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ABSTRACT
The increasing complexity of large-scale FPGA accelerators poses
significant challenges in achieving high performance while main-
taining design productivity. High-level synthesis (HLS) has been
adopted as a solution, but the mismatch between the high-level
description and the physical layout often leads to suboptimal oper-
ating frequency. Although existing proposals for high-level physical
synthesis, which use coarse-grained design partitioning, floorplan-
ning, and pipelining to improve frequency, have gained traction,
they lack a framework enabling (1) pipelining of real-world de-
signs at arbitrary hierarchical levels, (2) integration of HLS blocks,
vendor IPs, and handcrafted RTL designs, (3) portability to emerg-
ing new target FPGA devices, and (4) extensibility for the easy
implementation of new design optimization tools.

We present RapidStream IR, a practical high-level physical syn-
thesis (HLPS) infrastructure for representing the composition of
complex FPGA designs and exploring physical optimizations. Our
approach introduces a flexible intermediate representation (IR) that
captures interconnection protocols at arbitrary hierarchical lev-
els, coarse-grained pipelining, and spatial information, enabling
the creation of reusable passes for design frequency optimizations.
RapidStream IR improves the frequency of a broad set of mixed-
source designs by 7% to 62%, including large language models and
genomics accelerators, and is portable to user-customizable new
FPGA platforms. We further demonstrate its extensibility through
case studies, showcasing the ability to facilitate future research.
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• Hardware→ High-level and register-transfer level synthe-
sis; Partitioning and floorplanning; Software tools for EDA.
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1 INTRODUCTION
The evolution of FPGAs into larger, multi-die devices, e.g., the two-
die Versal VHK158 and the three-die Alveo U280, has improved
their ability to accelerate complex computations, such as large lan-
guage models, enhancing performance and energy efficiency [8, 45].
As FPGA designs become more sophisticated, the designers increas-
ingly rely on high-level synthesis (HLS) to manage complexity,
which allows them to describe designs at the algorithmic level and
generate RTL code, thereby reducing development effort [10].

HLS’s abstraction comes with its own set of challenges, primarily
concerning the physical optimization. The absence of cycle-accurate
and physical layout information in the untimed HLS specification
often leads to a mismatch between the frontend HLS and the back-
end physical implementation, hindering timing closure [17, 18]. The
scalability issues with current EDA tools exacerbate this problem,
where duplicating processing logic without manual floorplanning
can adversely affect the quality of results (QoR) [27, 40].

Compared to the HLS approach, an RTL expert, cognizant of
a module’s resource-intensive feature and potential for substan-
tial area occupation, might manually add adequate pipeline levels
between neighboring modules to break the delay of long wires
crossing dies. Most HLS tools, however, lacking such architectural
information, often fail to apply this optimization, leading to long
critical paths. Moreover, an RTL expert could divide the design
into groups and assign them to specific dies to balance resource
utilization. Unfortunately, for HLS tools, there are usually insuffi-
cient pipelining levels between generated logic blocks. This forces
downstream tools to place these blocks closer together to minimize
total wire length, which in turn causes local routing congestion.

In response, researchers have proposed techniques that we de-
fine as high-level physical synthesis (HLPS), integrating coarse-
grained design partitioning, floorplanning, and pipelining to co-
optimize HLS with physical design stages, aiming for improved
frequency [12, 16, 17, 25, 30, 32, 33, 42, 43]. With HLPS, the design
is partitioned into coarse-grained groups, which are then roughly
floorplanned on the FPGA to minimize the number of connections
between dies. Based on the layout information, pipeline registers
are added to break up long connections between the groups, allow-
ing the communication to operate over multiple clock cycles instead
of one cycle with long latency. Additionally, the resource require-
ments of each design module are analyzed to be balanced across
the FPGA to avoid localized congestion and mitigate the critical
paths caused by limited routing resources. One representative work
using this methodology is the AutoBridge framework [17], which
helps create high-frequency FPGA HLS designs that span multiple
dies by reducing the impact of long connections between dies and
evenly distributing the design across the available resources.

However, existing proposals for FPGA HLPS have several lim-
itations that make them difficult to apply to real-world designs.
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For instance, these research works often focus on a limited set of
designs generated by AMD/Xilinx Vitis HLS, and:

(1) They do not support design optimizations at arbitrary
hierarchical levels; therefore, all task-level parallel modules need
to be interconnected at the top HLS function [17, 42].

(2) They cannot integrate handcrafted RTL and vendor IPs,
despite real-world HLS designs often including these components.

(3) They are limited to specific FPGA devices, such as the
AMD Alveo U250 and U280, making it challenging to adapt them
to hardware that satisfies specific compute or budget requirements.

(4) They lack an extensible infrastructure for exploring dif-
ferent research directions in partitioning and pipeline schemes.

We propose RapidStream IR (RIR), a composition and exploration
infrastructure for FPGAHLPS. It supports hybrid-source FPGAHLS
designs and customizable FPGA devices, optimizing them to achieve
high frequency. This infrastructure tackles the aforementioned
technical challenges with the following key features:

Intermediate representation (IR) - Our solution offers a flexi-
ble and extensible IR of the input design that can be transformed
using any programming language. This IR effectively captures the
connectivity, the ability to pipeline components throughout the
hierarchical structure, and the spatial information of the design.
RIR ensures that the functionality of the design remains intact
throughout transformations or manipulations performed on the IR.

Reusable design optimization passes - RIR provides a set of
reusable passes for transforming the design, such as hierarchical
rebuilding, module partitioning, and module insertion. By lever-
aging these passes, researchers can explore different optimization
strategies and easily tailor the framework for specific design targets.

Support for diverse formats of designs - Analyzers for differ-
ent design formats are provided, such as Verilog, Xilinx Compiled
IPs (XCI), and Vitis HLS-generated designs. The framework is ex-
tensible to other source formats, such as Dynamatic HLS [22, 23]
and Catapult HLS [37], by implementing information extractors.

Portability to various platforms - RIR ensures portability
across different FPGA platforms by offering an interface to define
new devices without altering the analyzers or optimization passes.

Consider the large languagemodel (LLM) FPGA accelerator [8] in
Figure 1 as a motivating example. This design incorporates various
source formats, including HLS, RTL, and Xilinx IP blocks, linked hi-
erarchically using Verilog. Specifically, the data loaders and buffers
are implemented using hand-written RTL, while the computational
kernels are generated through HLS. The entire architecture is in-
terfaced with external memory via Xilinx IP blocks.

Top-Level System in Verilog Optimized System in Verilog
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Figure 1: The FPGAHLS accelerator design for large language
models (LLM) [8] before and after physical optimizations.

The initial design operates at 150 MHz on the Xilinx Alveo U280
FPGA. Chen et al. [8] improve this bymanually distributingmodules
among FPGA dies and adding registers to break up critical paths, as
shown in Figure 1, raising the frequency to 245 MHz. This approach
involves partitioning modules, such as linear layers, across multiple
FPGA regions, which complicates code management. The lack of
an HLPS framework that supports mixed-source integration poses
challenges in automating this time-consuming and error-prone
process. Moreover, adapting the design for new or customized
hardware requires substantial changes to the RTL hierarchy and
layout constraints for optimal performance.

RIR automates the optimization on the LLM FPGA design by
composing multiple design source formats and exploring partition-
ing and pipelining strategies. Using RIR, a comparable frequency of
243 MHz is achieved on the U280 FPGA without code modifications
and can be ported seamlessly to other FPGAs. Evaluations on six
FPGA devices show frequency improvements ranging from 30% to
62%, maintaining an average frequency of 244 MHz.

Our technical contributions are as follows:
(1) We present RapidStream IR (RIR), the first HLPS infrastructure

that supports the hierarchical composition of FPGA designs
from diverse sources, such as HLS-generated modules, RTL,
and vendor IPs. This framework enables the exploration of
physical optimizations in complex FPGA designs, aiming to
achieve high frequency while maintaining design productivity.

(2) We introduce a flexible and extensible IR for HLPS. This ap-
proach allows for the creation of reusable passes that cater to
various design formats and device targets, requiring only the
implementation of minimal information extractors.

(3) Through case studies, including floorplan exploration, parallel
synthesis, and design debugging, we demonstrate the extensi-
bility of our framework. These studies highlight RIR’s ability
to facilitate research and exploration, and they suggest future
enhancements and applications of the framework.

RIR enables the exploration of global timing optimization for
hierarchically-composed HLS designs and adapts to new platforms
such as Versal VP1552. Experimental results show a cutting-edge
frequency improvement of 40% on average across well-researched
and newly introduced FPGA platforms.

2 BACKGROUND
2.1 Challenges in Large-Scale FPGA Designs
FPGA HLS design optimization poses challenges due to architec-
tural variations in resource distribution and wire latency across and
even within devices. As a result, designers encounter difficulties
with timing optimization and design portability. Figure 2 illustrates
this issue using three representative device examples [1, 17]:

(1) The AMD Alveo U55C FPGA has three dies, each with some
resources dedicated to the Vitis shell. It connects to 32 High-
Bandwidth Memory (HBM) channels at the bottom, with un-
programmable gap regions in the center. In Vitis HLS, HBM
channels are accessed via pointers, with no control over acces-
sor module’s location or pipeline levels to the HBM controller.

(2) The AMD Versal VP1552 FPGA consists of two dies with six and
seven regions in height, respectively. It features networks-on-
chip and an integrated ARM processor. Discontinuities caused
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Figure 2: Layout of FPGA devices. Die boundaries incur sub-
stantial latency, and the gap regions and IPs limit resource
utilization. These limitations are not considered in HLS.

(1) Communication Analysis. (2) Design Partitioning.

(3) Coarse-Grained Floorplanning. (4) Global Interconnect Synthesis.
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Figure 3: HLPS for the first three stages of the LLM design [8].

by the IPs may extend routing paths for nearby signals, and die
crossings incur notably higher latency, unreflected in HLS.

(3) The Intel Stratix 10 FPGA has I/O banks at the center of the
programmable logic, with multi-die interconnect bridges and
PCIe blocks on the sides, which are not modeled in HLS.

2.2 High-Level Physical Synthesis (HLPS)
High-level physical synthesis (HLPS) is proposed to bridge the gap be-
tween HLS and physical design. By providing HLS with the FPGA’s
physical layout, it can effectively partition and floorplan modules,
and identify long wires for pipeline stage insertion. Figure 3 illus-
trates the HLPS flow using the first few stages of the LLM accelera-
tor. The process can be summarized in the following stages:
(1) Communication Analysis. The high-level specification, such

as C++ code, is analyzed to identify connections between mod-
ule units that can tolerate latency, such as handshakes, “data-
valid” protocols, and interconnect buses. These communications
are typically represented as streams, data flow regions, global
pointers, and function arguments in C++.

(2) Design Partitioning. The design is divided into partitions
based on communication patterns, allowing only latency-tolerant
connections between groups. These partitions can be distributed
across distant regions or different dies, and the connections be-
tween them can be pipelined, breaking global critical paths.

(3) Coarse-Grained Floorplanning. Partitions are allocated to
coarse-grained regions on the FPGA, optimizing multiple objec-
tives such as minimizing inter-region wire crossings, managing
regions with limited available resources, and balancing resource
distribution to prevent local routing congestion.

(4) Global Interconnect Synthesis. Once the location of each
partition is determined, the partitions are interconnected based
on estimated delay to break critical paths for timing closure.
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Figure 4: The first three modules of the LLM accelerator [8]
and the optimizations with or without RapidStream IR.

A number of studies [12, 16, 17, 25, 30, 32, 33] have investigated
methodologies for HLPS and demonstrated their effectiveness in
automatically optimizing the frequency of HLS designs.

2.3 Motivating Example
The application of HLPS is limited by several shortcomings in
(1) global optimization across hierarchical levels, (2) integration of
diverse source formats, and (3) adaptation to new devices. These in-
frastructural shortcomings not only limit the practical deployment
of HLPS but also impede ongoing research, as researchers must
develop non-reusable custom tools for each new design or device.

The need for an infrastructure for HLPS can be exemplified by
the LLM FPGA design [8] shown in Figure 4a. This figure shows a
simplified segment of the LLM accelerator discussed in Section 1,
which interconnects modules using Verilog to integrate RTL, HLS,
and IP components. This example is referred to throughout the
paper to highlight challenges and discuss our proposed solutions.

In Figure 4a, this LLM accelerator consists of three modules:
(1) an Input Loader in Verilog, (2) a Verilog FIFO buffering data, and
(3) a hierarchical HLS kernel consisting of the initial two linear LLM
layers. These two Layers have a collective role and are organized as
a single HLS function, which invokes two subfunctions to perform
its operations. The top-level interconnect is in Verilog, which not
only serves to instantiate each submodule but also incorporates
control logic using assign and always statements.

Existing HLPS methods are inadequate for optimizing this LLM
design due to their lack of support for RTL components such as
the Input Loader and the FIFO. Additionally, they fail to interpret
the top-level Verilog logic, hindering communication analysis, such
as those linked by assign statements. Even if RTL support were
present, the outcome would remain suboptimal. As depicted in
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Figure 4b, the absence of hierarchical pipelining forces resource-
intensive Layers 1 and 2 to be placed together on the same die,
leading to local congestion. Furthermore, without the ability to
understand Verilog code, the top-level control logic is treated as a
monolithic module, resulting in non-pipelined connections to the
Layers that contribute to the creation of global critical paths.

RapidStream IR tackles these challenges by first converting the
design into an equivalent intermediate representation (IR), as de-
picted in Figure 4c. This IR is then optimized through a series
of transformation passes into the optimized form shown in Fig-
ure 4d. RapidStream IR enhances HLPS with: (1) hierarchical opti-
mization, which allows the independent placement and pipelining
of Layers 1 and 2 to balance resource requirements; (2) format-
agnostic analysis, enabling the integration of the Input Loader and
the FIFO, and allowing the partitioning of Verilog control logic into
two independent units, Aux 1 and 2 (to be discussed in §3.1); and
(3) portability across input formats and FPGA platforms by
unifying information in the IR, such as interface and pipelinability.

3 RAPIDSTREAM IR FRAMEWORK
RapidStream IR (RIR) consists of three components: (1) a progres-
sively refined intermediate representation (IR) that remains
agnostic to specific HLS frameworks, EDA tools, or coding styles;
(2) utility plugins that facilitate the input of design specifications
and output to EDA tools; and (3) a set of reusable transformation
passes for composing design optimizations. Each element plays
a vital role in enhancing the HLPS flow. In the absence of an IR,
HLPS researchers are forced to analyze the Verilog code for module
communication and insert pipelines directly into the code. Lacking
utility plugins, researchers must manually engage EDA tools for
resource analysis and for setting design constraints.

Big Picture. The overall architecture of RIR is shown in Figure 5.
It takes three inputs: FPGA design (e.g., Verilog, netlists), their
high-level interface information (e.g., HLS reports, pragmas), and
Python directives for device information and EDA tool interaction.
These inputs are processed by plugins into the IR. Transformation
passes then modify the IR to perform the HLPS flow. The final IR is
processed by plugins back into design code and layout hints for EDA
tool implementation. Users can also write tools to modify the output
IR for customization. Integrating them, we implement a complete
HLPS system that optimizes real-world designs in Section 3.4.

Design Principles. We design with the following in mind:
(1) Enabling Incremental Analysis and Transformation. We

intentionally limit the IR to be lightweight and robust. By pro-
viding a set of composable core passes that reduce a complex
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Figure 5: RapidStream IR’s overall architecture, consisting of
the IR (blue, §3.1), plugins (green, §3.2), and passes (red, §3.3).

design into our canonical form and progressively obtain the
required information, we make the passes and plugins simple.

(2) Scoping Flexibility.We focus on the practical requirements
for HLPS methodologies, rather than creating an all-in-one
solution like MLIR [26]. This approach allows us to prioritize
coarse-grained module interactions while maintaining support
for fine-grained logic that cannot be easily translated into IR,
such as in Xilinx vendor IPs [3] and design netlists.

(3) No Language “Lock-In”. Not all computations warrant the
development overhead of C++. To support all major languages,
we make the IR as simple as possible as a subset of the JSON
schema [24] and provide automated language binding genera-
tors. In fact, we wrote many passes in Rust, Python, and Java,
and a visualization and debugging tool in TypeScript.
Additionally, we provide “Design Rule Checking (DRC)” passes to

ensure the consistency in design information. We further maintain
a mapping between the components of the original design and their
transformed counterparts throughout the optimization process,
enabling human readability and debuggability.

3.1 Progressively Refined IR
RIR is an IR that incrementally incorporates a design’s coarse-
grained information. Each pass progressively infers the design’s
hierarchy, connections, and port interface properties. It keeps the
original fine-grained logic intact if it is unused in the passes.

Design Elements. RIR captures the following of a design:
(1) Module. A design entity classified into grouped module and leaf

module. Each module is identified by a name and consists of
multiple ports, each having direction and width attributes, inter-
connecting with other modules. They can incorporate interface
that identifies the potential pipeline methods of the ports.

(2) Leaf Module. A basic design unit treated atomically by HLPS,
which keeps it intact. Leaf modules can be in any format, such
as RTL or IPs, provided they are supported by subsequent EDA
tools. RIR provides various utility plugins to obtain the required
attributes of a leaf module. A leaf module may be progressively
reconstructed into a grouped module or partitioned into multi-
ple leaf modules using RIR’s transformation passes.

(3) Grouped Module. A reconstructed hierarchy from a leaf mod-
ule, organizing submodules. Grouped modules act only as con-
tainers without adding logic, which implies that each submodule
connection must be via a single identifier. RIR passes progres-
sively partitions its submodules while adhering to this rule.

(4) Interface. A pipeline strategy that can be applied to a set of
ports. The type of the interface guides the pipelining strategy,
such as handshake or feedforward. When a port is included in
an interface, it allows for pipelining by introducing additional
pipeline stages. For instance, a feedforward interface, carrying
only scalar signals, can be pipelined by inserting a flip-flop
to break critical paths. A handshake interface, involving valid,
ready, and data ports, can be pipelined by adding a relay sta-
tion [6] or an almost-full FIFO [18]. Figure 6 illustrates these
two most common interfaces and their pipelining methods.

(5) Additional Metadata. The IR can include extra data such as
floorplan constraints, resource utilization, and timing charac-
teristics, appended to any IR node as additional fields and pro-
gressively inferred and updated by analysis passes as needed.
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Invariant Assumptions. During transformation, a few assump-
tions about the IR aremaintained: (1) Eachwire in a groupedmodule
must connect precisely two modules, prohibiting fan-out. (2) Each
submodule port in a grouped module must connect to only one
identifier or a constant, without operations such as concatenation
or bit selection. (3) All non-constant ports on an interface should
be fully connected to another module, disallowing the splitting or
omission of signals. These restrictions maintain the simplicity and
ease of manipulation of the IR. Despite being restricted, our core
passes enable the transformation of complex designs into this form.

Virtual Device Definition. RIR supports a wide range of FPGA
devices through virtual device descriptions stored in the IR, which
contain the resource distribution within the device and the number
of inter-die wires. The virtual device description divides the physi-
cal FPGA device into slots. During floorplanning, design modules
are mapped to these slots. RIR includes predefined virtual devices
for UltraScale+ and Versal, based on empirical data. Users can also
customize the virtual device by specifying parameters such as the
FPGA device part number and the slot shapes. RIR then uses vendor
tools to extract the necessary resource information and automat-
ically generates the virtual device description. Figure 7 shows a
virtual device described using our Python API for the Versal VP1552,
which partitions the device into two columns and four rows, each
containing one-fourth of an FPGA die, by specifying floorplanning
rectangles called pblocks in Vivado.

Sample IR Format. RIR is structured in formats that the JSON
Schema [24] can validate, including data types of dictionaries, lists,
strings, and numbers. The choice of storage and exchange format
for the IR, such as YAML [5], JSON [7], or XML [38], can optionally
vary depending on the programming languages utilized. Figure 8
illustrates a segment of the IR for the LLM accelerator discussed
in Section 2.3, presented in YAML format for clarity, alongside its
corresponding block graph. The top-level grouped module, LLM
(Lines 1-12), instantiates three submodules: InputLoader, FIFO,
and Layers (Lines 5-12), which are interconnected via handshake
interfaces. InputLoader retrieves text input from memory, FIFO
buffers this data, and Layers executes linear layer computations
on the buffered input. The IR captures coarse-grained information
such as module names (Lines 1, 14), ports (Lines 2-3, 15-19), and
wires (Line 4). The instantiation of the FIFO module is denoted
as FIFO_inst (Lines 9-11), connecting I_wire to its I port (Line
11). Within the leaf module FIFO, the IR preserves its native form,
such as Verilog source code (Line 20). Details regarding the pipeline
are specified in the interface section (Lines 21-24), which defines
the handshake interface and its associated ports. Each object can
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Producer

Data

ConsumerValid
Ready

Data
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Ready

Data
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Ready
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D Q

Figure 6: Feedforward interfaces are pipelined using flip-flop
registers, and handshake interfaces are pipelined with an
almost-full FIFO and registers. AFull indicates that the FIFO
is almost full, preventing overflow due to flip-flop latency.

factory = DeviceFactory(rows = 4, cols = 2,
part = "xcvp1552-vsva3340-2MHP-i-S")

factory.set_slot_pblock(row = 0, col = 0,
["-add CLOCKREGION_X1Y1:CLOCKREGION_X4Y2"])

# ... and other pblock ranges from Vivado
factory.extract_slot_resources()
device = factory.generate_virtual_device()

Figure 7: Pblocks for VP1552; Virtual device description in
Python; Its inferred resource and die-crossing wire capacity.

1 - module_name: LLM
2 module_ports:
3 - { name: ap_clk, direction: in, width: 1 } # ..
4 module_wires: [{ name: I_wire, width: 64 }, ..]
5 module_submodules:
6 - instance_name: InputLoader_inst
7 module_name: InputLoader
8 connections: [{ port: I, value: I_wire }, ..]
9 - instance_name: FIFO_inst
10 module_name: FIFO
11 connections: [{ port: I, value: I_wire }, ..]
12 - instance_name: Layers_inst # ..
13

14 - module_name: FIFO
15 module_ports:
16 - { name: I, direction: in, width: 64 }
17 - { name: I_rdy, direction: out, width: 1 }
18 - { name: I_vld, direction: in, width: 1 }
19 - { name: ap_clk, direction: in, width: 1 } # ..
20 module_verilog: "module FIFO (I, ..); ..; endmodule"
21 module_interfaces:
22 - iface_type: handshake
23 iface_ports: { data: [ I ], clk: ap_clk ,
24 ready: I_rdy, valid: I_vld }
25 module_metadata:
26 resource: { FF: 10, LUT: 39, DSP: 0, BRAM: 0, ..}
27 floorplan: "SLOT_X1Y1"

Input
Loader

               FIFO Layers

O
O_vld

O_rdy

I
I_vld

I_rdy

Grouped Module: LLM Accelerator

ap_clk

module FIFO
(I, ..); ..

I_vld
I_rdy

I_vld
I I

I_rdy

Handshake Interface

ap_clk

I_wire
width=64

Figure 8: Part of the LLM’s IR and corresponding block graph.

optionally contain additional metadata specific to different transfor-
mation pass, such as resource utilization and floorplan constraints
(Lines 25-27). The device information can be embedded in the IR
to facilitate transformation passes that optimize the design for a
specific FPGA target or to generate constraints for EDA tools.

Comparisons. RIR focuses on HLPS for existing designs in vari-
ous formats, unlike the Xilinx IP Integrator (IPI), which assembles
IPs into systems. RIR offers a flexible representation that supports in-
cremental analysis through passes. For example, all modules are ini-
tially treated as indivisible leaf modules and partitioned as needed.
As a result, large HLS-generated modules can be partitioned in RIR,
while IPI treats them monolithically.

Accelerator description languages such as Chisel [4] and Ca-
lyx [34] enable the high-level specification of fine-grained hard-
ware designs. These languages are orthogonal to RIR, which is tai-
lored for capturing coarse-grained information pertinent to HLPS,
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including module hierarchy, interfaces, and resource utilization
metrics. Given the language-agnostic design of RIR, it can directly
incorporate these representations as leaf modules, allowing the
transformation of these modules using reusable passes.

On the other hand, MLIR [26] serves as a general-purpose IR
across abstraction levels, whereas RIR is tailored for HLPS with
a coarse-grained focus. RIR accommodates arbitrary formats in
leaf modules, in contrast to MLIR, which mandates details at every
level. Although RIR can be represented in MLIR as a custom dialect,
such a representation would require C++ for the passes, which
RIR intentionally avoids. Moreover, MLIR lacks reusable passes for
HLPS, reducing the motivation for its use in this domain.

3.2 Utility Plugins
RIR has a suite of utility plugins to bridge the abstract IR and
concrete implementations. These plugins are inherently modular,
supporting additional source formats and EDA tools as needed. The
plugins are categorized into importers, analyzers, and exporters.

Leaf Module Importer. It extracts metadata from a module’s
source format to build a corresponding leaf module in the IR. Parsed
data include the module name, ports, etc. To maintain the design
integrity, the source code or its binary is directly embedded in the
IR.We have developed importers for formats such as Verilog, VHDL,
netlists, and Xilinx Compiled IP (XCI). For example, for Verilog,
we use Slang [35] to extract module information from the syntax
tree. Other formats, such as VHDL, are handled using appropriate
parsers or by transforming module signatures into a Verilog stub
file using EDA tools, followed by the Verilog importer.

Interface Importer. High-level interface information essential
for HLPS can be extracted from various sources. Vitis HLS provides
interface information in report files, while Xilinx IPs include in-
terface details in XCI files. If interface data is missing, users can
provide it using pragmas in source-code comments or interface rules
specified in our Python API with regular expressions. Figure 9
shows a Verilog source code example in which a single-line pragma
on Line 5 sets the handshake interface for all 37 AXI ports of the
handcrafted memory input loader RTL module.

Platform Analyzer. Design optimizations require information
from downstream vendor tools, such as resource utilization per
module, to balance resource allocation across device regions. The
platform analyzer interfaces with vendor tools to collect data.

Design Exporter. The design exporter generates the final design
output from the IR to be compatible with downstream EDA tools.
For unchanged leaf modules, the exporter outputs the original
source intact. For modified modules, it generates the corresponding

1 module InputLoader (
2 output wire m_axi_AWVALID, input wire m_axi_AWREADY,
3 output wire m_axi_WVALID, input wire m_axi_WREADY,
4 // ... 33 other AXI ports
5 );
6 // pragma handshake pattern=m_axi_{bundle}{role} \
7 role.valid=VALID role.ready=READY role.data=.*
8 endmodule

Figure 9: Interface pragmas in Verilog mapping ports with
the m_axi_ prefix to handshake interfaces and bundle ports
with the same prefix (e.g., m_axi_AW). Suffixes VALID and READY
indicate port roles, while any other suffixes denote data.

Verilog files. If the IR includes extra metadata, such as floorplanning
guidance, the exporter also outputs this data as constraint files.

3.3 Composable Transformation Passes
RIR provides a set of transformation passes that progressively
gather data and refine the IR to optimize the design. Each pass
is designed to “do one thing and do it well,” focusing on one aspect
to ensure robustness and maintainability, and allowing for easy
extension to support new design formats and EDA tools.

In this section, we present the core passes of RIR applied to a
subset of the LLM accelerator example [8] to illustrate their func-
tionalities. We use the IR’s block graph in Figure 10 for clarity. All
modules in the design are imported as leaf modules initially.

Hierarchy Rebuild Pass. The rebuild pass converts imported
leaf modules into grouped modules to reconstruct the design hierar-
chy. It creates a grouped module comprising the extracted submod-
ules from the leaf module and its residual logic, which is defined
as an aux (auxiliary) module. The grouped module has the same
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module ports as the original leaf module, all of which are connected
to the aux module. At this stage, the pass does not analyze the inter-
connections between submodules, but instead adds corresponding
ports on the aux module for each port of the original submodules.

Figure 10b shows the rebuild pass applied to LLM, restructuring
it into a grouped module containing its submodules and an aux
module, LLM_Aux. This aux module contains the control logic and
interconnects of LLM. Directly analyzing LLM’s interconnect is chal-
lenging due to the complexity of its source format, which includes
Verilog language syntax such as always and generate, requiring
a full elaborator. Maintaining and updating such an elaborator for
various design formats would be labor-intensive.

This transformation pass preserves the IR assumptions (§3.1):

(1) In the newly formed grouped module, each wire is connected
to exactly two modules: the aux module and a submodule.

(2) (a) Ports of an extracted submodule are connected to a wire
identifier that interconnects with the aux module.

(b) Each port of the aux module is directly connected by a wire
to an extracted submodule or to a port on the restructured
grouped module; in either case, it is an identifier.

(3) Every port on a submodule is wholly connected to the aux
module, ensuring that there is no splitting of the interface.

The implementation is straightforward for any source format if
there exists a rewriter providing three functionalities: (1) extraction
of submodule names and port connections; (2) addition of new ports
to a module; and (3) connection of expressions to these new ports.

For example, the Slang [35] tool allows for the extraction of
Verilog submodule information; new ports are added by modifying
the syntax tree; connections are rerouted by appending new assign
statements. This approach is adaptable to other source formats.
Note that even without a dedicated rewriter for a particular source
format, RIR can still manage modules in this format by treating
them as leaf modules; thus, it is still possible to insert pipeline
stages between these modules or to partition them as needed.

Interface Inference Pass. When design modules lack explicit
interface information necessary for pipeline insertion, this pass
infers interfaces from other modules. For instance, a user might
have a grouped module where all ports are directly connected to
submodules, yet themodule itself lacks interface data. By leveraging
the interface details from these submodules, the interface inference
pass can deduce the interface for the parent module.

Interface information propagates not only between parent and
child modules but also among siblings. Specifically, for aux modules
created during the hierarchy rebuild pass, the interface inferencer
defines their interfaces by transferring information from the aux’s
sibling modules, the extracted submodules, thus completing the
aux module’s interface, as shown in Figure 10c.

Partitioning Pass. This pass divides a leaf module into splits
for separate floorplanning. It effectively serves as a communica-
tion analysis pass in conjunction with the hierarchy rebuild pass.
After the rebuild pass, it splits the aux module created by the re-
build pass to decentralize submodule communications. Figure 10d
shows the partitioning of the LLM_aux module, which initially con-
nects all submodules. After partitioning, it is divided into five splits,
including memory connections (auxMem and auxRAM) and control
logic (auxControl1 and auxControl2). In this example, the LLM

module implements FIFO logic in the Verilog body, connecting the
input loader and the first layer, which is split into auxFIFO.

It converts modules in arbitrary formats to netlists using EDA
flows and applies union-find [15] written with RapidWright [27] to
analyze port connectivity, excluding clock and reset signals due to
their shared use in submodules. Disjoint components are separated
into new splits. The splits are created by wrapping the original
aux module, exposing only the necessary ports and preserving the
internal logic. Unconnected logic remains undriven, which will be
eliminated by subsequent EDA flows. The new splits replace the
original aux in the IR, and clock and reset signals are distributed to
all submodules through dedicated broadcasting aux modules.

It maintains IR assumptions by merging ports in a common
interface into a union-set, preventing the interface from spanning
multiple splits. It introduces no new connections except for clock
and reset signals, which are managed by broadcastingmodules. This
ensures that, post-transformation, all wires still connect exactly two
modules, and all ports connect to either an identifier or a constant.

Passthrough Pass. If netlist analysis shows that an interface
connects solely and directly to another, the module can be bypassed
by rerouting connections between interfaces. In Figure 10d, the
auxRAM split is bypassed, allowing direct connections between the
Layer_2 and Buffer modules. This simplifies the IR and reduces
the number of modules, making the design more readable and easier
to optimize. The passthrough pass maintains IR assumptions by
detaching a wire from one module before connecting it to another.

Flattening Pass. HLPS optimization formulations, such as inte-
ger linear programming (ILP) used in AutoBridge [17], often require
a flat graph rather than a hypergraph with multiple hierarchical lev-
els. The flattening pass transforms a hierarchical design into a flat
one by recursively merging all grouped modules into a single one.
During this process, wires are consolidated, and submodules and
their connections are reestablished in the new module. Figure 10e
shows the flattening pass incorporating the Layer_1 and Layer_2
submodules into the LLMmodule. Without this pass, these two mod-
ules would have to be grouped into a single partition, resulting in
suboptimal partitioning since they are both resource-intensive.

This pass adheres to the IR assumptions by not introducing new
interconnections between modules. It solely consolidates existing
wires and submodules, thus preserving the original properties.

Wrapping Pass. This pass uses a template to wrap a module.
Within the template, helper submodules can be added alongside
the wrapped module. The wrapper ports can be connected to either
the helpers or the wrapped module. This pass can implement par-
titioning by exposing only specific ports. It can also add pipeline
stages as helper submodules. Typically, a flattening pass follows to
elevate the helpers, effectively inserting the helper modules.

Grouping Pass. This pass restructures a flat design into a hier-
archy. In Figure 10f, submodules Layer_2 and Buffer are grouped
into a new grouped module. This pass can be used to merge non-
pipelinable modules and to specify floorplanning constraints.

3.4 Framework Integration
We develop a complete HLPS system in RIR following the method-
ology described in Section 2.2, integrating our plugins and passes to
assess RIR’s applicability. Figure 10 illustrates the tool’s workflow,
which consists of the four stages of the HLPS methodology.
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(1) Communication Analysis: The tool (a) imports design and
interface data into RIR, (b) restructures large modules into
grouped modules using the hierarchy rebuild pass, (c) infers
interfaces for aux modules and for modules lacking this infor-
mation, and (d) partitions broadcasting modules and applies
passthrough, especially for aux modules. This stage captures
coarse-grained communication patterns between modules.

(2) Design Partitioning: The tool (e) converts the design into a
flat representation and (f) groups non-pipelined modules with
adjacent ones. This stage partitions the design into pipelinable
sections according to the identified communication patterns.

(3) Coarse-Grained Floorplanning: Utilizing AutoBridge’s inte-
ger linear programming (ILP) formulation [17], the tool (g) op-
timizes the placement of modules into predefined slots on a
virtual device and designs a pipeline insertion scheme. This
stage allocates partitions to coarse regions on the FPGA, aiming
to minimize cross-region wiring and adhere to constraints such
as DSP count and the number of boundary-crossing wires.

(4) Global Interconnect Synthesis: Following floorplanning, the
tool clustersmodules in the same region using the grouping pass.
It then (h) inserts pipeline stages with the wrapping pass. This
stage generates inter-partition connections based on estimated
delay to break critical paths and aid in timing closure. Finally,
the optimized design is exported for implementation.
In summary, we incorporated AutoBridge’s formulation [17] into

our RapidStream IR infrastructure, enhancing it as a flexible and
modular physical synthesis tool for new exploration strategies and
the composition of different source formats and devices. Section 4
demonstrates the framework’s adaptability and assesses frequency
enhancements in FPGA designs and devices, comparing outcomes
with original vendor tools and manual optimizations.

4 EVALUATION
We evaluated RapidStream IR (RIR) targeting AMD FPGAs using
Vivado 2023.2. Experiments were conducted on an AMD EPYC 7282
CPU, 128 GB of RAM, and Ubuntu 22.04. We utilized the COIN-OR
solver [36] with a 400-second limit for ILP optimization tasks. For
diverse design format tests, Dynamatic 2.0, Catapult HLS 2021.1,
and Intel FPGA HLS 19.4.0 were used to produce RTL inputs. We
seek to answer the following research questions:
RQ1 Can RIR passes be used to transform FPGA designs in various

input formats, including handcrafted Verilog andHLS designs
generated by different vendor tools?

RQ2 Does RIR effectively reduce the effort required for program-
mers to implement new research exploration tasks?

RQ3 Is RIR capable of providing frequency improvements for com-
plex FPGA designs and new target devices?

4.1 Custom HLS Input
Dynamatic is an open-source compiler that converts C++ code
into VHDL designs with dynamic scheduling using handshake
protocols [22, 23]. Commercial tools such as Catapult HLS [37]
and Intel HLS [21] also create handshakes via custom data types.
Prior work lacks the infrastructure to manipulate the generated
RTL designs. To develop a new frontend in RIR that accepts the
generated designs, three components are needed: (1) a metadata
parser, (2) an interface analyzer, and (3) a code rewriter.

1 add_reset(module=".*", port="rst|reset", active="high")
2 add_handshake(module=top_level, pattern="{bundle}_{role}",
3 role={ready:"ready", valid:"valid", data:"in|out"})

Figure 11: Snippet of the interface rules for Dynamatic.

Table 1: Code in Python or Verilog for supporting HLS tools.

Software Dynamatic Catapult HLS Intel HLS

Lines of code 146 158 204

The metadata parser and code rewriter are common to most
input that use standard hardware description languages such as
Verilog or VHDL. The interface analyzer, however, is specific to each
HLS framework. This subsection focuses on the interface analyzer.

Dynamatic has elastic elements with consistent naming, align-
ing well with the interface rules (§3.2). We use 20 rules in Python to
specify all its handshake interfaces. Figure 11 shows two of them:
one specifies reset signals using the regular expression ".*" to
match and apply to all modules, and the other defines the hand-
shakes of the top-level module. Catapult HLS synthesizes hand-
shakes using customizable design libraries such as ccs_out_wait
and ccs_in_wait; with simple pragmas in these modules’ Verilog
code, the interface can be automatically propagated during the in-
terface inference pass to neighboring modules. Intel HLS creates
handshakes mostly with consistent port naming, making them also
compatible with the Python-based interface rules method.

The total lines of Python or Verilog code required for RIR to
handle inputs from these HLS tools are shown in Table 1. We con-
ducted experiments with benchmarks from three sources: all 29
examples from the Dynamatic repository [14], a sparse linear alge-
bra accelerator for Catapult HLS [13], and all 12 benchmarks from
the CHStone suite for Intel HLS [11]. Our approach successfully
extracted the interface information. Additionally, our parser and
code rewriter effectively imported designs from all benchmarks
into the RIR, transforming their hierarchy, inserting pipelines, and
exporting a functionally equivalent RTL design.

Summary 1 (RQ1: Input Formats)
By extending RIR to support RTL from various HLS tools, we
demonstrate its ability to handle multiple input formats.

4.2 Floorplan Exploration
Floorplanning requires tradeoffs between local and global opti-
mization targets, as shown in Figure 12, which lists ten different
floorplans for the example LLM design [8]. The line chart in the
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Table 2: Frequency improvements automated with RapidStream IR for various design formats on different FPGAs.

Application Target Benchmark Features LUT FF BRAM DSP URAM Freq (MHz)
Hierarchy Mixed-Source New FPGAs (%) (%) (%) (%) (%) Original RIR Others

CNN 13×4 U250 13 11 10 17 0 233 335 (+44%) 325 [17]
CNN 13×6 U250 15 16 13 26 0 234 327 (+40%) 324 [17]
CNN 13×8 U250 26 22 16 24 0 245 332 (+36%) 320 [17]
CNN 13×10 U250 30 27 28 43 0 - 320 (+∞%) 322 [17]
CNN 13×12 U250 27 33 30 51 0 - 305 (+∞%) 295 [17]
LLaMA2 VP1552 ✓ ✓ ✓ 32 16 13 22 18 198 258 (+30%) N/A
LLaMA2 VHK158 ✓ ✓ ✓ 32 16 13 22 18 206 273 (+33%) N/A
LLaMA2 U55C ✓ ✓ ✓ 49 25 24 18 24 165 247 (+50%) N/A
LLaMA2 VU9P ✓ ✓ 59 32 23 24 24 141 212 (+50%) N/A
LLaMA2 U250 ✓ ✓ 42 23 20 14 19 159 228 (+43%) N/A
LLaMA2 U280 ✓ ✓ 49 25 24 18 25 150 243 (+62%) 245 [8]
LLaMA2 (opt) U280 ✓ ✓ 35 19 15 18 25 201 306 (+52%) 245 [8]
Minimap2 VP1552 ✓ ✓ 39 15 10 31 0 265 285 (+8%) N/A
KNN U280 ✓ 56 28 10 14 0 - 292 (+∞%) N/A

Average Treating Unroutable Designs as Zeros 36 22 18 24 11 157 283 (+80%)
Average Excluding Originally Unroutable Designs 36 20 16 21 14 200 277 (+39%)

figure shows that decreasing the amount of logic in the most con-
gested area of the floorplan reduces local congestion but potentially
leads to longer wire lengths, which adversely affect global rout-
ing results, and vice versa. Additionally, the bar chart in the same
figure highlights the complexity of these tradeoffs, indicating a
variation in the operating frequency of up to 20 MHz depending on
the chosen tradeoff point between local and global optimization.

Without RIR, designers would need to manually explore the de-
sign space by partitioning the design, restructuring the hierarchy as
previously shown in Figure 1, modifying the floorplan constraints,
and re-executing the synthesis and place-and-route processes.

As an evaluation of RIR’s applicability, we applied our method-
ology to this floorplan exploration task. By adjusting the maximum
allowable resource utilization for each slot using the virtual device
model described in Section 3.1, RIR optimizes the wire length in
placements given the constraints. In this way, RIR automatically
explores the design space of trade-offs and approximates Pareto
optimality. This approach creates a variety of floorplans, as we have
presented in Figure 12, allowing designers to evaluate the balance
between wire length and resource distribution. This automation
is implemented as a standalone RIR plugin, written in 207 lines of
Python code, that can be reused across different designs. In contrast,
manual exploration of this design alone would require a significant
rewrite of the RTL code, consisting of hundreds of lines, potentially
introducing errors and requiring numerous iterations.

Summary 2 (RQ2: Extensions)
RIR simplifies the extension of high-level physical optimizations,
such as the exploration of different floorplan schemes.

4.3 Parallel Synthesis
In Section 3.4, we divide the design into several coarse-grained
groups, each corresponding to a device slot. This approach intrin-
sically spawns the potential to perform parallel synthesis, where
slots can be synthesized in parallel. The top-level module can be
synthesized along with these slots by marking the slots as black
boxes. Finally, we assemble these post-synthesis netlists to obtain
the complete design. We implement the parallel synthesis program
as a standalone RIR backend plugin in 299 lines of Python.
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Figure 13: Synthesis wall time in seconds.

We evaluate the RIR parallel synthesis plugin using HLS bench-
marks of systolic array architectures for convolutional neural net-
works, which are generated using AutoSA [40]. The evaluation is
performed on the Alveo U250 FPGA by synthesizing the device slots
in parallel, as shown in Figure 13. For systolic processing element
arrays with sizes ranging from 13× 4 to 13× 12, the plugin achieves
an average synthesis wall time acceleration of 2.49×.

Summary 3 (RQ2: Extensions)
RIR allows easy design transformation, opening up potential for
EDA tool research with the divide-and-conquer methodology.

4.4 Benchmarking
We evaluate our HLPS tool, developed in RIR, on a set of real-world
FPGA designs that fail to meet timing targets. The frequency results
are compared with those obtained from AutoBridge [17] and the
standard EDA tool supplied by the FPGA vendor, AMD Vivado.
(1) CNN refers to a convolutional neural network accelerator de-

signed with AutoSA [40] into a systolic array architecture in
Vitis HLS. It features a flat hierarchy, which is supported by
AutoBridge. We use this benchmark to compare the frequency
results between RIR and AutoBridge.

(2) LLaMA2 refers to a hybrid-source accelerator designed for
large language model inference of the LLaMA2 model, initially
optimized for the Alveo U280 FPGA with a four-level nested
pipeline using HLS, Xilinx IPs, and manual RTL [8, 9]. Auto-
Bridge does not support it due to its complex hierarchical design.
We further ported it to Versal boards using RIR and compared
the frequency performance with that of Vivado, demonstrating
RIR’s adaptability for multi-source and multi-target designs.
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(3) Minimap2 refers to an accelerator for long-read genome se-
quencing with multiple hierarchical levels of pipelines, initially
developed for UltraScale+ VU9P using Vitis HLS [19]. In the
benchmarking, we retained the original hierarchical structure
of Minimap2 and ported it to the AMD Versal VP1552 device.

(4) KNN refers to a k-nearest neighbor accelerator for the Alveo
U280 FPGA, using HLS kernels and a custom RTL interconnect,
implemented on the Vitis platform [29]. RIR directly ingests
the Vitis-packed Xilinx Object (XO) files for optimization and
outputs the optimized design in the same format, acting as a
transparent plugin to the Vitis framework.
RIR successfully ingests all designs and applies transformations

using the HLPS methodology, as summarized in Table 2. The design
features, such as multiple levels of pipelined hierarchy (Hierarchy),
a mixture of different source formats (Mixed-Source), including
RTL, HLS, and IP, and implementation targets for new FPGA de-
vices (New FPGAs), are listed in the “Benchmark Features” columns.
These features are unsupported by existing HLPS frameworks. In
the “Freq (MHz)” columns, the “Original” column shows the fre-
quency of the original design before optimizations implemented
using Vivado; the “RIR” column presents the frequency of designs
optimized by RIR; and the “Other” column includes results from
existing literature [8, 17]. We indicate the frequency results for
benchmarks that fail routing as “-”. For FPGA resources, we report
the original utilization percentages on the target device. The change
in resource post-optimization is within 1% across all benchmarks.

Summary 4 (RQ1: Input Formats)
RIR efficiently rewrites FPGA designs from various formats, such
as handcrafted RTL, IP-integrated projects, and sophisticated
designs with multiple levels of pipelinable hierarchy.

Table 2 also compares ourworkwithAutoBridge [17] andmanual
optimization [8] in the last column. Our HLPS transformations
achieve frequency improvements similar to AutoBridge on “CNN ”
designs for Alveo U250 and 30% to 62% improvements on porting
“LLaMA2” across various devices. Our “LLaMA2” frequency on
U280 is comparable to manual optimization. Further refactoring
“LLaMA2” into “LLaMA2 (opt)” by decomposing HLS functions into
smaller pipelinable parts boosts the frequency to 306 MHz.

Summary 5 (RQ3: Frequency Improvements)
RIR has demonstrated cutting-edge frequency improvements
compared to state-of-the-art solutions, while supporting a much
broader range of input formats and target FPGA devices.

5 RELATED WORK
A significant body of literature has explored HLPS methodolo-
gies [12, 16, 17, 25, 30, 32, 33, 42, 43]. AutoBridge [17] improves
timing by considering layout information during HLS stages, creat-
ing high-frequency multi-die FPGA HLS designs. However, it sup-
ports only pipelining with streaming ports at the top-level function
in a dataflow manner. In contrast, RapidStream IR (RIR) supports
pipelining at arbitrary hierarchy levels in hybrid-source designs.
Section 4 demonstrates that AutoBridge’s methodologies can be
integrated into our framework as a pass, enhancing its functional-
ity with our multi-level pipeline parsing without performance loss.

Other existing HLPS works can be integrated into our framework,
providing them with broader support for input and target devices.

Despite the significant progress in HLPS, a reusable HLPS IR is
lacking. Existing IRs or languages, such as MLIR [26], CIRCT [28],
Yosys IR [41], ScaleHLS [44], Chisel [4], Calyx [34], CIRRF [39],
HIR [31], Allo [9], and Xilinx IPI [2], address various aspects of
compilation, circuit logic, HLS, datapaths, schedules, and IP integra-
tion. Nevertheless, they do not provide the necessary infrastructure
to support existing designs and pipeline coarse-grained partitions,
which are unique challenges in HLPS. These frameworks are or-
thogonal to RIR and can be integrated into RIR as leaf modules,
allowing us to reap the benefits of both worlds. Section 3.1 provides
additional discussion on this comparison.

6 DISCUSSION AND CONCLUSION
In this paper, we introduce RapidStream IR (RIR), which is accessible
to academic researchers for free on https://rapidstream-da.com. All
case studies discussed in Section 4 are implemented as standalone
plugins or Python scripts without modifying the core infrastructure.
We anticipate a wide range of use cases for RIR and propose several
potential future research directions:

(1) Automated NoC Synthesis: RIR could enable NoC synthesis
for FPGA HLS designs by automatically integrating routers
between handshake modules. Challenges include analyzing
intra-node patterns for bandwidth needs, managing traffic, and
optimizing the network to minimize the impact on throughput.

(2) Parallel Placement and Routing: RapidStream [20] enables
parallel placement and routing for flat dataflow FPGA HLS de-
signs with Vitis HLS. RIR provides hierarchy flattening and
reorganization, accommodating multiple hierarchical levels and
various HLS tools, which could enhance RapidStream. Chal-
lenges include interfacing with vendor tools and developing a
custom placer and router using RapidWright [27].

(3) Design Instrumentation: RIR could be extended to auto-
mate the insertion of performance counters and monitoring
IPs, placed between modules using interface information. This
would help in on-board design profiling, pinpointing perfor-
mance bottlenecks, and analyzing behaviors such as bandwidth
requirements for NoCs. It could also support fuzz verification
by randomly throttling identified handshakes.

RIR is a versatile infrastructure for developing high-level phys-
ical synthesis (HLPS) tools for FPGAs. It features a progressively
refined intermediate representation, supports plugins for vendor
tool integration, and enables reusable transformation passes. RIR
improves FPGA design frequency by 30% to 62% across diverse
benchmarks and platforms. Additionally, some initially unroutable
designs are able to achieve frequencies around 300 MHz after RIR’s
HLPS optimizations. RIR is extensible for research, potentially fos-
tering innovative future studies in the FPGA EDA community.
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