
An Efficient and Flexible Host-FPGA PCIe
Communication Library∗

Jian Gong,1 Tao Wang,1,3 Jiahua Chen,1 Haoyang Wu,1 Fan Ye,1 Songwu Lu,1,2,3 Jason Cong1,2,3
1Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, Beijing, China

2UCLA Computer Science Department, Los Angeles, CA, USA
3PKU-UCLA Joint Research Institute in Science and Engineering

{jian.gong, wangtao, chenjiahua, wuhaoyang, yefan}@pku.edu.cn, {slu, cong}@cs.ucla.edu

Abstract—A high-performance interconnection between a host
processor and FPGA accelerators is in much demand. Among
various interconnection methods, a PCIe bus is an attractive
choice for loosely coupled accelerators. Because there is no
standard host-FPGA communication library, FPGA developers
have to write significant amounts of PCIe related code at both the
FPGA side and the host processor side. A high-performance host-
FPGA PCIe communication library holds the key to broadening
the use of FPGA accelerators. In this paper we target efficiency
and flexibility as two important features in such a library. We
discuss the challenges in providing these features, and present our
solution to these challenges. We propose EPEE, an efficient and
flexible host-FPGA PCIe communication library and describe its
design. We implemented EPEE in various generations of Xilinx
FPGAs with up to 26.24 Gbps half-duplex and 43.02 Gbps full-
duplex aggregate throughput in the PCIe Gen2 X8 mode; these
are at the best utilization levels that a host-FPGA PCIe library
can achieve. The EPEE library has been integrated into four
different FPGA applications with different data usage patterns
in various institutes.

Keywords—FPGA; PCIe; Efficiency; Flexibility; Communica-
tion library

I. INTRODUCTION

Interest in using FPGAs as computing acceleration plat-
forms has been growing rapidly. A high-performance inter-
connection between the host processor and FPGA accelerators
is greatly needed. Among various interconnection methods, a
PCIe bus is an attractive choice for loosely coupled accelera-
tors due to its high throughput capacity.

However, because there is no standard host-FPGA com-
munication library, FPGA developers have to write significant
amounts of PCIe related HDL code (on top of the very low-
level, complicated PCIe hard IP core) at the FPGA side.
They also have to create special software code (e.g., drivers,
communication functions) in the host computer in order to
use those FPGA accelerators. Both efforts prove to be large
burdens for developers and distract them from addressing the
main tasks of their FPGA accelerator applications.

Therefore, an appropriate host-FPGA PCIe communication
library holds the keys to broadening the use of FPGA acceler-
ators. We believe that there should be two important features
for such a library: efficiency and flexibility.

∗This paper is supported by National Natural Science Foundation of China
(61370056, 61103028)

High efficiency is a must for FPGA applications requiring
high data throughput. The PCIe library must provide efficient
performance for applications’ data transfer; and it should
consume a minimal amount of FPGA resources in order to
leave as much resource as possible for FPGA applications to
achieve the maximum efficiency of the whole system.

High flexibility is also important. A PCIe library with rich
functionality would greatly simplify the development of many
applications. But there is an inherent conflict between efficien-
cy and functionality: more functionality will consume more
FPGA resources and leave less for applications, which will
probably reduce the efficiency of the whole system. Besides,
not all FPGA developers need the same set of functionalities.
Thus, a balance between efficiency and flexibility is required
in the PCIe library.

In our recent work [5], we proposed a simple version of a
PCIe communication library called EPEE. In this paper we
present in detail a much enhanced version of EPEE, with
significant progress made on both the efficiency and flexibility.
Our basic idea is to build a highly efficient core layer in
the library and make it extensible. Our solution also renders
EPEE portable through platform dependent and independent
part design. We implemented EPEE in various generations of
Xilinx FPGAs based on the PCIe hard IP core [15], [14],
[16]. With the 26.24 Gbps half-duplex and 43.02 Gbps full-
duplex aggregate throughput in PCIe Gen2 X8 mode, EPEE
has achieved the best utilization level (82% and 67% of the
theoretical maximum respectively) that a host-FPGA PCIe
library could achieve. EPEE has already been integrated into
four practical FPGA applications with different data usage
patterns in various institutes.

The contributions of this paper are as follows:

• We target efficiency and flexibility as two important
features for a host-FPGA communication library. We
also identify the requirements for supporting these fea-
tures, and present ways to satisfy these requirements.

• We propose EPEE, an efficient and flexible host-FPGA
PCIe communication library and describe its design.
We implemented EPEE in multiple generations of
Xilinx FPGAs. It can also be integrated with high-
level synthesis tools.

• We integrated EPEE into four practical FPGA appli-
cations with different data usage patterns in various



institutes. We make EPEE open-source and share it
with the community for further improvements.

The remainder of this paper is organized as follows:
Background and related work are discussed in Section II.
We describe the baseline functional requirement and design
challenges in Section III. In Section IV we present the design
of EPEE. In Section V we describe the EPEE’s software and
hardware interfaces. In Section VI we discuss the implemen-
tation of EPEE and evaluate our implementation. Finally, we
present a conclusion in Section VII.

II. RELATED WORK

A. Background on PCIe

PCIe is a layered protocol that includes physical layer, data
link layer and transaction layer. Data is packaged into packets
and transferred at the transaction layer (TLPs, transaction
layer packets). At the physical layer, the PCIe bus provides
a serial high-throughput interconnection between two devices.
Multiple serial lines/lanes can be used to transfer data [10].
There have been three versions of the PCIe bus. For a single
lane, the one-directional data transfer rates for versions 1.x,
2.x and 3.x are 2, 4 and 8 Gbps. Usually ‘Gen’ represents the
version of the PCIe protocol, and ‘X’ represents the number
of lanes (e.g., Gen2 X8 with 32 Gbps data rate).

B. Existing Work

PCIe hard IP cores provided by FPGA vendors [16],
[14], [15], [2] can be used in FPGA accelerators. However,
those IP cores have complex interfaces and require developers
to know much about the PCIe transaction layer protocol.
Although FPGA vendors provide drivers for their simple demo
applications, developers have to write their own PCIe drivers as
those simple drivers can not drive user-defined PCIe hardware.

RIFFA 2.0 [6] is an accelerator framework implemented
on Xilinx FPGAs. It uses FIFO and several control signals as
its DMA (direct memory access) interface in hardware. RIFFA
can run in the PCIe Gen2 X8 mode, where it can achieve a
24 Gbps DMA throughput, 75% of the theoretical maximum
(32 Gbps in the Gen2 X8 mode). However, RIFFA 2.0 does
not support the user controllable register (UCR) interface, nor
does it support the user-defined interrupt. For accelerators
with relatively complicated control operations, developers have
to write a significant amount of code in both the FPGA
and software sides to support user-defined register operations
using RIFFA’s DMA interface. If interrupt is needed in an
accelerator, developers have to modify a significant amount of
code in both RIFFA’s FPGA and driver implementation.

Speedy Bus Mastering PCI Express [3] is a PCIe commu-
nication library implemented on Xilinx Virtex-5 and Virtex-6
FPGAs. It provides a solution that maps the PCIe bus to a local
bus. The library provides a driver for its FPGA example design
with a DDR RAM interface. It can reach a nearly 12.8 Gbps
DMA write rate and 12 Gbps DMA read rate in PCIe Gen1
X8 mode (80% and 75% of the theoretical maximum). For
those applications that need DDR RAM interface, the system
provides good performance. However, if developers do not
want to use the DDR interface, they will have to rewrite much
code on both hardware and software sides.

MPRACE [9] is a platform for the communication between
the host computer and FPGA’s DDR RAM with driver and
library support. It runs under PCIe Gen1 X4 mode with
3.04Gbps DMA read rate and 5.6Gbps DMA write rate. It
has limitations similar to those of Speedy Bus Master [3].

There are also other PCIe communication libraries. Vipim
et al. [12] implemented a system-level FPGA driver based
on the RIFFA project combining PCIe, DRAM and Ethernet
together. This system can only support the PCIe Gen2 X4
mode as it only supports RIFFA’s 64bit DMA interface. Wu
et al. [13] implemented a PCIe library for the Virtex-5 FPGA.
It controls DMA through the amount of PCIe TLPs and
the TLP payload size, like the mechanism used in Xilinx
XAPP1052 [7]. Kavianipour et al. [8] implemented a PCIe
library on several Xilinx FPGA platforms which can reach
748MB/s (37.4% of the theoretical maximum) throughput in
DMA read and 784MB/s (39.2% of the theoretical maximum)
throughput in DMA write. FPGA2 [11] is a PCIe library
targeted for FPGA-GPU communication. FlexWAFE [4] pro-
vides a solution for communication between host and FPGA
accelerator, but it is specifically designed and optimized for
digital film processing.

III. BASELINE FUNCTIONAL REQUIREMENT AND DESIGN
CHALLENGES

A. Baseline Functional Requirement

The PCIe communication library should provide a col-
lection of common functions to facilitate the communication
between the FPGA and host computer. These include the
support of UCR (user controllable register), DMA and UDI
(user-defined interrupts in PCIe bus). UCR is needed for the
host to read/write device state/control registers, while DMA
allows the FPGA board to read/write the host’s main memory
directly. As a peripheral of the computer, PCIe equipment also
needs to notify the host of its internal events (from the FPGA
applications). Thus, the library must support UDI as well.

B. Challenges in Efficiency

The PCIe library should provide efficient performance for
applications’ data transfer as well as consume a minimal
amount of FPGA resources. Full-duplex DMA data transfer
is essential to make our EPEE library efficient so as to fully
utilize the throughput of the PCIe bus.

C. Challenges in Flexibility

High flexibility is important for the balance between ef-
ficiency and functionality. A good PCIe library with rich
functionality can greatly simplify many development tasks.
But more functionality will consume more FPGA resources
and leave less for applications. This may reduce the efficiency
of the whole system. Besides, not all FPGA developers require
the same set of functionalities. For example, a WiFi baseband
pipeline requires a high-level FIFO data streaming interface
to PCIe, while an SoC-based system may work better with
an AXI bus interface to PCIe. Thus, there is a fundamental
conflict between efficiency and functionality.



Fig. 1. EPEE system overview. EPEE consists of a software component and
a hardware component; each includes a core layer and a extension layer.

IV. SYSTEM DESIGN

In this section we illustrate how our design fulfills the base-
line functional requirements, as well as solving the efficiency
and flexibility challenges.

A. Overall System Architecture

The EPEE library consists of a software component and
an FPGA (hardware) component; each includes a core layer
and an extension layer as shown in Figure 1. It also includes
a PCI driver that handles the interaction between the software
core layer and the PCIe bus. On the FPGA side, the PCIe hard
IP core (provided by FPGA vendors) handles the interactions
between the hardware core layer and the PCIe bus.

To make EPEE flexible as well as efficient, we build a
small and fast EPEE core layer on the FPGA side. The EPEE
core layer supports all the baseline functional requirements,
i.e., UCR, full-duplex DMA, UDI, while the extension layer
provides rich functionality. The extension layer consists of
many plug-ins. FPGA developers can instantiate different plug-
ins in different scenarios. We have already provided some
common plug-ins in EPEE and developers can also share their
plug-ins for reusing. As plug-ins are instantiated only when
needed, FPGA developers do not have to waste resources on
unneeded functionalities.

B. Design on FPGA Side (Hardware)

The structure of the FPGA library is illustrated in Figure 2.
The core layer has two parts: the platform-dependent part
which interfaces with the PCIe IP core from vendors, and the
platform-independent part whose logic is independent from the
PCIe IP core. An optional extension layer is connected to the
platform-independent part for plug-ins.

The platform-independent part is modular designed for
UCR (user controllable register), DMA (direct memory access)
and UDI (user-defined interrupts) logics. The UCR controller
handles UCR read and write requirements from the PCIe
bus. The UDI controller sends interrupts required by the user
application. In order to make the DMA transfer efficient, the
DMA controller controls DMA read (from host to board) and

Fig. 2. Structure of FPGA Library.

Fig. 3. Structure of Software Library

DMA write (from board to host) in independent modules to
support full-duplex DMA.

The EPEE system can be easily ported to different FPGA
platforms with the platform-dependent part. To port EPEE to
other FPGA platforms, the only thing required is to modify
or rewrite the platform-dependent part, which is only a small
portion in the hardware core library. The platform-independent
part’s interface is the standard PCIe transaction layer package
(TLP), which is also the interface supported by the PCIe
hard IP core from most vendors [16], [14], [15], [2]. Thus,
modifying the platform-dependent part is relatively simple.

C. Design on Host Computer Side (Software)

The software of EPEE consists of a Linux driver, a software
core layer and a software extension layer, as shown in Figure 3.
The driver controls the FPGA hardware. UCR and UDI are
provided in a pci unlocked ioctl function, which can be called
by the “ioctl” system call in user mode. DMA write (DMA
from FPGA to host) is controlled by pci read blocking, which
can be called using the “read” system call. DMA read (DMA
from host to FPGA) is controlled by pci write blocking, and
pci write unblocking can be called by the “write” system call.
The zero-copy DMA interfaces are controlled by both “ioctl”
and “mmap.”

The software core layer is built to provide high-level
abstracted and easy-to-use APIs for software applications and
software extension layers. This core layer is a wrapper for



Fig. 4. EPEE Interface Overview

the driver and shields the details of data transfer. Software
developers can call the core layer directly or develop some
common functions in the software extension layer.

V. USER INTERFACE

A. Design Principles

High-level abstracted interfaces should be provided to
developers so that they can use EPEE easily. The interface
design must satisfy two requirements: 1) The interface for
both the software side and hardware side should be easy to
understand and easy to use. 2) The interface should shield the
low-level details as much as possible. We believe exposing
too much low-level detail may be counterproductive (though
it gives developers more freedom). Most of the time, FPGA
developers only need a limited set of common functions. The
need to interact with low-level mechanisms is rare. Those who
are interested in working with low-level mechanisms can use
the PCIe hard IP cores provided by FPGA vendors directly.

The overview of interface functions is shown in Figure 4.
UCR, DMA and UDI are provided in both hardware and
software, and each software function has its counterpart in a
hardware interface.

B. Hardware Interface

The main functions provided by the hardware library are
UCR, DMA and UDI.

The hardware library uses a simple UCR bus as the UCR
interface. The interface provides UCR read and write; both
of these have request and feedback mechanisms. We consider
two main reasons for the design. First, the response delay of
different hardware functions differs for UCR requests. The
handshake signals make the UCR operations reliable. Second,
the design provides better extensibility. Using a UCR bus as
interface allows the FPGA developer to allocate and configure
the UCR address space freely.

We use FIFO as the DMA interface. We choose FIFO
for three reasons. First, FIFO is a standard interface and its
definition is relatively simple. Experienced developers know
FIFO and beginners can learn to use it quickly. Second,
the latency in FIFO is small because data can be read in a
few cycles after it is written to FIFO. Another alternative is
addressable buffers such as RAM, where the developer has to
wait until all the data are stored in the buffer before he can
read any data. This will cause a much longer delay, and extra
signals are needed to notify the FPGA application when it can
start reading the data. Third, FIFO can be used to support other
interfaces easily. Our extension layer already has a module
transforming FIFO into an addressable buffer interface.

TABLE I. HARDWARE INTERFACE OF EPEE

Signal IO Description

UCR usr ucr wr addr[16:0] O register write address
usr ucr wr data[31:0] O register write data

Write usr ucr wr req O register write request
usr ucr wr ack I register write acknowledgment

UCR usr ucr rd addr[16:0] O register read address
usr ucr rd data[31:0] I register read data

Read usr ucr rd req O register read request
usr ucr rd ack I register read acknowledgment

UDI

usr int req I interrupt request
usr int vector[2:0] I interrupt vector
usr int sw waiting[7:0] O software is waiting for interrupt
usr int clr O interrupt clear
usr int enable O interrupt enable

DMA host2board dout[W-1:0]1 O DMA read data output

Read host2board empty O host2board FIFO empty
host2board rd en I host2board FIFO read enable

DMA board2host din[W-1:0]1 I DMA write data input

Write board2host prog full O board2host FIFO full
board2host wr en I board2host FIFO write enable

1 W is 130 in Gen2 X8 mode, 66 in other modes. The most significant two bits
are data valid bits.

A group of handshake signals is used as a UDI interface
because it is simple and efficient.

The main interface signals are illustrated in Table I. Some
signals, such as clock and reset, are omitted in this table.

C. Software API

The principle of the software API is to provide the func-
tions with the simplest and least number of APIs that shield the
details of low-level operations (such as interrupts in DMA op-
eration). Only two APIs are needed for UCR operations, three
APIs for DMA operations and one for UDI. The arguments and
return values of the APIs are simple. Most applications’ needs
can be fulfilled with those three kinds of APIs. EPEE also
provides a set of zero-copy DMA APIs. With zero-copy APIs,
developers can access kernel buffers directly, which eliminates
the memory copy operations between kernel and user buffers.
Zero-copy can help to achieve better performance.

The UCR, DMA, UDI and zero-copy APIs are listed as
follows. Other APIs for controlling EPEE (such as reset) are
also provided.

int read_usr_reg(unsigned int reg, unsigned int *p_data);
int write_usr_reg(unsigned int reg, unsigned int *p_data);

int dma_host2board(unsigned int len, void *p_data);
int dma_host2board_unblocking(unsigned int len, void *p_data);
int dma_board2host(unsigned int len, void *p_data);

int block_until_interrupt(int vector_num);

void * get_zerocopy_buffer();
int release_zerocopy_buffer(void * buf);
int zerocopy_host2board(int offset, int len);
int zerocopy_board2host(int offset, int len);

VI. EVALUATION

In this section we first present the current implementations
of EPEE in various FPGA platforms; these shows its portabili-
ty. Then we evaluate EPEE’s performance and compare it with
other PCIe communication libraries. Finally, we show EPEE’s
flexibility by introducing the current plug-ins in the extension
layer and presenting four practical applications that employ
EPEE as the underlying communication system.



TABLE II. STATISTICS ON PLATFORM-DEPENDENT CODE AMOUNT

FPGA File Logic Wrapper Total Percentage
Platform Num Code (line) Code (line) Code (line) (%)
Virtex-5 5 554 341 8799 10.2%
Virtex-6 5 554 355 8747 10.4%
Virtex-7 5 593 531 8910 12.6%

TABLE III. RESOURCE CONSUMPTION OVERVIEW

FPGA Platform Slice Used Slice Available
Virtex-6 (XC6VLX240T) 4243 (11%) 37680
Virtex-7 (XC7VX485T) 6652 (8%) 75900

A. Current EPEE Implementations in Various FPGAs

EPEE has been implemented on three different FPGA
platforms: Xilinx Virtex-5 (XC5VLX110T-1), Virtex-6
(XC6VLX240T-2), and Virtex-7 (XC7VX485T-2). EPEE
supports up to the PCIe Gen2 X8 mode (on XC7VX485T-2)
now, and PCIe Gen3 mode is under development.

For Virtex-61 and Virtex-5, the IP cores [14], [15] provide
the 64-bit TRN interface to transfer PCIe TLP packets. For
Virtex-7, EPEE leverages the PCIe hard IP core for Virtex-7
FPGA [16] with 128-bit data width in the PCIe Gen2 X8 mode.
The core adopts AXI4-stream as the interface for transferring
PCIe TLP packets.

By dividing the EPEE core layer into platform-independent
and platform-dependent parts, EPEE can be ported to differ-
ent platforms with minimal effort. The amount of platform-
dependent code on the three FPGA platforms is shown in
Table II. We can see that they are all below 1000 lines and
take less than 13% of the whole system’s FPGA code.

Table III shows the resource consumption of the system
(including clock domain switch plug-ins on UCR, DMA and
UDI) on Virtex-6 and Virtex-7 under the PCIe Gen2 X4
and Gen2 X8 mode.2 We find that EPEE has less resource
utilization than that of Speedy Bus Master [3], which uses
14% slice resources in Virtex-6 FPGA.3

We are not able to port the EPEE system to Altera [2]
FPGAs at this point because we did not have their developing
boards or PCIe IP core. However, that IP core uses the standard
PCIe transaction layer as interface. The amount of code to be
modified will be equal to that of the platform-dependent part
in Xilinx FPGAs, which is about 10% of the whole project.

B. Performance Evaluation

We conduct the evaluation of EPEE on a host computer
with an Intel I7-3770 CPU, 16 GB memory and 64-bit Ubuntu
12.04TLS with Linux kernel 3.2.0. We measure the DMA
performance on three platforms (Virtex-7, Virtex-6 and Virtex-
5) by transferring 200 MB data with different DMA payload
sizes. Due to space limitation, we only report performance
results of the DMA zero-copy API. Table IV shows the
maximum throughput that EPEE can achieve. We can see that
the half-duplex DMA write throughput on Virtex-7 achieves
up to 26.24 Gbps, 82% of the theoretical maximum rate under

1Virtex-6 also supports AXI4-stream interface, but we used the TRN
interface in our implementation.

2The Virtex-5 development board we used only supports the PCIe Gen1 X1
mode, so its results are omitted.

3RIFFA did not mention the resource utilization of its whole system.

Fig. 5. Performance with Different DMA Payload Sizes Using Zero Copy
(Gen2 X8 mode)

TABLE IV. PERFORMANCE EVALUATION USING ZERO COPY APIS
(GBPS AND PERCENTAGE OF THE THEORETICAL MAXIMUM RATE)

half-duplex full-duplex
Platform board host to board host to aggre-
FPGA to host board to host board gate
Virtex-5 1.72 1.70 1.57 1.60 3.17
(Gen1 X1) (86%) (85%) (78.5%) (80%) (79.3%)
Virtex-6 13.00 12.80 12.30 12.30 24.6
(Gen2 X4) (81.3%) (80%) (76.8%) (76.8%) (76.9%)
Virtex-7 26.24 25.58 22.09 20.93 43.02
(Gen2 X8) (82%) (79.93%) (69.03%) (65.41%) (67.2%)

Gen2 X8 mode, and a half-duplex DMA read of 25.58 Gbps
at 79.93%. The aggregate throughput of the full-duplex DMA
achieves up to 43.02 Gbps (board2host and host2board in
parallel).

Figure 5 depicts in detail the performance with different
DMA payload sizes in Virtex-7 (Gen2 X8). We can see that
payload sizes larger than 250KB are sufficient to achieve close
to maximum throughput.

There are four reasons why the system is prevented from
reaching the theoretical maximum throughput: 1) Overhead of
TLP header. Each TLP has a 3 or 4 DW (1 DW = 4 Bytes)
header. 2) Latency when transferring DMA descriptors. EPEE
cannot start data transfer before it receives the first DMA
descriptor. 3) PCIe bus latency. The PCIe bus introduces some
latency when it responds to EPEE’s requests. 4) Latency in
interrupt. Interrupt in the operating system will take some time.

Considering the overheads discussed above, common PCIe
communication library implementations support about 40-75%
(DMA read) and 70-80% (DMA write) of the theoretical
maximum rates of the PCIe bus [9], [3]. EPEE achieves
79.93% (DMA read) and 82% (DMA write) of the theoretical
maximum rates in the Gen2 X8 mode, so it is at the best
utilization level that a PCIe library can achieve.

We also evaluate the latency in EPEE system using the
DMA time for one DW. As the latency varies much in each
test, we repeat our test 500 times and obtain the maximum,
minimum and average values, as Table V shows. The gap
between maximum and minimum latency is mainly introduced
by interrupt, which varies from 3.54us to 26.88us in the
evaluation.



TABLE VI. PERFORMANCE OF DIFFERENT PCIE PLATFORMS (GBPS)

Platform Gen2 X2/ Gen2 X4/ Gen2 X8 Full-duplex UCR UDI Friendly Supported PCIe IP Core
Gen1 X4 Gen1 X8 Aggregate Support Support Software FPGA Interfaces1

EPEE 5.86(73%) 13.0(81%) 26.24(82%) 43(Gen2 X8) YES YES YES Virtex-5,6,7 TRN/AXI via portability
RIFFA [6] Not Given 12.8(80%) 24(75%) Not Mentioned No NO YES Spartan-6, Virtex-6,7 AXI
System-Level. [12] Not Given 12.0(75%) - Not Mentioned YES NO YES Virtex-6,7 AXI
Speedy. [3] 5.84(73%) 12.8(80%) - Not Mentioned YES YES NO Virtex-5,6 TRN
MPRace [9] 5.6(70%) - - Not Mentioned YES NO YES Virtex-4,5,6 TRN
Xapp1052 [7] 2 7.06(88%) 14.1(88%) - - NO NO NO Virtex-6 TRN
1 PCIe IP core in Virtex-4,5 uses TRN interface. Virtex-6, Spartan-6 support both TRN and AXI interface. Virtex-7 supports only AXI interface.
2 Xapp1052 is a demo for Virtex-6 FPGA’s DMA evaluation but not a PCIe library. It is without any software overhead, so its performance is almost the upper bound.

TABLE V. DMA LATENCY EVALUATION (US)

DMA Dir. MIN MAX Average
DMA read 6 59 13.8
DMA write 6 58 15.9

TABLE VII. CURRENT IMPLEMENTED PLUG-INS

Plug-ins SW Description App.1

UCR CLK SWITCH N/A Switch UCR clock domain between
EPEE library and user hardware

1 2 4

UCR BUS2REG N/A Do the mapping from UCR bus in-
terface to register-based interface

2

DMA CLK SWITCH N/A Switch DMA clock domain between
EPEE and user hardware

1 3 4

MULTI CHANNEL
DMA

Y Provide two independent DMA
channels

2

DMA ADDRESSABLE
BUF INTERFACE

Y Provide addressable buffer interface -

INT MANAGER N/A Switch UDI clock domain between
EPEE library and user hardware

1 2

PARTIAL RECONF Y Partially and dynamically reconfig-
ure FPGA via PCIe link

-

RESET GEN N/A Generate reset signal for user design 1 2 3 4
1 This column lists plug-ins used by the following applications. 1: MAC prototype

system, 2: WiFi baseband accelerator, 3: FPGA-based accelerating system with HLS,
4: NAND flash storage prototype

In Table VI, we summarize the performance comparison
between EPEE and other systems. We can see that EPEE
achieves a quite high throughput (26.24 Gbps in Gen2 X8)
and PCIe utilization (82% in Gen2 X8), while supporting
full-duplex DMA data transfer. It can reach 67% utilization
of a PCIe Gen2 X8 link in full-duplex mode. However,
other systems [6], [3], [9], [12] did not present full-duplex
performance in their publications. The EPEE system achieves
excellent efficiency in both half-duplex and full-duplex modes.

C. The Flexibility of EPEE and Its Practical Applications

EPEE provides flexibility with the extension layer. FPGA
developers can obtain different functionality by instantiating
plug-ins and combining them. Developers can also write plug-
ins and share them. Some plug-ins only have hardware-side
code, while others may also have corresponding software code.
Table VII lists some plug-ins in our current implementation.

EPEE has been used in four practical FPGA applications
in different situations. These include a MAC (media access
control layer of network stack) prototype system, a WiFi
baseband accelerator, an FPGA-based accelerating system sup-
porting high-level synthesis (in particular Vivado-HLS [1]) and
a NAND flash storage prototype. They have different data ac-
cess requirements with different data access interfaces. Those
requirements were satisfied by plug-ins in EPEE extension
layers.

VII. CONCLUSION

In this paper, we discuss how we designed and built
EPEE, an efficient and flexible host-FPGA PCIe communi-
cation library, by building up a highly efficient core layer for
efficiency and making the library extensible. We separated IP-
core dependent and independent parts in the core layer to make
EPEE portable. We implemented EPEE in three generations of
Xilinx FPGAs with up to 26.24 Gbps half-duplex and 43.02
Gbps full-duplex aggregate throughput in the PCIe Gen2 X8
mode, which are at the best utilization levels that a host-FPGA
PCIe library can achieve. EPEE has been integrated into four
different FPGA applications with different data usage patterns
in multiple institutes. We plan to further optimize EPEE and
use it in more applications. EPEE can be downloaded from
http://cecaraw.pku.edu.cn.

REFERENCES

[1] Vivado-HLS. http://www.xilinx.com/products/design-
tools/vivado/integration/index.htm.

[2] Altera. IP Compiler for PCI Express User Guide, May 2011.
[3] R. Bittner. Speedy Bus Mastering PCI Express. In FPL 2012.
[4] A. do Carmo Lucas, S. Heithecker, and R. Ernst. FlexWAFE - A High-

end Real-Time Stream Processing Library for FPGAs. In DAC 2007.
[5] J. Gong, J. Chen, H. Wu, F. Ye, S. Lu, J. Cong, and T. Wang. EPEE:

An Efficient PCIe Communication Library with Easy-host-integration
Property for FPGA Accelerators (Abstract Only). In FPGA 2014.

[6] M. Jacobsen and R. Kastner. RIFFA 2.0: A reusable integration
framework for FPGA accelerators. In FPL 2013.

[7] J. A. Jake Wiltgen. Bus Master Performance Demonstration Reference
Design for the Xilinx Endpoint PCI Express Solutions, September 29
2011. Xilinx Reference Design.

[8] H. Kavianipour, S. Muschter, and C. Bohm. High performance FPGA-
based DMA interface for PCIe. In RT 2012.

[9] G. Marcus, W. Gao, A. Kugel, and R. Manner. The MPRACE
framework: An open source stack for communication with custom
FPGA-based accelerators. In SPL 2011.

[10] T. S. Ravi Budruk, Don Anderson. PCI Express System Architecture.
Addison Wesley, 75 Arlington St., Suite 300, Boston, MA 02116, 2003.

[11] Y. Thoma, A. Dassatti, and D. Molla. FPGA2: An open source
framework for FPGA-GPU PCIe communication. In ReConFig 2013.

[12] K. Vipin, S. Shreejith, D. Gunasekera, S. Fahmy, and N. Kapre. System-
level FPGA device driver with high-level synthesis support. In FPT
2013.

[13] Q. Wu, J. Xu, X. Li, and K. Jia. The research and implementation of
interfacing based on PCI express. In ICEMI 2009.

[14] Xilinx. Virtex-6 FPGA Integrated Block for PCI Express User Guide,
2010.

[15] Xilinx. LogiCORE IP Endpoint Block Plus for PCI Express, 2011.
[16] Xilinx. 7 Series FPGAs Integrated Block for PCI Express Product

Guide, 2012.


