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Abstract—Programmable accelerators (PA) are receiving in-
creased attention in domain-specific architecture designs to
provide more general support for customization. In a PA-rich
system, computational kernels are compiled into predefined PA
templates and dynamically mapped to real PAs at runtime. This
imposes a demanding challenge on the compiler side – that
is, how to generate high-quality PA mapping code. Another
important concern is the communication cost among PAs: if
not handled properly at compile time, data transfers among
tens or hundreds of accelerators in a PA-rich system will limit
the overall performance gain. In this paper we present an
efficient PA compilation flow, which is scalable for mapping large
computation kernels into PA-rich architectures. Communication
overhead is modeled and optimized in the proposed flow to reduce
runtime data transfers among accelerators. Experimental results
show that for 12 computation-intensive standard benchmarks, the
proposed approach significantly improves compilation scalability,
mapping quality and overall communication cost compared to
state-of-art PA compilation approaches. We also evaluate the
proposed flow on a recently developed PA-rich platform [1]; the
final performance gain is improved by 49.5% on average.

I. Introduction

Customization is an appealing approach to increasing
performance-power efficiency, which is one of the primary
design concerns in the age of dark silicon. A recent industry
trend to address this is the design and integration of fixed-
function computation accelerators on the die, targeting ap-
plication domains demanding high performance and power-
efficient execution. Graphics, media, audio, and imaging pro-
cessing are example domains for this [2], [3]. Although fixed-
function accelerators can be designed to provide the best
performance/energy efficiency for a specific domain, they
suffer from poor flexibility, and hence are not suitable for the
domains with constantly changing use protocols.

To address this problem, the programmable accelerator
(PA) has been proposed to enable varying degrees of cus-
tomization in accelerator-rich systems [1], [4], [5], [6]. In a
standard PA architecture, a programmable accelerator template
is implemented in each PA unit to support a selected set
of computation tasks with reasonable hardware design costs.
The entire predefined PA template may support a relatively
complex computation task, while it can also be reconfigured
dynamically to perform a set of simpler but more general sub-
tasks. Therefore, each accelerator unit in a PA-rich system can
be customized for computation tasks with different granularity,

which enables efficient switching among varying degrees of
customization at runtime. For example, the PA template used
in [4] can be configured by hardware control signals at runtime
to support all the 4-input 2-output computation patterns with
dependency depth less than 5.

On the other hand, the emergence of PA-based designs
imposes a demanding challenge on the compiler side to
generate high-quality PA mapping code and efficiently utilize
the programmable execution units in a PA-rich architecture.
Considering that the number of PA candidates grows expo-
nentially with the size of the input data flow graph and PA
template, the PA mapping, which itself is NP-complete [7],
may become intractable even for medium-size DFG blocks
and cannot generate desirable mapping solutions. This leads
to the PA compilation scalability problem, which has become
a major challenge that existing PA compilation work struggles
to resolve.

Another important problem which is crucial to PA execution
efficiency is the communication overhead among accelerators.
A computing platform equipped with multiple (or even a sea
of) accelerators are usually connected together via bus or NoC
for better scalability [1], [8], [9], [10], [11], [12], [13]. The
computation capacity of each accelerator has its upper-bound,
and a large task has to be composed by multiple PAs. There
will be communication among these PAs through the system
interconnects, and this incurs extra performance and energy
overhead. Note that a PA can compute >100x faster than a
general-purpose processor [14] and usually needs to consume
a large amount of data every clock cycle. This indicates that
the communication among PAs will incur much higher traffic
on the system interconnects than the communication among
multiprocessors. The high traffic brought by accelerators can
easily exceed the bandwidth that the interconnects can afford,
and it correspondingly limits the performance gain of accel-
erators. To the best of the authors’ knowledge, existing PA
compilation work mainly focuses on accelerating computations
and has ignored the possible effect of communication patterns
on the overall performance.

The contributions of this work include:
(i) A scalable PA compilation flow to efficiently utilize the

available on-chip accelerator resources and support a higher
level of parallel execution. The PA mapping quality has been
improved by 23.8% and 32.5% on average, compared to
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Fig. 1. (a) Sample PA template. (b) One PA mapping solution for rician-denoise. (c) Runtime PA configuration of (b).

representative previous work [7] and [5].
(ii) Efficient mapping size reduction techniques to improve

the mapping scalability. Compared to the PA compilation
approaches proposed in [7] and [5], our approach achieves
at least 2X improvement on the overall compilation time.

(iii) Communication cost modeling and optimization to
achieve better runtime communication behavior. The results
show that the runtime data transfer is reduced by up to 20%
compared to the compilation solution without considering the
communication pattern.

The paper is organized as follows: Section II uses a real-
life application to illustrate the PA compilation flow; the
effect of communication patterns is discussed in Section III.
Section IV introduces the proposed PA compilation approach,
followed by Section V which reports experimental results. The
representative previous PA compilation work is discussed in
Section VI.

II. PA Compilation Example
In this section we use a real-life medical imaging application

Rician-denoise [15] to illustrate the PA compilation results on
a sample PA template.

As shown in Figure 1(a), the sample PA template is orga-
nized as a 4-level binary-tree structure, which is similar to the
POLY16 PA template proposed in [1]. Each template node can
either perform arithmetic operations or forward the input value
to its output. The interconnect between two levels is designed
in such a way that each data can be transferred to the next
level or be directly accessed as a PA output.

Figure 1(b) shows the simplified data flow graph of the
kernel loop in Rician-denoise, which contains 14 arithmetic
operation nodes (add, multiply and divide). As shown in
Figure 1(b), the entire DFG is covered by two PA candidates
pac1 and pac2. Let’s first look at the connected candidate
pac2: it is isomorphic to subgraph {1, 4, 9, 10, 13} of the
sample PA template and therefore can be identified as a
PA candidate. The corresponding runtime PA configuration is
shown in Figure 1(c). A 15-node PA unit pa2 is dynamically
reconfigured to perform the 5 computations in pac2. The
remaining nodes in pa2 will be bypassed and will not perform
real computations in this mapping.

Compared to the connected-only case, PA compilation
with disjoint PA candidates takes better advantage of the
instruction-level parallelism inside a PA template. For exam-
ple, pac1 in Figure 1(b) contains two connected subgraphs.
Since the two subgraphs are both PA-executable and can be
mapped to a single template at the same time, pac1 itself is
also a PA candidate. As shown in Figure 1(c), nodes 1, 2, 5,
6, 8 in pac1 are mapped to template nodes 1, 2, 9, 10, 13;
nodes 3, 4, 7, 9 are mapped to template nodes 5, 6, 11, 14. At
runtime, only one PA unit is needed to execute this disjoint
PA candidate.

III. Impact on Communication

In this section we use a recent PA-rich platform CHARM [1]
to analyze the impact of different PA mapping solutions on
the runtime communication overhead. The overall architecture
of CHARM consists of cores, L2 cache banks, memory
controllers, PA islands and an accelerator block composer
(ABC). PAs are building blocks of the application-specific
accelerators. PA islands consist of a series of PAs which share
a scratchpad memory and a DMA-controller. The ABC is
responsible for dynamically composing PAs to create coarser-
grained accelerators (loosely coupled accelerators or LCAs).

There are two types of communication in CHARM:
Output-oriented communication. As shown in Fig-

ure 1(c), pa1 produces two output data streams from nodes
13 and 14, which are consumed by pa2 as inputs. If pa1
and pa2 are allocated to the same PA island at runtime, the
communication between the two PAs includes two SPM write
accesses by pa1 and two corresponding SPM read accesses
by pa2. If they are allocated to different PA islands, additional
NoC traffic will be incurred in order to transfer data between
PA islands. The amount of data transfer for intermediate
results can be modeled as the total number of communication
edges across PA units. (Note that when an output of one
PA is fed into two different nodes in another PA as inputs,
it will only be counted once even though there are two
communication edges). The communication between PAs is
through the scratchpad memories. Depending on which island
a PA is assigned to, there are two types of communications:



#define u1(i, j, k) u1[((i)*N + (j))*M + (k)] 

#define u2(i, j, k) u2[((i)*N + (j))*M + (k)] 

#define u3(i, j, k) u3[((i)*N + (j))*M + (k)] 

 

du1_dx = (u1(i+1, j, k) – u1(i-1, j, k)) * 0.5f; 

du2_dx = (u2(i+1, j, k) – u2(i-1, j, k)) * 0.5f; 

du3_dx = (u3(i+1, j, k) – u3(i-1, j, k)) * 0.5f; 

 

du1_dy = (u1(i, j+1, k) – u1(i, j-1, k)) * 0.5f; 

du2_dy = (u2(i, j+1, k) – u2(i, j-1, k)) * 0.5f; 

du3_dy = (u3(i, j+1, k) – u3(i, j-1, k)) * 0.5f; 

 

du1_dz = (u1(i, j, k+1) – u1(i, j, k-1)) * 0.5f; 

du2_dz = (u2(i, j, k+1) – u2(i, j, k-1)) * 0.5f; 

du3_dz = (u3(i, j, k+1) – u3(i, j, k-1)) * 0.5f; 
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Fig. 2. (a) Kernel codes of registration. (b) PA mapping solution I. (c) PA mapping solution II.

intra-island communication when the two PAs are on the same
island, and inter-island communication when the two PAs
are assigned to two different islands. Each case has its own
overhead source: in the intra-island case, the overhead comes
from accessing the local scratchpad memory (contention on
memory ports); in the inter-island case the overhead is due to
communication through NoC.

Input-oriented communication. Another source of com-
munication is the input data transfer into the PA system.
Figure 2(a) shows a kernel code piece in another medical
imaging application called registration [15]. Figure 2(b) and
(c) represent two mapping solutions containing the same
number of PA units. As we can see from Figure 2(b), all
of the three PA units require data arrays u1, u2 and u3 as
inputs. In this case, one data element may be requested by
multiple PA units since data reuse exists among their inputs.
If pa1, pa2 and pa3 are assigned to different PA islands at
runtime, the DMA controller needs to send the same data
set to multiple destinations, which will introduce additional
data transfer overhead as well as energy consumption. Another
possible mapping solution is shown in Figure 2(c), in which
the operation nodes sharing the same input data set are packed
into one PA unit; thus, the duplicate data transfer overhead
in solution I can be reduced accordingly. Note that in this
example, both of the mapping solutions consume the same
amount of PA units, and thus will be considered as equivalent
solutions in the existing PA mapping work [7] and [5].
However, the communication overhead in solution II is much
less than solution I, as explained above.

IV. Scalable Communication-Aware PA Compilation Flow

A. Problem Formulation

To formally convey the proposed maximal PA compilation
problem, in this section we first introduce the necessary
definitions and problem formulation.

Definition 1: Given a PA template T < VT , ET > and an
input data flow graph G < V, E >, a subgraph G∗ ⊆ G is
called a PA candidate, if there exists a data path T ∗ ⊆ T ,
which is isomorphic to G∗.

Definition 2: A PA candidate G∗ < V∗, E∗ > is called
a maximal PA candidate, if ∀vi ∈ V − V∗, the expanded
subgraph G+ < V∗ ∪ {vi}, E∗ > is not a PA candidate.

For example, PA candidate pac2 in Figure 1(b) is not a
maximal PA candidate since it can be expanded by adding
nodes 8 or 9, and the expanded graph is still a PA candidate.
On the other hand, pac1 is a maximal PA candidate, since none
of its expanded subgraph can be mapped to the PA template
in 1(a) without violating the data dependency constraint.

Fig. 3. Two compatible maximal PA candidates.

Note that PA candidates may overlap each other at a certain
set of nodes. If it is possible to distribute each overlapping
node to exactly one maximal PA candidate, and the trans-
formed subgraphs are still PA candidates, the overlapping
candidates are called compatible PA candidates. Figure 3
shows two maximal PA candidates pac1 and pac2, which
overlap each other at nodes 8 and 9. They are compatible with
each other since after removing nodes 8 and 9 from pac2, the
remaining subgraph of pac2 is still a PA candidate.

Based on the concept of a maximal PA candidate, we
propose a maximal PA compilation flow, which can be de-
composed into the two sub-problems:

Problem 1: Maximal PA candidate identification. Given
an input data flow graph G and PA template T , identify all the
maximal PA candidates in G, which can be executed on PAs.
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Fig. 4. (a) Expanded DFG of Figure 2(a). (b) Communication pattern of PA mapping solution I in Figure 2(b). (c) Communication pattern of PA mapping
solution II in Figure 2(c).

Problem 2: Maximal PA mapping. Given an input data
flow graph G and a set of maximal PA candidates, select n
compatible maximal PA candidates which covers the entire G
with co-optimized mapping size n and communication cost c,
denoted by f (n, c).

Theorem 1: The optimal solution for Problem 2 using only
maximal PA candidates equals the optimal solution for the
original PA mapping problem using all possible PA candidates.

Proof: Assume that the optimal solution for the maximal
PA mapping problem contains N maximal PA candidates with
communication cost CN , and the optimal solution for the
original PA mapping problem contains M PA candidates with
communication cost CM .

(i) f (N,CN) ≥ f (M,CM) (defined by optimality).
(ii) Given an optimal PA mapping solution containing M

non-overlapping PA candidates {P1, P2, ..., PM}, for each Pi
in the optimal solution, if Pi is a maximal PA candidate, let
P∗i = Pi; if Pi is not a maximal PA candidate, expand it by
adding neighboring nodes until a corresponding maximal PA
candidate Pm

i is generated – let P∗i = Pm
i . The derived set

of PA candidates {P∗1, P∗2, ..., P∗M} contains M maximal PA
candidates, which cover the entire data flow graph and are
compatible with each other (the corresponding overlapping-
free subgraphs are {P1, P2, ..., PM}). Therefore {P∗1, P∗2, ..., P∗M}
is one feasible solution for the maximal PA mapping problem,
and we have f (M,CM) ≥ f (N,CN).

From (i) and (ii), we can get f (N,CN) = f (M,CM).
Theorem 1 demonstrates the optimality of the proposed

maximal compilation flow, in which the original PA mapping
problem can be transformed to the maximal PA mapping
problem with a much smaller problem size.

B. Maximal PA Candidate Identification

Efficient pattern identification techniques have been investi-
gated in a wide range of work [16] [17] [18]. In our flow, the
subgraph identification and isomorphism checking techniques
proposed in [16] are employed to generate connected PA
candidates efficiently. If subgraph G with k + 1 nodes is a
PA candidate, all the subgraphs of G with k nodes will be
marked as non-maximal. In this case, when k increases to the
maximal PA size, all the maximal connected PA candidates can
be generated. Note that instead of generating all the disjoint
PA candidates in an input data flow graph, we only target those
which can be mapped to the pre-given PA template. Therefore,

the microarchitectural constraints in the PA template, such as
depth, size, number of inputs/outputs, can be applied to prune
the identification space.

C. Communication Modeling

As discussed in Section III, the amount of intermediate
result transfers between PA units can be estimated as the total
number of communication edges between the corresponding
PA candidates in the mapping solution. However, the impact
of input-oriented communication is not captured by the origi-
nal data flow graph. To model the communication overhead
imposed by the primary input data streams, we introduce
pseudo-communication edges and expand the original kernel
data flow graph to represent the input data reuse. As shown
in Figure 4(a), inputs of the three “−” nodes access the same
array with possibly overlapped data ranges; therefore, three
edges are inserted between each two nodes. Different from
the existing edges in the kernel DFG, which indicate data flow
dependencies, the newly added edges represent the existence
of input data reuse between two operations.

Figure 4(b) and (c) show the communication edges in PA
mapping solution I and II. By comparing Figure 4(b) and (c),
we can conclude that solution II is better than I, in which all
the communication edges are encapsulated inside each PA unit.
In mapping solution I, there are nine communication edges
across PA units, which will be directly reflected in the runtime
data transfer overhead.

D. Communication-Aware Maximal PA Mapping

Now that we have a set of maximal PA candidates, a
subset of those candidates needs to be selected and mapped
to PA units. The entire mapping flow can be divided into
two major phases: mandatory-selection and max-cover.The
following metric is used as the optimality measurement for
a given mapping solution MP∗:

|MP∗|

BS F count
+ α ·

comm(MP∗)
BS F comm

(1)

The first part of Equation 1 measures the mapping size
optimality, where BS F count corresponds to the current
optimal mapping size (Best-S o-Far). Similarly, the second
part measures the optimality of MP∗’s communication cost,
which can be viewed as the degree of closeness to the smallest
communication cost obtained so far (BS F comm). The func-
tion comm returns the estimated communication cost incurred



Fig. 5. Kernel data flow graph of rician-denoise after mandatory-selection.

by a given mapping solution. The variable α is a parameter
which users can adjust based on the system requirements
to trade off between area minimization and communication
reduction. Note that when α is set to zero, this problem is
reduced to the area-optimal mapping problem discussed in [7].

Phase 1: mandatory-selection In exact PA compilation
algorithms, the complete set of PA candidates is enumerated
and considered as inputs of the mapping phase. Therefore, in
most cases a node in G will be covered only by more than
one PA candidate, unless it is disconnected from other nodes
in G. For example, node 14 in Figure 3 is covered by possible
PA candidates such as {14}, {12, 14}, {13, 14}, etc. On the
other hand, when we only include maximal PA candidates in
the mapping phase, node 14 is only contained in one maximal
PA candidate pac2 in Figure 3. In this case, we can directly
conclude that PA candidate pac2 will be selected in the optimal
covering solution, and remove all the nodes covered by pac2
from G. Then the mapping process only needs to be applied
to the remaining data flow graph with less PA candidates.
Figure 5 shows the effect of mandatory-selection on Figure 3.
After pac2 is selected, the remaining graph contains 7 nodes,
which is only half of the original size.

Phase 2: max-cover A branch-and-bound based covering
algorithm is applied to the reduced data flow graph after
mandatory selection. For each maximal PA candidate, it can
be either included or excluded in a feasible solution. When
the entire graph is covered after adding a new PA candidate,
the corresponding covering solution will be compared to the
current optimal solution. If the newly generated solution turns
out to be better, compatibility checking is performed on the
selected PA candidates. The current optimal solution will be
updated if the selected PA candidates are compatible with each
other. Note that BS F count and BS F comm are unknown
values; the current optimal mapping size and communication
cost are used to approach the optimal one.

Assume each overlapping node vi is covered in ni PA
candidates. In the worst case

∏
ni, non-overlapping node

assignment schemes need to be evaluated to decide whether
a set of overlapping PA candidates are compatible or not.
To perform fast compatibility checking, tight nodes are first
removed from the overlapping node set. Here an overlapping
node v is called a tight node of PA candidate P if P is no
longer a PA candidate whenever v is removed. For example,
the overlapping nodes located in a path between two nodes in
P are tight nodes if the corresponding two nodes do not belong
to the overlapping set. Therefore, it should be directly assigned
to P; otherwise the convexity of P cannot be maintained.

Note that the communication overhead for each edge can be
modeled based on the amount of data reuse between the two
PA units connected by this edge; therefore, the corresponding
edge weights may be non-uniform values. For example, the
communication edge between du1 dy and du1 dz in Figure 4
can be assigned a larger weight compared to the one between
du1 dx and du1 dy since the reuse distance between nodes
du1 dy and du1 dz is smaller and more likely to happen .

V. Experimental Results

A. Experimental Setup

We evaluate the proposed maximal PA compilation flow
on 12 computation-intensive applications from widely known
benchmark suites and computing domains. The testcases
include five benchmarks from the S PEC2006 suite [19]
(calculix, leslie3d, povray, bwaves and lbm), four applications
from the medical imaging domain [15] (compressive sensing,
registration, rician-denoise and segmentation), and three ap-
plications from the Rodinia benchmark suite [20] (heartwall,
leukocyte and c f d), which is designed for heterogeneous
computer systems with accelerators.

Our PA compilation flow is implemented with the LLVM
compiler infrastructure [21]. Omega library [22] is used for
for memory reuse analysis. In the experiments, the tested
benchmarks are compiled with all the standard optimization
in O3 turned on. The compilation time is obtained on a 4-
core Intel Xeon CPU (E5404) running at 2 GHZ. To further
evaluate our compilation flow, we have extended Simics [23]
and GEMS [24] and conduct cycle-accurate simulations on a
CHARM-like architecture [1].

Fig. 6. Compilation time (sec) vs. input problem size.

B. Comparison Results

In this section we show the comparison results of four PA
compilation flows − scalable connected PA compilation (S C-
PAC) [7], the proposed maximal connected PA compilation
(MC-PAC), scalable disjoint subgraph mapping (S D-PAC) [5]
and the proposed maximal disjoint PA compilation (MD-
PAC). Among the four approaches, the first two only target
connected PA candidates, and the last two consider both
connected and disjoint candidates.



Fig. 7. Comparisons on PA compilation results of S C-PAC [7], MC-PAC, S D-PAC [5] and MD-PAC.

Compilation time. Table I shows the comparison results on
the PA compilation time. To perform a fair comparison, we use
the same maximal time limit in [7] and [5], upon which the PA
compilation will be terminated and the best solution generated
by this time point will be reported. Note that 1 sec. in Table I
means that the compilation can complete in one second. The
tradeoff parameter α is set to be zero in this comparison, which
makes our mapping problem equivalent to [7].

From Table I, we can make the following observations:
(1) The compilation times of SC-PAC and SD-PAC are very

close to each other. The reason is that SC-PAC is a subroutine
of SD-PAC. In SD-PAC, the optimal connected PA mapping
solution is first generated with SC-PAC. After that, a greedy
grouping operation is performed on the selected PA candidates
with negligible time overhead, as shown in Table I.

(2) In the connected compilation case, the maximal PA
compilation algorithm can complete in less than 10 seconds for
all the benchmarks, while the SC-PAC flow fails to complete
for six test cases, and its compilation time increases quickly
when the compilation problem size grows.

(3) The disjoint compilation results are similar – MD-PAC
completes in no more than 300 seconds for all testcases.

The large gap in algorithm runtime between SC(D)-PAC
and MC(D)-PAC can be explained with Table II and Table III.
The problem size of PA mapping is related to two factors – the
target DFG size and the total number of PA candidates which
can be selected into a mapping solution. As we discussed, with
the proposed concept of maximal PA candidates, both factors
can be efficiently reduced. From Table II we can see that
by only including the maximal ones, the total number of PA
candidates in the mapping phase can be reduced significantly.
Table III shows the reduction on the number of nodes to be
covered in the kernel DFG, after mandatory-selection. SC-
PAC and SD-PAC normally need to cover the size of the entire
DFG, since most DFG nodes belong to more than one PA
candidate and cannot be selected directly. In MC(D)-PAC, the
number of nodes to cover can be reduced by 20% on average,
as shown in Table III.

Algorithm Scalability. To illustrate the scalability of the

proposed maximal PA compilation flow, we plot compilation
time with the corresponding problem size for the 12 bench-
marks. Here the compilation problem size is estimated as the
product of target DFG size and the number of PA candidates.

As shown in Figure 6, SC-PAC and SD-PAC run fairly
fast for moderate-size applications, while exhibiting limited
scalability when the problem size grows. Note that leukocyle
is one application which can be compiled within 600 seconds
even with a large problem size. This is because the real runtime
will also be influenced by other factors, such as subgraph
overlapping and the efficiency of the initial greedy solution.
The estimated problem size is used here to provide an insight
into the overall trend.

Considering the maximal PA compilation flow, the increased
problem size has a small effect on the MC-PAC runtime, and
it can finish quickly for all 12 benchmarks. When disjoint
PC candidates are included, the corresponding compilation
flow MD-PAC gradually slows down as the problem size
increases, but it still can finish in less than 300 seconds for all
the benchmarks tested. As we discussed, when the estimated
problem size exceeds a given threshold, a greedy MD-PAC
process will be invoked, and the corresponding compilation
time falls drastically while still generating reasonable mapping
quality – which will be shown later in this section.

Mapping optimality. Figure 7 shows the comparison results
on the final mapping size, which equals the number of selected
PA candidates to cover the target DFG.

From the results we can see that compared to the opti-
mal approach SC-PAC, MC-PAC generates better mapping
solutions at six applications with relatively large kernel size.
This because with those large testcases, SC-PAC cannot finish
within 600 seconds and thus cannot obtain the actual optimal
result even though the approach itself is optimal. On average,
MC-PAC can achieve a 14% improvement over SC-MAC in
terms of the mapping quality, and MD-PAC can achieve a
23.8% improvement over the heuristic SD-PAC approach and
a 32.5% improvement compared to the results of SC-PAC with
connected PA candidates.

Figure 8 shows the comparison results on the amount of



TABLE I
Comparisons on PA compilation time (sec)

calculix leslie3d povray bwaves lbm comp. reg. rician- seg. heart- leuko- cfd
sensing denoise wall cytes

SC-PAC[8] 284.3 > 600 > 600 > 600 > 600 1 1 34.2 > 600 2.1 338 > 600
MC-PAC 1 1 1 1 4.1 1 1 1 5.2 1 1 1

SD-PAC[6] 284.9 > 600 > 600 > 600 > 600 1 1 34.6 > 600 2.2 339 > 600
MD-PAC 14 17 29 277 14.6∗ 1 1 11 18.9∗ 1 284.1 1∗

TABLE II
Comparisons on the number of PA candidates

calculix leslie3d povray bwaves lbm comp. reg. rician- seg. heart- leuko- cfd
sensing denoise wall cytes

SC(D)-PAC[6,8] 269 413 507 425 204 35 198 349 1147 252 618 416
MC-PAC 12 16 29 21 36 11 14 19 44 11 33 27
MD-PAC 98 31 378 215 54 28 103 162 57 11 270 46

TABLE III
Kernel size reduction with pre-selection

calculix leslie3d povray bwaves lbm comp. reg. rician- seg. heart- leuko- cfd
sensing denoise wall cytes

Original 31 36 42 44 48 19 27 37 75 17 46 52
MC(D)-PAC 22 26 32 39 45 13 19 30 55 13 35 47

data transfer reduction by applying the communication opti-
mization, which is collected based on the CHARM platform.
In our experiments, each communication edge is counted with
unit communication cost, which can be further refined by using
weighted communication edges to capture the difference in the
communication overhead incurred by each edge.

On average, the proposed flow achieves a 13.7% reduction
on the total amount of data transfers, with the maximal reduc-
tion up to 20%. We also observe that no obvious improvements
have been achieved for lbm, heartwall and leslie3d. The reason
is that there is less data reuse inside the kernels, and the
original PA mapping solution is already the one with the
optimal communication cost.

Performance. Figure 9 shows the comparison of execu-
tion time on the CHARM platform. The performance gain
comes from two factors – improved data-level parallelism and
reduced communication overhead. Given a limited number
of accelerator units, a smaller mapping solution implies a
higher capability of accelerator duplication to support parallel
execution, so that multiple copies of accelerators can execute
at independent loop iteration space [1]. Note that there is
no obvious performance gain for lbm. This is because the
accelerator resource saving in the mapping solution is not
enough to create another parallel execution copy. On average,
the overall performance gain of MD-PAC is improved by
49.5% over SC-PAC and 31.1% over SD-PAC.

VI. RelatedWork

As discussed in Section I, both the PA candidates’ identifica-
tion and PA mapping problems are difficult to solve. Heuristic
approaches have been employed in previous work to reduce the
mapping complexity. A widely employed heuristic method is

Fig. 8. Comparisons on communication overhead.

to perform greedy enumeration and immediate selection. One
example is the DySER compilation flow [6]. Another set of
work employs an exact PA compilation flow targeting optimal
mapping solutions, which can be described as full enumeration
followed by optimal mapping [7]. Here, full enumeration
means enumerating all the possible PA candidates in the target
kernels. Then an optimal mapping algorithm, such as ILP-
based or branch-and-bound approach, will be applied on the
full set of PA candidates. As discussed in Section I, scalability
becomes the major compilation challenge in such approaches
as the kernel size increases.

There already exists some relevant work investigating the
development of scalable PA mapping methods to obtain
optimal solutions for moderate-size application kernels. For
example, in [7], a scalable subgraph mapping algorithm is
proposed to generate optimal PA mapping solutions with
connected PA candidates. The limitation of this work is the
lack of support for disjoint PA candidates due to the scalability
problem; thus it cannot fully utilize the existing parallelism in



Fig. 9. Performance comparison of S C-PAC [7], MC-PAC, S D-PAC [5] and MD-PAC.

a PA template. An extension of this work is discussed in [5],
in which the optimally selected connected accelerator patterns
are greedily grouped into disjoint ones. However, there is
no guarantee on the optimality of the resulting PA mapping
solution. Another limitation of the previous PA compilation
work [7], [5], [6] is the lack of communication optimiza-
tion. The proposed mapping algorithms merely focus on the
computation resources, e.g., the work in [7] targeting an area-
optimal mapping solution without considering the underlying
communication overhead in the PA-rich platform.

VII. Conclusion and Future work

The performance and energy efficiency of accelerator-rich
platforms comes at the price of a number of compiler chal-
lenges. In this work we introduced a scalable communication-
aware PA compilation flow based on maximal PA candidates.
The proposed flow shows significant improvements in terms
of mapping quality, scalability and communication overhead.
One thing to note here is we only consider PA candidates
identified by subgraph isomorphism techniques in the current
flow, instead of full equivalence checking to determine whether
two subgraphs are functionally equivalent or not. This will be
investigated in the future work.

VIII. ACKNOWLEDGMENTS
This work is partially supported by MARCO Gigascale

Systems Research Center (GSRC), the Center for Domain-
Specific Computing (CDSC) funded by the NSF Expedition in
Computing Award CCF-0926127 and Intel Corporation with
matching support from the NSF InTrans Award CCF-1436827,
and the NSF grant CCF-0903541.

References
[1] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,

“Charm: A composable heterogeneous accelerator-rich microprocessor,”
in ISLPED, 2012, pp. 379–384.

[2] Intel Moorestown, http://www.intel.com/pressroom/archive/reference/Mo-
orestown backgrounder.pdf.

[3] The OMAP5430 Platform, http://www.ti.com/ww/en/omap/omap5/omap5-
OMAP5430.html.

[4] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An
Architecture Framework for Transparent Instruction Set Customization
in Embedded Processors,” in Proc. ISCA, 2005.

[5] A. Hormati, N. Clark, and S. Mahlke, “Exploiting Narrow Accelerators
with Data-Centric Subgraph Mapping,” in Proc. CGO, 2007, pp. 341–
353.

[6] V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically Specialized
Datapaths for Energy Efficient Computing,” in Proc. HPCA, 2011, pp.
503–514.

[7] N. Clark, A. Hormati, S. Mahlke, and S. Yehia, “Scalable Subgraph
Mapping for Acyclic Computation Accelerators,” in Proc. CASES, 2006,
pp. 147–157.

[8] H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S. Woodward, J. D.
Brown, and C. L. Johnson, “Introduction to the wire-speed processor
and architecture,” IBM Journal of Research and Development, vol. 54,
no. 1, pp. 3:1–3:11, Jan. 2010.

[9] Convey computer, http://conveycomputer.com.
[10] L. Seiler et al., “Larrabee: A Many-Core x86 Architecture for Visual

Computing,” in IEEE.Micro, vol. 29, no. 1, 2009, pp. 10–21.
[11] Nallatech development systems, http://www.nallatech.com.
[12] R. Hou, L. Zhang, M. C. Huang, K. Wang, H. Franke, Y. Ge, and

X. Chang, “Efficient data streaming with on-chip accelerators: Opportu-
nities and challenges,” in International Symposium on High Performance
Computer Architecture, 2011, pp. 312–320.

[13] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in Iternational sympo-
sium on Microarchitecture, 1994, pp. 172–180.

[14] J. Cong, M. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, “Archi-
tecture Support for Accelerator-Rich CMPs,” in DAC, 2012.

[15] J. Cong, V. Sarkar, G. Reinman, and A. Bui, “Customizable domain-
specific computing,” in IEEE Design and Test of Computers, 2010, pp.
5–15.

[16] J. Cong and W. Jiang, “Pattern-based behavior synthesis for fpga
resource reduction,” in FPGA. New York, NY, USA: ACM, 2008,
pp. 107–116.

[17] P. Bonzini and L. Pozzi, “Polynomial-time subgraph enumeration for
automated instruction set extension,” in DATE. New York, NY, USA:
ACM Press, 2007, pp. 1331–1336.

[18] P. Yu and T. Mitra, “Disjoint Pattern Enumeration for Custom Intruction
Identification,” in Proc. FPL, 2007, pp. 273–278.

[19] SPEC CPU2006, http://pec.it.miami.edu/cpu2006/.
[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and

K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proc. IISWC, 2009, pp. 44–54.

[21] The LLVM Compiler Infrastructure, http://llvm.cs.uiuc.edu.
[22] Omega Library, http://www.cs.umd.edu/projects/omega.
[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” in IEEE Computer, 2002, pp. 50–58.

[24] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s general execution-driven
multiprocessor simulator(GEMS) toolset,” in Computer Architecture
News, 2005, pp. 92–99.


