perform accurate

and simultaneous cell contour and trace extractions. [4] es-

tablished a dataflow based system to realize efficient online

neuron detection and signal extraction in real time. [5] com-

bined the CNMF and the recurrent neural network (RNN)

inference to carry out neural signal extraction from noisy

calcium images. These pipelines mainly target offline calcium

image analysis and are usually developed on general-purpose

(a)

(b) (c)

Fig. 1. Miniaturized microscope enables in vivo calcium imaging at a certain
brain region. a) A freely behaving rat wearing a head-mounted Miniscope. b)
The Miniscope device. c) Calcium image frame with 760 superimposed cell
contours detected from a 6-min recording session.

CPUs or GPUs. Most of these implementations take a batch of

images as input, which prevents them from achieving a short

latency for each frame. Considering the millisecond timing

precision of the cell firing and the optogenetic intervention

[6], the challenge to implement an efficient calcium trace

extraction for a large population of cells under a strict latency

requirement for closed-loop applications remains.

In this paper, we design a customized accelerator on a

field-programmable gate array (FPGA) for fast and efficient

trace extraction from calcium images. We summarize our main

contributions as:

• We introduce a tracing accelerator and a dedicated cell

mapping algorithm for frame-based real-time calcium

trace extraction on an FPGA.

• We propose the region segmentation, double buffering

and fast forward mechanisms to reduce the the calcium

trace extraction latency with minimal overhead.

• We implement the first FPGA-based system that can take

input from the Miniscope and extract calcium traces from

1024 cells in a 512×512 FOV with sub-ms latency.
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Fig. 2. FPGA-based real-time calcium image processing system.

II. REAL-TIME TRACE EXTRACTION

A. Real-Time Calcium Image Processing

We develop a customized calcium image processing pipeline

on a system on chip (SoC) device that integrates the FPGA

and the ARM processor as shown in Fig. 2. The FPGA takes

the input image from the data acquisition (DAQ) board and the

ARM processor sends the processing results to a host computer

over the Ethernet. Our customized pipeline is composed of 3

steps: 1) The rigid motion correction stabilizes the images

based on template matching [8]. 2) The image enhancement

improves the signal-to-noise ratio by eliminating the estimated

background [5]. 3) The calcium trace extraction obtains traces

based on N binary NC×NC cell contours with corresponding

centers (Ri,Ci), i∈[1,N ]. It calculates the trace value by

accumulating pixel values under a binary mask for each cell

at every frame. The cell contours are detected by the offline

CNMF analysis [3]. We focus on 3) as the runtime of the 1)

and 2) can largely overlap with the image sensor readout.

B. Tracing Accelerator

The tracing accelerator is composed of a chain of J tracing

elements (TEs) as illustrated in Fig. 3. Each TE contains

registers for 9-bit row and column indices (ri,ci), an 8-bit pixel

value vi and a 16-bit trace value fi, a local memory for storing

K cell contours, and the computation logic for calculating the

trace values from the image stream and cell contours:

fj,k =

NC
∑

drijk,dcijk=0

vi ·Qj,k(drijk, dcijk), (1)

where fj,k is the trace value for the kth cell mapped to the jth

TE, and Qj,k represents the cell contour corresponding to this

specific cell. drijk and dcijk are derived indices calculated by:

{

drijk = ri  Rj,k +NC/2
dcijk = ci  Cj,k +NC/2

. (2)

The row and column indices, and the pixel and trace values

stream down the TE chain at 1 load and store per clock cycle

throughput. The tracing accelerator operates in 3 steps. 1)

Load: Cell centers and contours are preloaded through the

tracing chain to local indices registers and contour memory.

Qj+1,kQj,k

...

... ...

row index

TE

ri

ci

vi

fi
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&
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Fig. 3. Microarchitecture of the proposed tracing accelerator.

2) Compute: The image data flows through the tracing chain

row by row at 1 pixel/cycle throughput. The distributed TEs

perform the trace value calculation by accessing the local

indices and pixel registers and the local contour memory in a

massive parallel fashion. 3) Store: The calculated trace value

at each TE shifts back through the tracing chain in a streaming

fashion. The tracing accelerator reuses the index registers for

the Load and Compute steps.

C. Cell Mapping

As we implement the local contour memory as a simple

dual-port BRAM on the FPGA, each TE can fetch only one

contour value from the local memory at a single clock cycle.

This means that cells with overlapping contours cannot be

mapped onto the same TE because of the memory access

conflict. We propose an algorithm to guarantee that the cells

mapped to the same TE do not have overlapping contours:

First, we allocate each cell contour with a specific location

(j,k) on the J×K map and perform a conflict screening which

identifies those cells that have overlapping contours with other

cells within their allocated TEs, as seen in Fig. 4(a). Second,

we loop through all the conflict cells on the map in the order

of the TEs. For each conflict cell p mapped to a TEm, we

randomly pick up another cell q currently mapped to another

TEn (m 6= n) to form a pair (p,q). Third, we swap cells p
and q and check for any conflicts between the cell p and the

rest of mapped cells in TEn as well as between the cell q and

the rest of mapped cells in TEm. If there is no conflict, then

the algorithm executes this swap, updates the map accordingly

and goes on to address the next conflict cell. Otherwise, the

algorithm gives up this swap trial and returns to the second

step to randomly pick up another cell.

We tested the mapping algorithm with a 1024-cell dataset in

which each cell had 8 duplicands. It finished remapping with

702 swap steps in 0.55 s on a single thread CPU.

D. Performance Analysis

If we suppose all cell contours can be stored in the tracing

accelerator, then the trace extraction can finish within a single
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Fig. 4. The cell mapping operations ensure that there is no conflict in memory access of contours among cells allocated to the same TE.

TABLE I
FPGA RESOURCE UTILIZATION FOR THE TRACING ACCELERATOR

J K LUT FF BRAM

No Reuse 128 8 83743 56516 86

4x Reuse 32 8 21180 14280 38

pixel-scan round. However, this oftentimes requires too much

of the hardware resources. In order to fit the design onto an

FPGA with limited resources, we reduce the number of TEs in

the tracing accelerator and reuse the accelerator for multiple

rounds of pixel scans. Table I shows the FPGA resource

utilizations for a 128-TE full-mapping design and a 32-TE

quarter-mapping design of the tracing accelerators. We can

reuse the 32-TE design 4 times to complete the same 1024-

cell trace extraction task as the 128-TE design.

Considering a reuse time of R, we estimate the clock cycle

count for the trace extraction with the following formula:

Cycle = (N2

C/8 + 2) ·N + L2 ·R, (3)

where L denotes the image size. The load of the cell centers

and the store of the calcium traces cost N cycles each. The

load of the cell contours costs N · N2

C/8 cycles as 8 binary

contour values are coalesced into one 8-bit value during the

loading. The tracing computation takes L2 · R cycles. In a

typical case, if L=512, R=4 and NC=25, then the tracing com-

putation dominates the cycle count, and increasing the number

of cells N does not quite affect the overall runtime. According

to a cycle-accurate simulation, the FPGA accelerator finishes

the trace extraction and all pre-processing steps with 4.66 ms

latency at 300 MHz clock frequency.

III. LATENCY OPTIMIZATION

In this section, we introduce three mechanisms that can

further reduce the latency for the proposed tracing accelerator.

A. Region Segmentation

The first mechanism is segmenting the FOV of the image

into R regions, as shown in Fig. 5. Without the region

segmentation (RS), each round of trace extraction requires the

entire FOV image to be scanned, because the cell contours

distribute evenly across the FOV. With the RS, we constrain

(a)

(b)

Fig. 5. Contour distributions before (a) and (b) after the region segmentation.

the cell locations within 1/R of the full FOV region under

each segment. So each round of scan concentrates on a single

subregion, reducing the runtime of the tracing by (R-1)/R.

Note that it requires a few rows of overlap between subregions

to cover the cells at the boundaries.

We implement the RS by sorting and segmenting the

contours before mapping. First, we sort all of the contours by

their center locations and divide them equally into R segments.

Then, we apply the algorithm introduced in Section 2.3 to map

the contours to the tracing accelerator for each segment. The

sorting and segmentation are performed offline, and they cause

no additional overhead on the hardware implementation.

B. Double Buffering

As the Compute step is optimized by the RS, we can no

longer ignore the Store and Load time. Double buffering (DB)

is a common technique for overlapping the computation with

the communication. For our tracing accelerator, as the Store

and Load time is shorter than the Compute time, we apply the

DB to completely hide the communication time.

In order to realize the DB, we divide the single chain of TEs

into two separate chains. As one chain enters the Store and

Load process, the other chain starts the Compute process. The

DB design removes the first term from the latency estimation

in Eq. 3 whereas it does not significantly increase overhead

as the number of TEs remains unchanged.
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Fig. 6. The fast forward mechanism skips over pixels in the background.

C. Fast Forward

We observe that the contour distribution is very sparse at

the boundary of the calcium image captured by the Minis-

cope. Scanning over background pixels with no cell contour

coverage makes no effect and wastes computation time and

resources. As a result, we come up with a fast forward (FF)

mechanism that skips over background pixels at the beginning

and the end of each row. We define background pixels as those

without the cell contour coverage.

Fig. 6 shows the hardware implementation of the FF mech-

anism. R and C pointer registers keep track of the row and

column indices of pixels during the scan process. Multiplexers

ahead of the R and C pointer registers can switch between

the normal and FF modes. Under the normal mode, the C
pointer increments by 1 at every clock cycle and the R pointer

increments by 1 only at the end of a row. Under the FF mode,

the C pointer updates its value with the forward C index,

and the R pointer increments by 1 jumping to the next row.

A comparator takes both the current C pointer value and the

target C index as inputs. When the C pointer value equals

the target C index, it triggers a fast forward event. It enables

an update of the forward and target C indices and triggers a

new pair of forward and target indices to be fetched from a

local BRAM. An address generator calculates the pixel indices

from the R and C pointer values (ri, ci) and the motion

vector (roff , coff ) [8]). Pixel values are streamed to the

tracing accelerator based on the calculated pixel indices at

1 pixel/cycle throughput.

In the L=512 case, we only need to store 512 entries in

the local BRAM. Each entry is an 18-bit value, combining

the 9-bit target and forward indices. It requires 1.15 kB

memory, which can be implemented by a single BRAM block

on the FPGA. It is worth mentioning that the proposed FF

implementation can also benefit other stencil computation

problems where the input data has a similar sparse feature.

D. Evaluation

We evaluated our proposed latency optimization mecha-

nisms and implementations with a 760-cell calcium image

dataset recorded from a real rat by the Miniscope. Fig. 7 shows
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Fig. 7. Latency and hardware cost comparison among design choices: (1) the
baseline, (2) the RS, (3) the RS+DB and (4) the RS+DB+FF optimizations.

the comparison results on the overall latency and the hardware

cost for the tracing accelerator across different combinations

of the optimization mechanisms. As the results show, we can

reduce the overall latency to <1 ms by taking full advantage of

the proposed latency optimizations while keeping the hardware

cost overhead minimal.

IV. SYSTEM AND IMPLEMENTATION

A. Real-Time Processing System

We implemented the proposed calcium image processing

pipeline on the Ultra96 FPGA at 300 MHz. Based on that,

we developed a real-time processing system as presented in

Fig. 8. We built a customized interface PCB for connecting

the Miniscope DAQ board and a host computer to the Ultra96

FPGA. The image sensor data is transferred over the PCB

to the FPGA through the general I/O pins at 66.67 MHz.

512×512 images are processed at a 22.8-fps frame rate. The

system can stream both the image and extracted traces to the

host computer over the Ethernet on the PCB in real time. We

also developed a graphical user interface on the host com-

puter for sending commands to the FPGA, receiving motion

corrected calcium images and displaying calcium images and

extracted traces in real time.

Table II summarizes the FPGA resource utilization. This

includes the tracing accelerator, the rest of the processing

modules in the pipeline and a virtual image sensor for the

debugging purpose. The measured power consumption of our

real-time system is 5.3 W, with a standby power of 2.2 W.

B. Performance

The implemented accelerator achieves 589 µs latency on

extracting calcium traces from 760 cells from a 512×512

TABLE II
FPGA RESOURCE UTILIZATION FOR THE REAL-TIME CALCIUM TRACE

EXTRACTION ON ULTRA96

LUT FF BRAM DSP

Available 70560 141120 216 360

Utilization 47199 52985 201 111

Utilization % 66.9 37.6 93.1 30.8



calcium video when applying all latency optimizations. It can

maintain the sub-ms latency when the number of traced cells

reaches 1024. We demonstrated the real-time calcium image

trace extraction for 1024 cells by using the virtual sensor,

which replayed 1000 frames of recorded calcium images in

real time. The relative error of our trace extraction among all

cells on the FPGA is less than 0.04% compared to the offline

simulation. Our trace extraction implementation on the FPGA

achieves 2.9x and 132x speedup against a high-end multi-core

CPU using 4 threads and the embedded ARM processor on

the Ultra96, respectively.

We can extend our proposed FF mechanism to skip over

all background pixels instead of just those at both ends of the

rows. In order to achieve this goal, the BRAM needs to store

more indices, which increase the hardware cost. We evaluated

the benefit and cost of using such an aggressive FF compared

to the FF introduced in Section 3.3 across datasets collected

from 6 different rats. Fig. 9 shows the comparison results.

The aggressive FF contributes to 21.3% latency reduction

on average, but it requires 7.2x the memory for storing the

indices. We took the reduced cycle count per index (RCPI)

as a metric for the trace extraction. The FF outperforms the

aggressive FF consistently by a mean RCPI of 105 over 21.

Although the aggressive FF causes more memory overhead, it

can be useful for applications where the latency requirement

is high and the extra hardware cost is affordable.

C. Discussion

Unlike prior works that mainly focused on getting real-time

throughput on general purpose platforms [3]–[5], we leveraged

customized hardware acceleration to achieve deterministic and

short latency for the calcium trace extraction, which offers

unique advantage to neurofeedback closed-loop applications.

Considering the voltage imaging can reach 1k fps frame

rate [7], our proposed customized calcium image processing

can be a promising solution for closed loop neurofeedback

applications that require millisecond response time.

DAQ
Interface PCB

Ultra96 FPGA

Miniscope

Ethernet

DC 12V

USB 3.0

Fig. 8. Real-Time calcium image processing hardware setup (flexible instead
of rigid coaxial cable is used for real experiments with rats).
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Fig. 9. Experimental analysis on the tradeoff between the latency and the
memory cost for the FF.

V. CONCLUSION

In this paper, we propose a tracing accelerator design, a

corresponding cell mapping algorithm, and dedicated latency

optimizations that can extract calcium traces from a large pop-

ulation of cells in calcium image video with sub-ms latency.

Our implementation has the potential to enable a variety of

closed-loop feedback experiments based on the Miniscopes

and other high temporal resolution in vivo neuron imaging

techniques for brain research.
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