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Abstract

Vertical integration (8D ICs) has demonstrated the potential
to reduce inter-block wire latency through flexible block place-
ment and routing. However, there is an untapped potential for
3D ICs to reduce intra-block wire latency through architectural
designs that can leverage multiple silicon layers in innovative
ways. Furthermore, it is particularly challenging to simulta-
neously explore the physical design space and microarchitec-
tural space for vertical integration. The physical design space
typically has no information on the microarchitectural impact
of latency optimization, and the microarchitectural space has
no information on the physical design impact of different ar-
chitectural alternatives.

We make the following contributions in this paper: (1) the
introduction of port partitioning, a new approach to construct-
ing multi-layer blocks; (2) the extension of a microarchitec-
tural exploration tool to include the ability to model multi-
layer blocks and to consider these blocks as alternative im-
plementations of single-layer architectural blocks on the fly,
within a single floorplanning run; and (8) the evaluation of
vertical integration on a design driver using this framework.

For this design driver, we see an average 36% improvement
in performance (measured in BIPS) over a single-layer ar-
chitecture, and a 29% improvement in performance over a
multi-layer architecture with single-layer blocks. The on-chip
temperature is kept below 40°C.

1. INTRODUCTION AND MOTIVATION

Vertical integration [23, 30, 35, 32, 14] leverages multiple
layers of silicon to allow physical designers more flexibility in
component layout. One approach to using this technology is
to place single-layer (i.e., 2D) blocks in one of the silicon lay-
ers and run both horizontal and vertical interconnect between
blocks. The flexibility that this design affords has the poten-
tial to dramatically reduce inter-block interconnect latency in
a design [10, 1, 2, 6].

However, this approach does little to help intra-block wire
latency. And despite the advantage of almost completely elim-
inating inter-block wire latency, we find that the placement
of 2D blocks in two layers improves performance only by 6%
on average for a particular architecture [6]. Additional gains
from the use of vertical integration are needed from attacking
the intra-block wire latency.

Furthermore, the emergence of technology like vertical in-
tegration can have a dramatic impact on microarchitecture
design — a field that heavily relies on physical planning and
technological innovation. However, physical planning is not
meaningful without consideration of microarchitectural loop

sensitivities: some loose loops [3] can tolerate latency better
than others [31]. A floorplan with a 5% reduction in wire-
length may actually be better than a floorplan with a 7%
reduction in wirelength — if the former reduces the length of
more critical microarchitectural loops than the latter. Sim-
ilarly, architectural innovations are not meaningful without
understanding their physical design implications.

Recently, the MEVA-3D [6] framework was proposed to
bridge the gap between physical planning and microarchi-
tectural design. The framework uses microarchitectural loop
sensitivities in the floorplanning process to guide block place-
ment. With this framework, architects can obtain accurate
loop latencies to feed to a cycle-accurate simulation frame-
work. This can help evaluate the impact of new and emerging
technologies on microprocessor design.

In this paper, we explore the architectural impact and po-
tential of finer granularity vertical integration, where individ-
ual blocks are placed across multiple layers. The challenge
from the architectural side is the construction of blocks that
can span multiple layers. The challenge for physical design is
to automate the process of placing blocks in multiple layers.

To address these challenges, we make the following contri-
butions:

e 3D Architectural Blocks: We propose port partitioning,
an approach that places architectural blocks like register
files, issue queues, and caches in multiple silicon layers.
We compare port partitioning with wordline/bitline par-
titioning [33] with respect to area, timing, power, and
required vertical interconnect.

e 3D Design Driver Exploration: We explore the design
space of different partitioning schemes for a particular
design driver architecture, using one to four layers of sili-
con. In addition to exploring the use of single-layer and
multi-layer blocks, we consider increasing the sizes of
different architectural structures, using the timing slack
from vertical integration. In some cases, the timing slack
can enable the use of larger instruction or scheduling
windows, or larger caches.

In addition to helping latency, the reduction in wire RC
delay can reduce power dissipation. However, the stacking
of components can adversely impact the temperature of the
microprocessor. It is therefore essential for any study us-
ing vertical integration to make use of accurate temperature
modeling to demonstrate the effectiveness of any architecture.
All of our explorations are enhanced with a state-of-the-art,
accurate, temperature simulator tool. We also consider au-
tomated thermal via insertion to help mitigate the impact of
temperature.

The remained of this paper is organized as follows: We
review the prior work on 3D integration technology, microar-
chitectural exploration techniques, and block modeling in Sec-
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Figure 1: Face-to-Back and Face-to-Face integration technologies.

tion 2. Next, we detail and evaluate our 3D architectural
blocks in Section 3. Our 3D block placement enhancements
are detailed in Section 4. We finally explore a design driver
microarchitecture in Section 5, and then conclude in Section 6.

2. RELATED WORK

In this section we focus on prior work that is most relevant
to our study.

2.1 3D Technologies

While a number of 3D IC fabrication technologies have been
proposed [20, 24, 22], we consider the use of wafer bond-
ing [1, 2, 10] in this study. In this technology, fully pro-
cessed wafers are bonded together, and devices are fabricated
on these wafers. Interlayer vias that connect different lay-
ers are etched after metalization and prior to wafer bonding.
Two main types of wafer bonding strategies have been eval-
uated in prior work [2, 10]: Face-to-Back (F2B) placement
and Face-to-Face (F2F) placement (Figure 1). Vias in F2B
cut through device layers in addition to metal layers. In F2F
placement, the top device layer is flipped to face the lower de-
vice layer. Metal layers are placed between the facing device
layers. Hence, vias cut through metal layers only. However,
F2F cannot scale beyond two layers without also employing
F2B layers.

2.2 3D Microarchitectural Exploration

MEVA-3D [6] is an automated exploration framework that
can explore a 3D design space for an optimal placement of
2D architectural blocks into multiple device layers. MEVA-
3D optimizes a cost function that is configured to weigh la-
tencies of critical microarchitectural loops, temperature, and
die area. The critical loop latency is the sum of individual
block latencies along the loop and inter-block wire latencies.
Critical loop latencies relate to performance (IPC) as in [31].
The algorithm returns a floorplan with the best overall perfor-
mance, temperature and die area for a given target frequency.
MEVA-3D leverages SimpleScalar [4] to validate its perfor-
mance estimate. MEVA-3D can also perform automated ther-
mal via insertion to help mitigate areas of high power density.
MEVA-3D is further enhanced with the capability to explore
3D designs using 3D blocks [18]. It treats the 3D blocks as
cubic blocks to be packed in 3D space, and packs a combi-
nation of 2D and 3D blocks using an floorplanner extended
from [19]. More details will be covered in Section 4.

2.3 2D and 3D Block Modeling

Prior work provided block models for various architectural
structures including caches [34], register files [12, 25|, and
wakeup and select logic [25]. CACTI [34, 28, 29] is an analyt-
ical model that provides timing, area, and power results for
different cache configurations. CACTI models different levels

of associativity, multiporting, and sub-banking, and ideally
scales to different feature sizes using 0.80um cache data. The
work in [33] extended CACTI to explore 3D cache designs.
However, they only considered folding blocks by wordlines or
bitlines, and not by port partitioning as we do in this work.
In addition, they did not explore the impact of this 3D design
on the overall microarchitecture (i.e. performance, tempera-
ture, layout), or the impact of 3D stacking on area in gen-
eral. Puttaswamyy et al. [16] showed the delay benefit and
the reduction of power consumption in a stacked cache de-
sign by bank-stacking or array-splitting. Palacharla et al. [25]
built detailed transistor-level models for critical structures in
dynamically scheduled processors, analyzing critical timing
paths and the scalability of these structures. However, this
study was limited to single-layer structures.

Port partitioning for cache structures and tag partitioning
for issue queue have been proposed independently in [9, 26].
In this paper, we review the 3D-stacking strategies of criti-
cal architectural units such as caches and issue queue. We
further explore overall architectural benefits by constructing
microprocessors using 3D building blocks.

3. 3D ARCHITECTURAL BLOCK DESIGN
AND MODELING

To reduce intra-block interconnect latency, we evaluate two
main strategies for designing blocks in multiple silicon layers:
block folding and port partitioning. Block folding implies ei-
ther a vertical or horizontal folding of the block - potentially
shortening the wirelength in one direction. Port partitioning
places the access ports of a structure in different layers - the
intuition here is that the additional hardware needed for repli-
cated access to a single block entry (i.e., a multiported cache)
can be distributed in different layers, which can greatly reduce
the length of interconnect within each layer. In this section,
we describe the use of these strategies for the issue queues and
various cache-like blocks in our design driver architecture.

3.1 Issue Queues

The issue queue is a critical component of out-of-order mi-
croprocessor performance and power consumption. Recent
research [6] has shown that every additional pipeline stage
of latency seen in the scheduling loop causes an average 5%
performance degradation. Moreover, Folegnani and Gonza-
lez [13] found that the issue queue is responsible for an average
25% of a processor’s total power consumption.

The issue queue stores renamed instructions and performs
out-of-order instruction scheduling. For purpose of this pa-
per, we study an issue queue based on Palacharla’s imple-
mentations [25]. There are two main stages of issue queue
functionality: the wakeup stage where tags from completing
register values are compared against input register tags stored
in issue queue entries, and a selection stage where ready in-
structions (as determined by the wakeup stage) are selected
for execution.

Each issue queue entry must track and compare the input
register tags required by a given instruction in that entry.
Figure 2 shows a single CAM cell used to store one bit of a
register tag for an issue queue entry. Assuming that at most
four register values can be written back each cycle, and at
most four new instructions can enter the issue queue each
cycle, an individual cell would have four different 1-bit tags
to compare against and have four write ports. In a proces-
sor with a 128-entry physical register file, register tags are
7-bits. Therefore each row would need seven CAM cells for
each operand, for a total of fourteen CAM cells. In general,
an N-entry issue queue has N such rows.

In the wakeup stage, the match lines for each issue queue
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Figure 2: (a): A Single 1Q Cell with Four Tag Lines and Four Access Ports. Over 99% of the area is occupied by tags and access ports.
(b): Port Partitioning. Tags and access ports are distributed into two layers. Width and height of each bit are reduced by half,
and area by 75%.

entry are precharged high, and the tag lines are driven with
the register tags of completed instructions. A match line only
remains high if the register tag stored at the issue queue entry
is the same as a certain one of the register tags driven on the
tag lines. If any match line for a given input register remains
high, the ready bit for that operand is set in the issue queue.
Once both ready bits are set, the operand is eligible for issue
(i.e., has woken up). In this stage, most of the delay comes
from tag broadcasting and matching.

In the selection stage, the select logic picks instructions to
execute among all instructions that are eligible for issue [25].

For example, a selection tree for a 32-entry issue queue
consists of three levels of arbiters. Each arbiter takes four
input requests (i.e., four eligible instructions) and grants one
request (i.e., selects one eligible instruction). In general, an
N-entry issue queue needs a selection tree of level L = logaN.

In the issue queue, the delay due to wakeup logic con-
tributes a large portion of the overall delay. Our simula-
tions show that wakeup takes about 60% of the delay in a
32-entry issue queue with four incoming register tags to com-
pare against, and four access ports. A significant contributor
to delay is the wire latency of the tag bits and match lines. A
3D integrated issue queue can significantly reduce the length
of these wires.

3.1.1 3D IQ Design: Block Folding

One way to reduce tag line wire delay is to fold the issue
queue entries and place them on different layers. The issue
queue is folded into two sets and they are stacked in two
layers. This approach effectively shortens the tag lines.

3.1.2 3D IQ Design: Port Partitioning

In an issue queue with four tag comparison ports and four
read/write ports, as shown in Figure 2(a), most of the silicon
area is allocated to ports. The wire pitch is typically five
times the feature size [28, 29, 25]. For each extra port, the
wire length in both X and Y directions is increased by twice
the wire pitch [28, 29]. On the other hand, the storage, which
consists of four transistors, is twice the wire pitch in height,
and has a width equal to the wire pitch. Hence, in the cell
shown in Figure 2(a), the storage area is less than 1% of the
total area, while tags and access ports occupy over 99% of the
total area.

One strategy for attacking the tag and port requirements
is port partitioning, which places tag lines and ports on mul-
tiple layers, thus reducing both the height and width of the
issue queue. The reduction in tag and matchline wire length
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Figure 8: Cache Block Alternatives (a) A 2-Ported Cache: the
two lines denote the input/output wires of two ports. (b) Wordline
Folding: Only Y-direction length is reduced. Input/output of the
ports are duplicated. (c) Port Partitioning: Ports are placed in
two layers. Both X and Y direction lengths are reduced.

can help reduce both power and delay. The selection logic
also benefits from this, as the distance from the farthest issue
queue entry to the arbiter is reduced. This will speed up the
comparison and also reduce power consumption.

3.2 Caches

The cache is another commonly found architectural block
with regular structures - they are composed of a number of tag
and data arrays. Figure 3(a) demonstrates a high level view of
a number of cache tag and data arrays connected via address
and data buses. Each vertical and horizontal line represents a
32-bit bus — we assume two ports on this cache, and therefore
the lines are paired. Each box of the figure is a tag or data
array, which is composed of a mesh of horizontal wordlines
and vertical bitlines. Every port must have a wordline for each
cache set and a pair of bitlines for each bit in a cache set. The
regularity of caches means that their components can easily be
subdivided. For example, the tag and data arrays can easily
be broken down into subarrays. We make use of CACTI [29]
to explore the design space of different subdivisions and find
an optimal point for performance, power, and area.

3.2.1 3D Cache Design: Block Folding

Prior research [33] looks into two folding options: wordline
and bitline folding. In the former, the wordlines in a cache
sub-array are divided and placed onto different silicon layers.
The wordline driver is also duplicated. The gain from word-
line folding comes from the shortened routing distance from
predecoder to decoder and from output drivers to the edge of
the cache.

Similarly, bitline folding places bitlines into different lay-
ers. This approach needs to duplicate the pass transistor.



The sense amplifier can be duplicated to improve timing per-
formance at a cost of increased power consumption. The cost
is significant because sense amplifiers can make up a signif-
icant portion of total cache energy consumption. The other
approach is to share sense amplifiers across layers, but this
dramatically reduces the improvement in timing.

Our investigation shows that wordline folding has a better
access time and lower power dissipation in most cases when
compared to a realistic implementation using bitline folding.
In this paper, we only present results using wordline folding.

3.2.2 3D Cache Design: Port Partitioning

The port partitioning strategy that we proposed for the
issue queue can also be leveraged for caches. For example, a
3-ported structure would have a port area to cell area ratio of
approximately 18:1. Hence, there is a significant advantage to
partitioning the ports and placing them onto different layers.
In a two layer design, we can place two ports on one layer,
one port and the SRAM cells on the other layers. The width
and height are both approximately reduced by a factor of two,
and the area by a factor of four.

3.3 Other Cache-Like Architectural Blocks

Register files are similar to caches, sharing the regularity of
a cache. We therefore adapt our CACTI to model this struc-
ture as well. However, register files are not associative and
typically have more ports than caches. Register files dissipate
relatively large amounts of power due to their porting require-
ments, and the size of the physical register file can constrain
the size of the instruction window in a dynamically sched-
uled superscalar processor. We will consider the same folding
schemes for the register files as those used for caches.

The register mapping units, load-store queue, and branch
predictors can be approximated using only the data array
portion of the cache.

3.4 Modeling Methodology

We assume a supply voltage of 1.0V and a 70nm process
technology. Transistor and wire scaling parameters are de-
rived from [33, 21], and we assume copper interconnect in our
simulation. Further transistor parameters are obtained from
[5]. The 3D via resistance is estimated to be 10™%Qcm? [33)].
The height of the 3D vias is assumed to be 10um per device
layer. Current dimensions of 3D via sizes vary from lum x
lpum to 10pum x 10um [33, 11]. As 3D technology advances,
the 3D via size will decrease even further. In this study, we
assume the via pitch is 1.4um. An area of 0.7um x 0.7um is
reserved for each 3D via for the upper layers in F2B technol-
ogy.

We have modified 3D-CACTI [33] to model caches and
cache-like structures. First, we add port partitioning to 3D-
CACTI in addition to wordline/bitline folding. Second, we
add area estimation, including the area impact of 3D vias
on the transistor layer. Both 3D bonding technologies are
available: F2B and F2F. We validated our modifications to
3D-CACTI with HSpice.

We implemented our issue queue models using HSpice to
obtain accurate timing and power data. The area of the issue
queue is approximated by 3D-CACTI using a similarly sized
cache. Our 2D issue queue is derived from Palacharla et al.’s
model [25].

3.5 3D Block Performance

Figure 4 demonstrates the effectiveness of 3D block design
on area, power, and timing for dual-layer F2F blocks. The y-
axis is normalized to the area of a single-layer baseline block.
The x-axis represents different folding techniques for each ar-
chitectural block investigated. The letters in the label of a bar
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Figure 4: The improvement in area, power and timing for dual-
layer vertical integration.
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Figure 5: The improvement in power for multi-layer F2B vertical
integration.

represent the type of folding: either port partitioning (PP) or
block folding (BF). All results are shown normalized to the
2D implementation of the block. In F2F technology, the via
starts from the surface of one layer and ends on the surface
of the other layer. Therefore, vias do not impact the layout
of transistors.

For the issue queue (IQ), delay is reduced by 27% with BF.
PP sees even more improvement (37% reduction in delay).
PP reduces both tag wire lengths and match wire lengths,
and wire lengths to the selection logic. On the other hand,
BF only reduces tag wire lengths. The match wire lengths are
even increased due to 3D via insertions for every tag and bit
line. As a result, we observe an over 70% reduction in area
for PP, with only a 20% reduction for BF. Note that the area
shown is the maximal area in any one layer for that block, and
while the footprint of the block may be reduced, the sum of
the area occupied in all layers may actually increase relative
to the 2D baseline.

The power consumed in CMOS circuits is represented as
P =05%axf*C % Vdd?, where f is the clock frequency,
a is the activity factor, Vdd is the supply voltage and C' is
the switching capacitance. The power consumption rate is
proportional to the switching capacitance. In BF, although
tag wire lengths for each layer are reduced, the tag wires are
duplicated on different layers. The aggregate wire length is
still the same. In addition, there is an increase in match line
lengths mentioned above. Thus, the total switching capac-
itance is slightly increased due to the increased total wire
length. As a result of this, the power consumption of BF is
slightly increased. On the other hand, PP is able to reduce
power consumption by 29%.

For the caches and cache-like structures, PP is extremely
effective in heavily ported structures. For example, the regis-
ter file with PP sees a 27% reduction in delay, a 17% reduction
in power, and an impressive 70% reduction in area. However,
for structures with fewer ports, BF can be more effective. The
data cache sees a 30% reduction in delay with BF, and a 23%
reduction in delay with PP. While PP does reduce both word-
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Figure 7: The improvement in timing for multi-layer F2B vertical
integration.

line and bitline length, this reduction is proportional to the
number of ports that can be partitioned to other silicon lay-
ers. For structures with very few ports, BF is able to reduce
wordline length more than PP. Hence, in structures that have
significant wordline delay, the overall reduction in delay with
BF can be greater than PP.

The diversity in benefit from these two approaches demon-
strates the need for a tool to flexibly choose the appropri-
ate implementation based on the constraints of an individual
floorplan.

3.5.1 Scaling to Multiple Silicon Layers

For a dual-layer implementation, F2F is able to outperform
F2B since the 3D vias in F2B impact the silicon footprint in
the top silicon layers. For example in the PP results, the F2B
area is about 5% larger than that of F2F due to the increased
silicon footprint. The delay and power consumption are larger
than those of F2F as well. However, F2B allows more layers
to be stacked. It may be possible to stack two F2Fs in back
to back fashion; however, we do not consider this alternative
in this paper.

Figures 7, 5, and 6 show timing, power, and area results
(respectively) with F2B blocks for two, three, and four layers
of silicon. All measurements are normalized to the perfor-
mance of a single-layer block. In general, we observe that the
reduction of area, power and delay is further increased as the
number of layers is increased.

For the issue queue (IQ) with PP, area reduction increases
to 80% with 3 layers, and to 90% with 4 layers. Reduction in
issue queue delay increases to 43% with 3 layers, and to 50%
with 4 layers. Reduction in power consumption grows as high
as 38% with 4 layers.

For the issue queue with block folding, there is less reduc-
tion in area and delay with additional layers. However, the
impact on match line wire length from stacking more layers
increases the power consumption for folding to 9% with 4
layers.

3.5.2  Impact of 3D Bonding Technology
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Figure 8: Impact of Via Size on Timing using F2B, Port Parti-
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Figure 9: Impact of Via Size in Power using F2B, Port Partition-
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3D via size has rapidly scaled down as 3D bonding technol-
ogy has advanced. 3D via size has been reduced from 10um
to 1.75um in MIT Lincoln Laboratory’s 3D process technol-
ogy [17] at 180nm. We expect the 3D via size to continue to
scale at smaller feature sizes. In this paper, we have assumed
a 0.7um via size for a 7T0nm feature size.

To demonstrate the impact of scaling via size, we plot the
performance of the register file for via sizes ranging from
2.5um to 0.5um in 70nm technology. The via pitch is twice
the via size. The register file has four read ports and four write
ports. A single cell size is approximately 5.6um x 5.6um. In
F2B bonding technology, 3D vias occupy silicon area in all
layers except the bottom layer. Taking 2-Layer partitioning
as an example, when via size is 2.5um, the best solution is
to place seven ports in the bottom layer, and one port in the
top layer, which only slightly reduces the wirelength. When
the via size is scaled to 0.5um, the best solution places four
ports in each layer. The wirelength is almost cut in half in
both X and Y directions. As shown in Figures 8 and 9, the
larger reduction in wirelength reduces both delay and power
as the via size is scaled from 2.5um to 0.5um.

4. 3D BLOCK PLACEMENT

Microprocessor throughput, as measured in IPC, is influ-
enced by the latency of critical architectural loops such as the
scheduling loop, branch resolution loop, inter-cluster commu-
nication loop, etc [31]. Vertical integration can help to reduce
the latency of these critical loops. Critical loops differ in the
magnitude of their impact on throughput, and therefore the
exploration of the use of vertical integration on microproces-
sor design requires consideration for both physical design and
architecture. Existing work on this type of co-design explo-
ration [6] has only explored the use of vertical integration to
reduce inter-block latency in these critical loops. However, as
demonstrated in Section 3, there is a tremendous potential
for vertical integration to reduce the latency of blocks along



Processor Width 6-way out-of-order superscalar, two integer execution clusters

Register Files 128 entry integer (two replicated files), 128 entry FP

Data Cache 8KB 4-way set associative, 64B blocksize

Instruction Cache [ 8KB 2-way set associative, 32B blocksize

L2 Cache 4 banks, each 128KB 8-way set associative, 128B blocksize

Branch Predictor | 8K entry gshare and a 1K entry, 4-way BTB

Functional Units | 2 IntALU + 1 Int MULT/DIV in each of two clusters
1 FPALU and 1 MULT/DIV

Table 1: Architectural parameters for the design driver used in this
study.

critical loops. In this section, we detail our modifications to
the co-design framework of [6].

MEVA-3D [6, 18] is an automated physical design and ar-
chitecture performance estimation flow for 3D architectural
evaluation. It includes 3D floorplanning, routing, intercon-
nect pipelining, automated thermal via insertion, and associ-
ated die size, performance, and thermal modeling capabilities.

First, MEVA-3D takes a microarchitectural configuration, a
target frequency, architectural critical path sensitivities, and
power density estimates and uses 2D /3D floorplanning to op-
timize for performance and temperature. Then routing and
thermal via planning are performed to provide physical design
information to our microprocessor simulation. Critical loop
latencies are passed from the floorplanner to the simulator
for accurate determination of performance. MEVA-3D makes
use of the SimpleScalar [4] simulator to obtain performance
in IPC and utilization counts of individual blocks.

To enable the packing of 3D components which may occupy
more than one layer, we constructed a new packing engine
which is a true 3D packing engine — 3D components in our
design can be treated as cubic blocks to be packed in 3D space.
The dimension of the block in the Z direction represents the
layer information. The 3D packing algorithm is extended from
the CBL floorplanner [19].

5. MICROARCHITECTURAL EXPLORATION

In this section, we use the modified MEVA framework to
investigate the ability of vertical integration to reduce both
intra-block and inter-block architectural latencies.

5.1 Performance of 3D Architecture

We constructed a design driver based loosely on the Al-
pha 21264 [15], and along with the architectural blocks from
Section 3 (functional unit blocks are based on [6]), we feed
this driver into our modified version of MEVA-3D. The ar-
chitectural parameters are shown in Table 1. We measure
architectural performance on all 26 programs of the SPEC
CPU2000 suite.

Figure 11 presents performance results relative to a single-
layer design driver. The first bar represents the benefit from
using two layers of silicon with 2D blocks (as in [6]), and the
second bar represents the benefit from using two layers of
silicon with 3D blocks. All three configurations (single-layer,
dual-layer 2D blocks, dual-layer 3D blocks) are running at
4GHz. On average, the use of 2D blocks in a two layer design
improves performance by 6%. Since the blocks themselves do
not take advantage of vertical integration, any performance
gain can only come from a reduction in the inter-block wire
latency. For example, the branch misprediction loop has a
total latency of 815ps at 4GHz for a single-layer design — 238ps
of this total latency is from inter-block wire delay. When
using 2D blocks in two layers, this inter-block wire delay is
reduced to only 63ps. However, the overall reduction in path
delay is not enough to reduce the loop by a cycle of our 4GHz
clock. Thus, while timing slack is certainly increased, the
benefit of this has not been exploited in Figure 11. When
we allow MEVA-3D to select 3D block alternatives, we see a

performance improvement of 23% on average over the single-
layer architecture. This can be attributed to the ability of 3D
blocks to reduce the intra-block latency of critical processor
loops.

We show floorplans for all three architectures in Figure 10.
The single-layer design occupies 3.4 x 3.4mm? in one silicon
layer. The dual-layer design with 2D blocks occupies 2.8 x
2.8mm? in each silicon layer. The dual-layer design with 3D
blocks occupies 2.3 x 2.3 mm? in each silicon layer.

Temperature issues are considered to be a major concern for
vertical integration. Therefore, an accurate and fast thermal
simulation framework was very crucial for our experimental
analysis. We used the finite element method (FEM) based
CFD-ACE+ temperature simulator [27]. Further details on
the heat sink and thermal parameters that we used can be
found in [27]. The average and maximum temperature for
the single-layer architecture was 30.6°C and 32.7°C. The av-
erage and maximum temperature for the dual-layer architec-
ture with 2D blocks was 30.6°C and 32.6°C. The average and
maximum temperature for the dual-layer architecture with
3D blocks was 30.3°C and 34.1°C.

Thermal vias can help to relieve thermal problems in 3D
microarchitectures. We used the algorithm proposed in [7,
8] for thermal via insertion. In our multi-layer designs, we
designate 5% of the area as dead space on each layer, which
provides sufficient space for thermal vias.

5.2 Scaling Architectural Sizes

Even in the 3D block architecture, there are still cases where
we are able to increase the timing slack within a given cycle
of a critical loop, without actually reducing the number of
cycles in that critical loop. Figure 12 presents one approach
to leveraging this extra slack: we double the size of the data
cache, issue queue, and register file.

Figure 13 shows the timing performance when three struc-
tures are scaled from the default size to 16 times larger. As
shown in the figure, with 3D integration technology, the ac-
cess latency of double-sized structures is still less than in that
of 2D. The register file and data cache can even quadruple
their sizes while still outperforming the default blocks in 2D.
In this paper, we limit our study to doubled sizes.

As shown in Figure 12, the performance is increased by an
additional 5% with a doubled cache, an additional 1% with
a doubled register file, and an additional 7% with a doubled
1Q. The best performance is observed when doubling the size
of all three structures. Overall, there is a 36% gain over the
2D architecture and a 13% gain over the 3D architecture with
our default block sizes.

These larger structures will dissipate more power than regular-
sized 3D blocks. But despite the increase in power, the in-
creased area of these larger designs saw an average slight de-
crease in temperature of 0.8°C for the case where all three
resources were doubled. The maximal temperature in this
case was 34.1°C.

6. SUMMARY

Vertical integration has a tremendous potential for reduc-
ing both inter-block and intra-block wire latency. We have
proposed and evaluated tag partitioning for the issue queue,
for caches, and for cache-like blocks. And we have enhanced
the MEVA-3D exploration framework to evaluate the use of
3D blocks in multiple layers of silicon. When using two layers
of silicon with 3D blocks, we see an average 36% improve-
ment in performance over a single-layer architecture and 29%
improvement in performance over two layers with single-layer
blocks, for the architectural design driver we explored. Tem-
perature is kept below 40°C using a two heat sink F2F design.
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