
Interconnect Synthesis of Heterogeneous Accelerators in a
Shared Memory Architecture

Yu-Ting Chen and Jason Cong
Computer Science Department, University of California, Los Angeles, CA, USA

E-mail: {ytchen, cong}@cs.ucla.edu

Abstract—An accelerator-rich architecture (ARA) is composed of het-
erogeneous accelerators with an on-chip memory system. Compared
to the general-purpose processors, an accelerator demands short and
predictable latency to its local on-chip memory to satisfy its performance
target. Moreover, an accelerator requires a much higher off-chip memory
bandwidth than a CPU since it consumes much more data in a given
time period. Therefore, a customized on-chip memory system design is
one of the keys to an efficient ARA. In this work we provide a two-
layer interconnect synthesis method. We first provide an optimal layer of
partial crossbar that connects the heterogeneous accelerators and shared
memory banks with a minimum number of switches. The second layer
of interconnect tries to interleave possible conflicting long-burst memory
requests for prefetching data from off-chip memory. The experimental
results show that we can reduce more than 45% of the switches of the
partial crossbar compared to the best known method. This further leads
to 53% reduction of LUTs and 34% reduction of slice utilization on a 30-
accelerator FPGA prototype. Furthermore, the performance of an ARA
can be improved by 36% - 52% with a well-designed interleaved network
in a real ARA prototype for medical imaging applications. This prototype
also shows a 7.44x energy efficiency gain over the state-of-the-art Xeon
processors.

Keywords—Interconnect synthesis, partial crossbar, heterogeneous accel-
erators, shared memory architecture

I. INTRODUCTION

In the age of “dark silicon” [1][2], multi-core scaling is no longer
sufficient for achieving the expected speedup levels while meeting the
power limit. Compared to the general-purpose processors, application-
specific accelerators can provide 10 - 1000x speedup by exploiting
the application parallelism [3][4]. By 2022 we will be able to place
hundreds to thousands of customized accelerators in an SoC [5].
Therefore, integrating general-purpose processor cores with a large
number of customized accelerators is an attractive solution to multi-
core processors. For the rest of our discussion, we use the term
“accelerator-rich architecture (ARA)” when referring to this kind of
architecture. Recently, accelerators have been integrated into real pro-
cessors, such as the IBM wire-speed [6] and Intel Haswell processors.
Meanwhile, many research efforts also demonstrate that ARAs can
provide significant speedup and energy savings over conventional
processors in various applications [2][3][7][8][9][10].

Accelerators improve performance by exploiting the application
parallelism and data locality. An accelerator utilizes customized and
deep pipelines to process a series of data. To maximize performance,
the accelerator is usually designed with its initiation interval (II) to be
one, i.e., fully pipelined to maximize its throughput. To enable a fully
pipelined design, an accelerator must be able to simultaneously fetch
multiple data elements from all its owned memory banks within one
cycle. This can be easily achieved if all accelerators have their own
private memory banks. However, as the number of accelerators in
an ARA increases, the on-chip memory resource needs to be shared.
The interconnects between the accelerators and shared memory banks
have to provide (1) sufficient connectivity, and (2) the fixed one-cycle
latency.

Figure 1 shows three conventional on-chip shared memory archi-
tectures. Multi-level caches (Figure 1(a)) are commonly used in multi-
core processors. However, the fixed latency demand cannot be met

since a cache miss can lead to uncertain access latency. Furthermore,
a cache may not be able to service a number of simultaneous requests
efficiently, even if interval banking is performed. A conventional SoC
uses a system bus (Figure 1(b)) to share memory resource. However,
when the number of devices increases, significant arbitration latency
and area overhead to synthesize memory interfaces become the
bottleneck [11]. Other interconnect topologies, such as ring and
mesh, usually cannot meet the one-cycle latency constraint. A partial
crossbar, shown in Figure 1(c), can provide sufficient connectivity
and the one-cycle latency with moderate area overhead. In this paper
we conduct optimization for the partial crossbar for heterogeneous
accelerators.

Fig. 1. Three conventional on-chip shared memory architectures.

Another important issue is how to efficiently fetch the data from
off-chip memory. In CPU cores, the off-chip memory accesses are
issued when misses occur in the last-level caches. An accelerator
improves performance by grouping a series of memory accesses
together into a burst request and then issuing multiple long burst
requests to prefetch data into its own on-chip memory banks. In an
ARA, it is common to have multiple memory ports to fully use the
available memory bandwidth. However, if multiple burst requests are
issued to the same interface, the outstanding requests must wait.

In this paper we aim to design the interconnects to satisfy the
need for sufficient connectivity, fixed latency, and efficient off-chip
prefetching capabilities for the shared ARA memory system. Our
contributions can be summarized as follows:

• An Optimal Partial Crossbar Between Heterogeneous Ac-
celerators and Memory Banks: Assuming the number of
accelerators that can be simultaneously powered on is bounded,
we provide a novel algorithm to synthesize the interconnect
between heterogeneous accelerators and memory banks as
a partial crossbar with the minimum number of switches.
Compared to the state-of-the-art synthesis algorithm [11], we
further generalize the optimal solution for accelerators with
heterogeneous memory bank demands.

• Interleaved Network Between Memory Banks and Memory
Interfaces: We generate the interleaved network to interleave
the simultaneous long burst requests to limited memory inter-
faces based on the proposed optimal partial crossbar topology.
Performance can thus be significantly improved when request
conflicts are reduced.

We first evaluate our synthesis algorithm by comparing the number
of switches in the partial crossbar with [11], the full-capacity crossbar
and full crossbar. Based on experimental results, we can reduce more



than 45% of switches compared to the work [11]. To validate the
effectiveness of the reduction of switches, we synthesize our partial
crossbar design with 30 accelerators on the Xilinx Zynq platform. Our
method can reduce 47% of switches, 53% of LUTs and 34% of slices
when compared to [11]. We further demonstrate the efficiency of our
interleaved network through a real ARA prototype with heterogeneous
medical imaging accelerators. The interleaved network can reduce the
execution time by 36% - 52% by improving the prefetching process.
The ARA prototype also shows a 7.44x energy efficiency gain over
the state-of-the-art Xeon processors.

II. PRELIMINARY

A. Accelerator-Rich Architectures

An ARA is composed of the general-purpose cores, heterogeneous
accelerators, on-chip memories, and interconnects [2][8][9][12]. Fig-
ure 2 demonstrates the accelerator plane of an ARA, which can
be decomposed into the following components: (1) heterogeneous
accelerators, (2) shared memory banks, (3) direct memory access
controllers (DMACs), (4) physical memory ports (interfaces), and (5)
two layers of interconnects [12]. The heterogeneous accelerators can
have a different number of memory bank demands. For example,
Acc1 needs four memory banks, while Acc2 requires six. These het-
erogeneous demands make the design of interconnects more difficult
than that of the “homogeneous” demands.

In the dark silicon era, the power wall limits the number of
transistors that can be powered on simultaneously. For an accelerator
island, the power budget is determined by (1) the number of powered-
on accelerators at a certain time period, and (2) the number of
memory banks in this island. The number of powered-on accelerators
leads to the dynamic power consumption [11], while the number
of memory banks significantly contributes to leakage power [8].
Therefore, the number of on-chip memory banks and the maximum
number of powered-on accelerators should be limited under a given
power budget.

Fig. 2. An accelerator-rich architecture (ARA) – the accelerator plane.

B. Limitations of Existing Methods and Motivation

The authors in [13] summarized the complexity for several types of
crossbar designs, such as the full-capacity crossbar [14], for general
signal routing in FPGA. However, these methods are not efficient
enough when the constraint on the number of powered-on accelerators

is considered. The work in [11] first investigated the partial crossbar
synthesis when the power budget is limited, which is the work that is
most relevant to ours. However, the method proposed in [11] can
only generate the minimum partial crossbar for accelerators with
homogeneous memory bank demands, as shown in Figure 3(a). The
homogeneous bank demands do not match the heterogeneity nature of
accelerators. Therefore, we are motivated to synthesize the minimum
partial crossbar for accelerators with heterogeneous bank demands,
as shown in Figure 3(b).

Fig. 3. Limitation of the synthesis method developed in [11].

The crossbar (bus matrix) is also used to provide sufficient con-
nectivity for buses in high-performance systems [15]. The crossbar
network is usually designed in a cascaded fashion. However, this
design style cannot meet the demand that accelerators can fetch
multiple data every cycle to maintain high throughput. Similarly,
the network-on-chip (NoC) topologies [16][17] and the combination
of buses and NoC [18] for large-scale multi-core processors cannot
satisfy the high-throughput need.

In this paper the first important question that we address is how
to synthesize the interconnects between heterogeneous accelerators
and shared memory banks. We use the configurable partial crossbar
to provide one-cycle fixed latency and guaranteed connectivity. The
second question is how to design an interleaved network between
memory banks and DMACs based on the optimal partial crossbar
topology. The topology synthesis in this layer has not been considered
together with a given partial crossbar topology from the existing
work.

III. OPTIMAL PARTIAL CROSSBAR DESIGN

In this section we first discuss the crossbar configurability and
then define the problem formulation of the partial crossbar synthesis.
Following that, we propose a novel algorithm to synthesize the
optimal partial crossbar between the accelerators and the shared
memory banks. The algorithm guarantees that the number of switches
in the partial crossbar is minimum, while supporting at least any c
accelerators in the island that can be simultaneously powered on. For
simplicity of discussion, we summarize the key notations used in this
paper in Table I.

TABLE I. MAJOR NOTATIONS

Notation Explanation
n the number of heterogeneous accelerators in the island

ai

accelerator i, 1 ≤ i ≤ n
{a1, a2, ..., an} are sorted in descending order

based on the memory bank demand
di the number of memory bank demand of ai
c the number of simultaneous powered-on accelerators
m the number of shared memory banks
bi memory bank i, 1 ≤ i ≤ m

k the number of DMACs and MPs

A. Crossbar Configurability

Figure 4 is an example of the partial crossbar design between
the heterogeneous accelerators and the shared memory banks. In
this example, banks 1 to 4 are assigned to Acc1, while banks 3



to 8 are assigned to Acc2. Acc1 and Acc2 cannot be powered on
simultaneously since they share bank 3 and bank 4. In our assumption,
one memory bank cannot be simultaneously used by two accelerators
or any two ports in one accelerator. This is because a memory bank
only has two ports. One is connected to an accelerator while the
other is connect to a DMAC. Also, an accelerator accesses its own
memory banks every cycle to achieve high throughput. The crossbar
is designed to be configurable for sharing these two memory banks
for Acc1 and Acc2. We assume that two-port memory banks are used.
One port of a memory bank is connected to the accelerators while
the other port is connected to one DMAC.

Fig. 4. An example of a configurable crossbar.

B. Minimum Required Memory Banks

Suppose that the number of allowed simultaneous powered-on
accelerators within the power budget is c, the primary goal is to
provide a configurable partial crossbar which makes any c accelerators
in this island simultaneously work together. The first question we try
to answer is what is the minimum number of required memory banks
to support c accelerators to be powered on simultaneously.

Lemma 1 Given a set of accelerators, {a1, a2, ..., an}, with non-
increasing memory band demands d1 ≥ d2 ≥ ... ≥ dn, and c, the

minimum number of required memory banks is at least
c∑

i=1

di.

Proof: Omitted.

C. Problem Formulation

Given the number of simultaneous powered-on accelerators c, the

number of shared memory banks m (m =
c∑

i=1

di), and n accelerators,

our goal is to minimize the total number of switches of the partial
crossbar.

D. Optimal Partial Crossbar Synthesis

We propose Algorithm 1 to synthesize the partial crossbar, which
meets these two requirements: (1) the minimum number of memory
banks shown in Lemma 1, and (2) the minimum number of switches
equal to the lower bound shown in Theorem 1. In this section we
illustrate the high-level concepts of the proposed algorithm. We will
discuss (1) the lower bound of the minimum required number of
switches and (2) the optimality analysis of the proposed algorithm in
Section III-E and Section III-F, respectively.

We have n heterogeneous accelerators, and only c accelerators can
be powered on simultaneously. In Algorithm 1, we first assign the
crossbar switches for the c accelerators, {a1, a2, ..., ac}, with the
largest memory bank demand. For these c accelerators, one memory
port exactly maps to one memory bank (lines 8 - 13). Next, we assign

Algorithm 1 Optimal partial crossbar synthesis
1: port map: the mapping between the accelerator ports and shared mem-

ory banks; 1st dimension: the accelerator index; 2nd dimension: the
accelerator’s port index

2: d: the array recording the memory bank demands for all accelerators
3: n: the number of accelerators
4: m: the number of memory banks
5: c: the number of simultaneous powered-on accelerators
6: procedure OPTCROSSBAR(d, n,m, c)
7: bank index ← 0
8: for i ← 1 to c do . 1st nested loop: for the largest c accelerators
9: for j ← 1 to d[i] do . Assign consecutive memory banks

10: port map[i][j] ← bank index
11: bank index ← bank index + 1
12: end for
13: end for
14: for i ← 1 to c do . 2nd nested loop: for the rest n - c accelerators
15: bank index ← port map[i][1]
16: for j ← c + 1 to n do
17: if bank index + d[j] > port map[i][d[i]] then
18: bank index ← port map[i][1]
19: end if
20: for k ← 1 to d[j] do . Assign consecutive memory banks
21: port map[j][k] ← bank index
22: bank index ← bank index + 1
23: end for
24: end for
25: end for
26: return port map
27: end procedure

the switches for the remaining n−c accelerators (lines 14 - 25). Each
port in accelerators, {ac +1, ..., an}, is mapped to c memory banks.
The number of switches generated from Algorithm 1 is m + c ×

n∑
i=c+1

di (Theorem 2), which is the minimum number of required

switches (Theorem 1). Note that the memory ports of an accelerator
are assigned in a contiguous way to one Region (Definition 1) for
accelerators {a1, a2, ..., ac} or to c Regions for accelerators {ac+1,
..., an}. Figure 5(a) shows an example of the partial crossbar topology
generated from Algorithm 1.

E. The Lower Bound of The Required Switches

To design the minimum (optimal) partial crossbar, we first find the
lower bound of the minimum required switches and then provide a
proof for this lower bound.

Theorem 1 The lower bound for the number of switches required in

the partial crossbar is m+ c×
n∑

i=c+1

di, where m is equal to
c∑

i=1

di.

Proof: Omitted.
Theorem 1 can be easily used to find the minimum number of

switches when all accelerators have the same number of memory bank
demands, as described in [11]. We use r to denote the homogeneous
memory bank demand. The minimum required memory banks, m, is
equal to c×r. As demonstrated in Equation 1, Theorem 1 can further
generalize the theorem derived from [11] for synthesizing accelerators
with homogeneous bank demands.

m+ c×
n∑

i=c+1

di = m+ c× (n− (c+ 1) + 1)× r

= c× r + c× (n− c)× r = m× (1 + n− c)

(1)

F. Algorithm Optimality Analysis

In this section we first prove that Algorithm 1 can synthesize a
partial crossbar with a minimum number of switches by Theorem 2.



Fig. 5. (a) An example of partial crossbar synthesis using Algorithm 1. (b) An example demonstrating the insight of Algorithm 1 design.

Theorem 2 Algorithm 1 synthesizes the partial crossbar with m +

c ×
n∑

i=c+1

di switches, which is equal to the lower bound described

in Theorem 1.

Proof: Omitted.
To further prove that the crossbar generated from Algorithm 1 can

power on any c accelerators, we first define the term Region.

Definition 1 “Regions” are the ranges for the contiguous memory
bank assignments for the c accelerators with the largest memory bank
demands. All the c Regions are not overlapped with one another based
on the Algorithm 1.

Lemma 2 For any two accelerators, if their bank assignments reside
at two different Regions, i.e., non-overlapped Regions, the two
accelerators can be powered on simultaneously. (We suppose the other
accelerators are currently powered off.)

Lemma 3 Based on Lemma 2, a partial crossbar with c Regions can
support at least c accelerators that are powered on simultaneously.

Based on Definition 1, we have three Regions for the synthesized
partial crossbar shown in Figure 5(a). We can further deduce Lemma
2 and Lemma 3 based on the definition. The key insight of Algorithm
1 is to avoid the case of the cross-Region bank assignment such as
a4, shown in Figure 5(b). By using Algorithm 1, the bank assignment
of the accelerators is aligned well inside the Regions, which avoids
the cross-Region assignment. We show that Algorithm 1 can provably
power on any c accelerators by Theorem 3.

Theorem 3 The crossbar generated from Algorithm 1 can power on
any c heterogeneous accelerators simultaneously.

Proof: Omitted.
Due to the space limit of the paper, we will put all the detailed

proofs in a technical report as a reference for the readers.

IV. INTERLEAVED NETWORK

A. Conflicts of Burst Prefetch Requests

In an ARA, the off-chip data prefetching memory access patterns
have the following properties. First, the prefetch requests issued from
accelerators are usually long memory bursts for performance con-
cerns. In our design, it is at the page granularity (4KB), ranging from
one to four pages (4 - 16KB). Second, an accelerator issues multiple
burst requests simultaneously. The number of simultaneous burst
requests depends on the memory bank demands of an accelerator; this
ranges from 5 to 12 in our design. Third, the partial crossbar described
in Section III maps the ports of an accelerator to contiguous memory
banks. The interconnects between memory banks and DMACs need
to be carefully designed considering the partial crossbar topology.

Figure 6 shows a real topology synthesized using Algorithm 1. In
this example, a1 is powered on and six simultaneous burst requests
are issued from a1 to prefetch the required input data into {b1, b2, ...,
b6}. If the interconnect layer between memory banks and DMACs is
not designed carefully, request conflicts will arise. Figure 6(a) shows
that four burst requests are sent to DMAC1, while two requests are
sent to DMAC2. The four requests issued to DMAC1 will become
the bottleneck since MP1 services the requests in a sequential way.
Each request is a 4KB to 16KB long burst request, which leads to a
significant performance degradation.

Fig. 6. (a) Burst requests conflict at DMAC1. (b) Burst requests are
interleaved to different DMACs.

B. Interleaved Network Design

We consider the following important properties for interleaved
network design in order to resolve possible conflicts.

1. The partial crossbar topology According to Algorithm 1,
the memory banks assigned to an accelerator are contiguous. We
design the mapping function described in Equation 2 to map the
memory banks to DMACs. The mapping function can guarantee the
distribution of simultaneous burst requests distributed uniformly to
different DMACs. Figure 6(b) shows an example our interleaved
network design. In this example (k = 6), the memory banks {b1, b2, ...,
b6} are mapped to {DMAC1, DMAC2, ..., DMAC6}, respectively.
The six interleaved burst requests can be serviced in parallel with
available memory bandwidth without conflicts.

MemBankToDMAC(i) = i mod k, i ∈ 1..m (2)

2. Accelerator usage pattern We believe that the priority of
interleaving requests within an accelerator is more important than
that of interleaving requests across accelerators. This is because not
all of the accelerators can start simultaneously with limited power
budgets. The heterogeneous nature of accelerators also reduces the
possibility that accelerators launch simultaneously. Even if multiple
accelerators are running simultaneously, the requests from multiple



accelerators may still interleave. However, a single accelerator cannot
start to work until all data are prefetched and ready. Therefore, we
choose the topology generated in Equation 2 to ensure that the burst
requests of a specific accelerator can be distributed uniformly across
DMACs.

V. EXPERIMENTAL RESULTS

A. Case Study: A Real Medical Imaging ARA Prototype

1) Appliations and Prototyping Platform: We are interested in ac-
celerating the medical imaging processing pipeline for computerized
tomography (CT) images [19]. First, the noise and blur need to be
removed. Second, the process would align the current image with pre-
vious images of an individual. Third, a region of interest for diagnosis
is segmented. To accelerate the pipeline, we include four accelerator
kernels—gradient, gaussian, rician, and segmentation in our
ARA design.

We use the Xilinx Zynq ZC706 as our prototyping platform. The
Zynq SoC, which is composed of a dual-core ARM Cortex-A9 and
FPGA fabrics, is used to prototype an ARA (Figure 2). We use
ARACompiler [12][20] to prototype the ARA for the medical imaging
pipeline. In this ARA, we have five heterogeneous accelerators: (1)
two gradient, (2) one gaussian, (3) one rician, and (4) one
segmentation. The memory bank demand of each accelerator is
shown in Table II. The shared memory banks are synthesized using
the on-chip BRAMs, while both interconnect layers are realized using
FPGA LUTs and routing resources. In Zynq, there are four physical
memory ports (k = 4) for accelerators to prefetch data from off-chip
DRAM.

TABLE II. MEMORY BANK DEMANDS (I.E., THE NUMBER OF PORTS OF
EACH ACCELERATOR)

Type gradient gaussian rician segmentation
Bank demand 6 5 8 12

2) Optimal Partial Crossbar: Figure 7(a) shows the minimum
number of required memory banks, while Figure 7(b) shows the
number of switches generated from [11] and Algorithm 1. We set
c to four in the ARA prototype, and thus 8.8% of switches are saved.

Fig. 7. (a) The minimum number of required memory banks for this ARA.
(b) The number of switches generated from [11] and our algorithm.

3) Effectiveness of Interleaved Network: To evaluate the effective-
ness of the interleaved network, we measure performance from our
FPGA prototype. This is because the request conflicts occur during
runtime based on the accelerator utilization, which is difficult to
model in an analytical way. We compare our interleaved network
design from Equation 2 to an non-interleaved design described in
Equation 3. The non-interleaved mapping is similar to the case
demonstrated in Figure 6(a). The interleaved network can reduce the
runtime from 36% to 52%, as shown in Figure 8. Note that the x-axis
represents the powered-on accelerators.

MemBankToDMAC(i) = i div k, i ∈ 1..m (3)

Fig. 8. Effectiveness of interleaved network

4) Energy-Efficiency of the ARA prototype: Table III shows the
performance and power results of the denoise application in our
ARA prototype and the state-of-the-art processors. denoise is com-
posed of gradient and rician kernels and executes the two kernels
sequentially for 10 iterations. We use OpenMP to implement denoise
for evaluating Xeon processors. The result of Cortex-A9 uses single
thread. denoise is compiled using gcc with -O2 option. Table
III shows that our prototype can achieve 7.44x and 2.22x energy
efficiency over Xeon and ARM, respectively.

TABLE III. PERFORMANCE AND POWER COMPARISON OVER (1)ARM
CORTEX-A9, (2)INTEL XEON (HASWELL), AND (3)ARA

Cortex-A9 Xeon (24 threads) ARA

Freq. 667MHz 1.9GHz Acc@100MHz
CPU@667MHz

Runtime(s) 28.34 0.55 4.53
Power 1.1W 190W(TDP) 3.1W

Total Energy 2.22x 7.44x 1x

B. Scalability Study of the Optimal Crossbars

To evaluate our crossbar design, we compare the number of
switches of (1) full crossbar, (2) full-capacity crossbar [14], (3) the
crossbar generated from [11], and (4) the crossbar generated from
Algorithm 1 over different numbers of powered-on accelerators. A
full-capacity crossbar can only connect any m inputs to m outputs,
which is less flexible than a full crossbar. In our case, m is the
number of memory banks. The algorithm in [11] can only guarantee
the minimum design when all accelerators have the same memory
bank demands. Note that the number of switches is measured based
on the minimum required memory banks derived from Lemma 1 for
all the cases in Figure 9. We generate the memory demand of each
accelerator at random, ranging from 4 to 16.

We evaluate Algorithm 1 using three sizes of designs: (1) 10
accelerators, (2) 50 accelerators, and (3) 100 accelerators, as shown in
Figure 9. For larger designs, Algorithm 1 generates only about 1% to
10% switches of full crossbar and full-capacity crossbar, respectively.
Compared to the state-of-the-art method [11], we can reduce the
number of switches by more than 45% in larger designs, as shown
in Figure 9(b)(c). This means that the method in [11] is still far from
the optimal solution for many cases.

Note that the method in [11] can only generate optimal results when
c = 1 and c = n, where n is the number of accelerators in the ARA.
For all the other cases, only Algorithm 1 can generate a crossbar
with the minimum number of switches and outperform [11]. When c
is equal to 1, the accelerator with the largest memory demand shares
its memory banks with all the other accelerators. When c is equal
to n, each accelerator has its own memory banks. In both cases, the
number of switches is equal to the sum of the memory bank demands
of all accelerators.



Fig. 9. The number of switches of (1) the full crossbar, (2) the full-capacity crossbar, (3) the crossbar generated using [11], and (4) the crossbar generated
using Algorithm 1, over different numbers of powered-on accelerators.

C. FPGA Validation of the Partial Crossbars

To further validate the effectiveness of switch reduction, we
prototype the partial crossbar designs generated from Algorithm 1
and [11] on the Xilinx ZC706. We generate a large design with
30 heterogeneous accelerators with 156 memory banks and only 20
accelerators can be powered on simultaneously (n=30, c=20, m=156).
In order to save the FPGA resource for synthesizing the partial
crossbar, we use dummy accelerators instead of real ones. Figure 10
shows the resource utilization of the FPGA of the generated partial
crossbars of Algorithm 1 and [11]. Algorithm 1 can generate a much
less congested partial crossbar by reducing 47% of switches, which
leads to 53% LUT and 34% slice reduction when compared to [11].

VI. CONCLUSIONS

In this work we first provide an optimal partial crossbar synthesis
algorithm that guarantees the required number of switches to be
minimum while supporting at least a given number of accelerators
that can be powered on simultaneously. Second, we improve the
data prefetching efficiency by interleaving multiple simultaneous
long burst requests into different physical memory ports for better
bandwidth utilization. With the optimal synthesis algorithm, we can
reduce 45% of switches when compared to previous work. Our
prototyping results show that we can improve performance by 36% -
52% using the interleaved network for a real ARA.

Fig. 10. Snapshots of the Zynq FPGA using (a) [11] and (b) Algorithm 1
for partial crossbar synthesis for the configuration (n=30, c=20, m=156). The
purple color represents the resources used by the partial crossbar while the
blue one represents the rest of utilized resources.

VII. ACKNOWLEDGEMENT

This work is partially supported by the Center for Domain- Specific
Computing under the Intel Award 20134321 and NSF Award CCF-
1436827. It is also supported in part by C-FAR, one of six centers of

STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in ISCA, 2011, pp. 365–376.

[2] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, “Conservation cores: Reducing the energy of mature
computations,” in ASPLOS, 2010, pp. 205–218.

[3] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources of in-
efficiency in general-purpose chips,” in ISCA, 2010, pp. 37–47.

[4] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, and L.-
G. Chen, “Analysis and architecture design of an hdtv720p 30 frames/s h.264/avc
encoder,” IEEE Trans. Cir. and Sys. for Video Technol., vol. 16, no. 6, pp. 673–688,
Sep. 2006.

[5] “The international technology roadmap for semiconductors (ITRS), system
drivers,” http://www.itrs.net/, 2007.

[6] H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S. Woodward, J. D. Brown, and
C. L. Johnson, “Introduction to the wire-speed processor and architecture,” IBM
J. Res. Dev., vol. 54, no. 1, pp. 27–37, Jan. 2010.

[7] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, “Architecture
support for accelerator-rich cmps,” in DAC, 2012, pp. 843–849.

[8] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The accelerator store:
A shared memory framework for accelerator-based systems,” ACM Trans. Archit.
Code Optim., vol. 8, no. 4, pp. 48:1–48:22, Jan. 2012.

[9] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, “Charm: A
composable heterogeneous accelerator-rich microprocessor,” in ISLPED, 2012, pp.
379–384.

[10] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Reinman,
“Accelerator-rich architectures: Opportunities and progresses,” in DAC, 2014, pp.
1–6.

[11] J. Cong and B. Xiao, “Optimization of interconnects between accelerators and
shared memories in dark silicon,” in ICCAD, 2013, pp. 630–637.

[12] Y.-T. Chen, J. Cong, and B. Xiao, “Aracompiler: a prototyping flow and evaluation
framework for accelerator-rich architectures,” in ISPASS, 2015, pp. 157–158.

[13] G. Lemieux, P. Leventis, and D. Lewis, “Generating highly-routable sparse
crossbars for plds,” in FPGA, 2000, pp. 155–164.

[14] S. Nakamura and G. M. Masson, “Lower bounds on crosspoints in concentrators,”
IEEE Trans. Comput., vol. 31, no. 12, pp. 1173–1179, Dec. 1982.

[15] M. Jun, D. Woo, and E.-Y. Chung, “Partial connection-aware topology synthesis
for on-chip cascaded crossbar network,” IEEE Trans. Comput., vol. 61, no. 1, pp.
73–86, Jan. 2012.

[16] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip networks,” in
ICS, 2006, pp. 187–198.

[17] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An analysis of on-chip
interconnection networks for large-scale chip multiprocessors,” ACM Trans. Archit.
Code Optim., vol. 7, no. 1, pp. 4:1–4:28, May 2010.

[18] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das, “Design and
evaluation of a hierarchical on-chip interconnect for next-generation cmps,” in
HPCA, 2009, pp. 175–186.

[19] A. Bui, K.-T. Cheng, J. Cong, L. Vese, Y.-C. Wang, B. Yuan, and Y. Zou, “Platform
characterization for domain-specific computing,” in ASP-DAC, 2012, pp. 94–99.

[20] Y.-T. Chen, J. Cong, M. Ghodrat, M. Huang, C. Liu, B. Xiao, and Y. Zou,
“Accelerator-rich cmps: From concept to real hardware,” in ICCD, 2013, pp. 169–
176.


