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ABSTRACT

Sparse matrix-vector multiplication (SpMV) multiplies a sparse
matrix with a dense vector. SpMV plays a crucial role in many
applications, from graph analytics to deep learning. The random
memory accesses of the sparse matrix make accelerator design
challenging. However, high bandwidth memory (HBM) based FP-
GAs are a good fit for designing accelerators for SpMV. In this
paper, we present SERPENS, an HBM based accelerator for general-
purpose SpMV, which features memory-centric processing engines
and index coalescing to support the efficient processing of arbitrary
SpMVs. From the evaluation of twelve large-size matrices, SERPENS
is 1.91x and 1.76x better in terms of geomean throughput than the
latest accelerators GraphLiLy and Sextans, respectively. We also
evaluate 2,519 SuiteSparse matrices, and SERPENS achieves 2.10X
higher throughput than a K80 GPU. For the energy/bandwidth effi-
ciency, SERPENS is 1.71%/1.99%, 1.90%/2.69%, and 6.25X/4.06X better
compared with GraphlLily, Sextans, and K80, respectively. After scal-
ing up to 24 HBM channels, SERPENS achieves up to 60.55 GFLOP/s
(30,204 MTEPS) and up to 3.79% over GraphLily. The code is avail-
able at https://github.com/UCLA-VAST/Serpens.

1 INTRODUCTION

SpMV performs the computation of § = a - A X X + f8 - §j where
X and g are two dense vectors, A is a sparse matrix, and a, § are
two scalar constants. SpMV is the core computation routine in a
wide range of applications, such as linear systems solvers [24] in
scientific computing, the processing model [19] in graph analytics,
and inference of sparse neural networks [16]. In the acceleration
of dense algebra, the tensor size determines the data movement
and thus researchers can use an analytic model to coordinate the
computation to achieve very high performance [30]. However, it is
difficult to accelerate SpMV because: (i) The vector X has only one
element at each index that significantly prevents reuse in compu-
tation. Thus, it is hard to achieve a high computation throughout.
(ii) The irregular distribution of non-zeros in the sparse matrix A
leads to random memory accessing. The memory hierarchy faces
high pressure from the random accessing. If we do not optimize
the accelerator’s memory, the performance will be even lower.
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High bandwidth memory (HBM) [3] exposes more memory chan-
nels to users than conventional DDR memory. HBM-based FPGAs
enable accelerator design and evaluation with high memory band-
width. It is an opportunity to accelerate memory-intensive appli-
cations including SpMV with HBM FPGAs. GraphLily [18] and
Sextans [27] are two of the latest accelerators leveraging HBM FP-
GAss for sparse workloads. GraphlLily is an FPGA overlay to support
graph applications which can be described by an SpMV BLAS pro-
cessing model. Sextans is an accelerator for sparse matrix-matrix
multiplication (SpMM). However, there are a few limitations in
existing works for SpMV acceleration: (i) GraphLily overlay de-
ploys extra hardware resource to support generalized operations,
but many of the hardwarelized operations are idle in SpMV. So
the FPGA hardware is not fully customized for SpMV acceleration.
(ii) Sextans has to allocate memory channels to one sparse matrix
and two dense matrices in SpMM processing. However, for SpMV
acceleration, we can save some memory channels for dense matri-
ces because the dense vector size is smaller than the dense matrix
size. Thus, we can allocate more memory channels to speed up the
processing of the sparse matrix. (iii) There lacks a modern FPGA-
based accelerator for general-purpose SpMV as we treat FPGAs as
a competitive candidate to GPUs for computing in data center.

We present SERPENS, a high bandwidth memory-based FPGA
accelerator for general-purpose SpMV acceleration. Our features in-
clude: (i) SERPENS is an HBM FPGA accelerator for general-purpose!
SpMV. SERPENS supports arbitrary spares matrices and achieves
competitive performance to GPUs. (ii) The memory-centric process-
ing engines (PEs) of SERPENS enable efficient streaming of sparse
matrices. We partition the input dense vector into segments and
accumulate output dense vector on chip to process in an output
stationary [29] manner. Thus, we limit the random memory to on-
chip BRAMs/URAMs to avoid the high latency of random off-chip
memory accessing. The memory-centric PEs also make SERPENS a
scalable architecture. (iii) SERPENS uses an index coalescing to fully
utilize on-chip FPGA URAMs to support large-size problems. Simi-
lar to prior works [18, 27, 28], we preprocess the spares elements
into accelerator-efficient storage. (iv) We conduct comprehensive
evaluations. We evaluate on 12 million-level matrices, SERPENS
surpasses GraphLiLy by 1.91x and Sextans by 1.76X in terms of ge-
omean throughput. In terms of energy efficiency, SERPENS is 1.71x
better than GraphLiLy and 1.90X better than Sextans. We evaluate
on 2,519 SuiteSparse [10] matrices, SERPENS is 2.10X in terms of
throughput, 6.25x in terms of and energy efficiency, and 4.06x in
terms of bandwidth efficiency better than a K80 GPU. After scaling
up to 24 HBM channels, SERPENs achieves up to 60.55 GFLOP/s
(30,204 MTEPS) and up to 3.79x over GraphLily.

!For *general-purpose’ we mean that the accelerator (1) supports a general form SpMV
§=ca-AXX+pf- yand(2) can run an arbitrary SpMV without re-doing prototyping.
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2 BACKGROUND AND MOTIVATION
2.1 High Bandwidth Memory

Conventional DDR memory provides limited memory bandwidth.
For example, the DDR4 memory of a Xilinx Alveo U250 [1] provides
four channels and a total bandwidth of 77 GB/s. Accelerators for
computation-intensive applications such as deep learning accelera-
tors [30] are able to achieve high performance with DDR memory.
However, in SpMV and many related graph applications the data
reuse is low and there are a large amount of random memory ac-
cesses. Such applications are memory-intensive and require the
support of high memory bandwidth. HBM based accelerator Xilinx
Alveo U280 [2] provides 32 channels and a total memory bandwidth
of 460 GB/s, which is a good opportunity for the acceleration of
memory-intensive applications. However, it is non-trivial to achieve
efficient HBM channel interconnection [7, 8]. Accelerator architects
need to customize their accelerators to fit the HBM channels to
fully reap the bandwidth benefit.

2.2 SpMV Accelerators on HBM FPGAs

GraphLily [18] and Sextans [27] are two of the latest accelerators
related to SERPENS. They are both accelerators based on HBM FP-
GAs. Although they are not specialized for SpMV, they are able to
support SpMV processing.

GraphlLily [18] uses a BLAS-based processing model [19] which
represents graph applications in a generalized SpMV to design an
FPGA overlay as a general accelerator for graph processing. To run
different graph applications, GraphLily configures the data type, the
generalized binary multiplication, and the generalized reduction.
For example, to support a floating-point SpMV, GraphLily sets the
data type to float and maps the generalized binary multiplication to
arithmetic multiplication and the reduction to arithmetic addition.
SpMV never uses the other hardware instances of the generalized
operations. Moreover, GraphLily deploys an arbiter vector unit
to load data from off-chip memory and supply it to processing
engines which have no bank conflicts. The arbiter vector unit is
flexible in BFS and SSSP. However, for SpMV processing, we know
the vector accessing sequence in advance. Thus, GraphLily does
not fully customize the vector handling for SpMV. Nevertheless,
the overlay makes GraphLily support a wide spectrum of graph
applications including BFS, SSSP, and PageRank besides SpMV.

For SpMM acceleration, Sextans [27] balances the allocation of
memory channels to one sparse and two dense matrices, because
SpMM needs to stream on three large matrices of comparable sizes.
Specifically, Sextans allocates 8 channels for the sparse matrix and
20 channels for the two dense matrices. Besides, to achieve a high
computation throughput, Sextans shares a sparse elements with
eight dense matrix elements. The sharing consumes FPGA logic
resource and on-chip BRAMs. However, the dense vectors in SpMVs
are quite smaller than the dense matrices in SpMM. To support an
SpMV run, Sextans configures N = 8 to run an SpMM and retires
the first column vector of the SpMM output as the result of SpMV.
However, we can allocate less channels for the vector and more
channels for the sparse matrix. Moreover, an SpMV accelerator can
save the on-chip logic and memory resource previously used for
the SpMM sharing.
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2.3 Other Related Works

SpaceA [31] is a hybrid memory cube-based accelerator architec-
ture for SpMV. Tensaurus [28] is an HMC based accelerator for
sparse-dense linear algebra. GraphR [26] utilizes an SpMV process-
ing model for graph acceleration. However, the three accelerators
are evaluated by simulation rather than real execution. Fowers
et al. [12] designed an FPGA accelerator for SpMV, but it is on
DDR memory and the performance is poor. HitGraph [32] and
ThuderGP [5] are FPGA accelerators for graph processing, but they
utilize DDR memory and are no specialized for SpMV.

Data format/layout reorganization is a common technique for

boosting systems performance. For example, CSR5 [22] and HiCOO [21]

are data formats to accelerate SpMV and sparse tensor processing on
muti-core CPUs and GPUs. TensorFlow [4] stores data in TFRecord
format for fast processing. For accelerators, [12, 18, 27], and [28]
all reorganize data format/layout to be accelerator friendly.

2.4 Motivation

The lack of modern HBM-FPGA-based accelerators for SpMV moti-
vates us to develop SERPENS. SERPENS utilizes massive HBM memory
channels for high-throughput processing of sparse matrices. We
customize the storing and sharing of dense vectors for the need of
SpMV to fully utilize FPGA resource. We architect SERPENS as a
general-purpose accelerator to deliver competitive SpMV perfor-
mance to GPUs for data-center computing.

3 SERPENS ACCELERATOR

3.1 Accelerator Architecture

3.1.1  HBM Channel Allocation. Figurel (a) shows the overall ar-
chitecture of the SERPENS accelerator. For the off-chip memory
accessing in SpMV, SERPENS needs to (1) stream in the sparse A
matrix, (2) stream in the dense X vector, and (3) stream in the dense
i vector and write the result X vector. The dense vector size is
much smaller than the sparse matrix size. For example, the matrix
hollywood is 1.25 GB while the corresponding dense vector is 4
MB. Thus, we allocate one HBM channel for each dense vector,
ie., X, input ¢, and output g, and sixteen HBM channels for the
sparse A matrix. In total, SERPENS occupies 19 HBM channels and
the accumulative memory bandwidth is 273 GB/s.

3.1.2  SERPENS Modules. We deploy a read (Rd) or write (Wr) mod-
ule for each HBM channel. The Rd/Wr modules performs streaming
memory accessing to off-chip HBM. The bitwidth of the Rd/Wr mod-
ules is 512. For the dense vector Rd/Wr modules, we coalesce 16
floating-point values into a 512-bit segment. For one sparse element,
each of the row index, column index, and float attribute occupies
32 bits. Because we partition the vectors and matrices in SpMV pro-
cessing (Sec.3.2), the indices are limited in a range at each iteration.
Thus, we reduce the index bits and compress a row-column index
pair into 32 bits to save memory bandwidth. We encode a sparse
element with 64 bits. As a result, for the sparse matrix read module,
we coalesce eight sparse elements into a 512-bit segment. SERPENS
deliver the spares elements from one HBM channel to 8 processing
engines (PEs). One PE performs part of the matrix-vector multipli-
cation A X X. We use one arbiter to select computation results from
16 PEs and send the result to a CompY module. The CompY module



SERPENS: A High Bandwidth Memory Based Accelerator for General-Purpose Sparse Matrix-Vector Multiplication

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

(a) Accelerator architecture.
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Figure 1: SERPENS accelerator architecture and matrix-vector processing.
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Figure 2: An example of "coloring" and reordering in Sex-
tans [27]: (a), (c), and SERPENS: (b), (d). We assume the DSP
latency is 2.

performs the element-wise (e, f) multiplications and additions to
obtain final SpMV results.

3.2 SpMV Processing Order

Figurel (b) shows the overall processing order in SERPENs. We
partition the dense vector X into segments. The segment length
W = 8192. In the processing, we stream in one X segment and
store it in BRAMs. Then we stream in sparse A elements associated
to the X segment. For the accumulation of A X X, we use URAMs
as accumulation buffers. After we finish the processing on one ¥
segment, we iterate on next segment. With the partition and SpMV
processing order, the benefits include: (i) SERPENS does not issue
any random access to off-chip memory. All the off-chip memory
accessing is sequential. Thus, SERPENS can fully utilize the off-chip
memory bandwidth and amortise the latency of off-chip memory
accessing. (ii) There are two kind of random accesses in SpMV:
(1) irregularly reading elements from the dense vector X and (2)
accumulating on vector 3. Now, SERPENS limits the two random
accessing on chip. With the optimization of II=1 pipeline, we can
achieve a high processing throughput. (iii) SERPENS will read/write
any of the vectors and the sparse matrix only once without any
duplicate reading/writing. Thus, SERPENS minimizes the off-chip
communication.

3.3 Memory-Centric Processing Engines

HBM provides massive memory channels to users. However, the
switching/crossing between HBM channels requires special han-
dling to achieve high memory throughput [8]. SERPENS avoid one
module to access cross multiple HBM channels by the memory-
centric processing engines as shown in Figurel (c). SERPENS dis-
tributes the sparse elements from one channel to 8 PEs. We im-
plement the broadcasting of the dense vector segment from one
channel to all PEs using a chain topology [9] to achieve a higher
frequency [14]. There are four copies of the the dense vector ¥
segment stored in BRAMs. Since each BRAM has two ports, we
share one BRAM with two PEs to save half of the BRAM usage.

Table 1: The design parameters of SERPENS accelerator.

Architecture
HBM Channels PEs/Channel BRAMI18Ks/PE  URAMs/PE
Hy = 16/24 8 128 U=3
Bit-Width
Memory Bus Data Index Instruction
512 32(float)  32(row-+col.) 32

There is no bank conflict when the 8 PEs fetch dense elements from
different BRAM addresses. We make URAM address for each PE
disjoint to avoid the URAM bank conflict caused by the accessing
from multiple PEs.

The memory-centric PEs also enable rapid scalability. Users can
easily customize SERPENS according to their need on various mem-
ory channels and bandwidths. We show the performance of SEr-
PENS when we scale up channel allocation for the sparse matrix
from 16 to 24 in Sec. 4.4.

3.4 Index Coalescing & Non-Zero Reordering

Index coalescing is a micro-architecture level optimization we apply
to improve URAM utilization. The minimum bit width of a URAM
configuration is 72. It is a waste to store a 32-bit float (FP32) value
to one URAM address (entry). Thus, we coalesce two values whose
destination row indices are consecutive into one common URAM
address. In the reordering of non-zeros (sparse elements), besides
read-after-write (RAW) conflict [27], we also need to handle the
URAM access conflicts caused by coalesced indices.

Figure2 compares the non-zero reordering in Sextans [27] and in
SERPENS. We assume the latency T of DSP accumulation on a float is
2 cycles. We view the recording in Sextans [27] as a process of two
steps — coloring and reordering. The coloring step colors elements
in the same row with the same color shown in Figure 2 (a). In the
recording step, we ensure none of the same color elements are in
any of the T-cycle windows (Figure 2 (c)). After we applied the
index coalescing, we store two elements of consecutive row indices
to the same URAM address. To avoid URAM address conflicts, we
only need to color elements of two consecutive rows with the same
color shown in Figure 2 (b) and then apply the same reordering
rule for SERPENS. Figure 2 (d) illustrates the reordered non-zeros
taking both RAW and index coalescing conflicts into consideration.
We summarize the design parameters of SERPENS accelerator in
Table 1.

3.5 Resource & Performance Analysis

We estimate SERPENSs BRAM/URAM consumption and cycle count
when achieving an II=1 pipeline.
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3.5.1 BRAM Consumption. When streaming in the dense vector
and storing the vector to BRAMs, one 512-bit block contains 16 FP32
values. The bitwidth of a BRAM18K is 18, so we need 2 BRAM18Ks
to store one FP32. For the whole 512 bits, we require 32 BRAM18Ks.
Since one BRAM18K has two ports, we reduce the BRAM18K num-
ber to 16. When streaming in sparse elements, for each memory
channel, we dispatch 8 sparse elements to 8 PEs per cycle. Thus we
need 16 X 8 = 128 BRAM18Ks. Because we share one BRAM with
two PEs in SERPENS, the actual number of BRAM18Ks per channel
is 64. We assume there are H4 HBM memory channels allocated
to the sparse matrix A. In total, we require 64 - H4 BRAM18Ks.
One BRAM contains two BRAM18Ks on Xilinx FPGAs. Thus, the
number of BRAMs is:

#BRAMs = 32 - Hy. (1)

3.5.2  URAM Consumption. Assuming that we assign U URAMs to
each PE. There are 8 - H4 PEs in total, because URAMs are disjoint
for different PEs, the total number of URAMs is:

#URAMs = 8 - Hy - U. @)

Assuming the depth of a URAM configured by a wdith of 72 bits is
D, with the index coalescing in SERPENS, the on-chip accumulation
row depth is:

#Row Depth =16 - Hy - U - D. 3)

3.5.3 Cycle Count. We assume the row number, column number,
and number of non-zeros (sparse elements) of the sparse matrix is
M, K, and NNZ, respectively.

Because we allocate one memory channel to the dense vector X,
the cycle count of streaming in vector X is K/16. SERPENS performs
the streaming in the dense input vector i and the streaming the
out dense output vector 3 in parallel, thus the cycle count on the
two dense y vectors is M/16.

In the computation, at each cycle, one PE processes 8 sparse
elements. Because there are 8 - Hy PEs in total, the cycle count for
processing the sparse elements is NNZ/(8 - Ha).

We add up the streaming and computation cycle counts to obtain
the overall cycle count:

#Cycle = (M +K)/16 + NNZ/(8 - Hy). )

4 EVALUATION

4.1 Evaluation Setup

4.1.1 The Evaluated Accelerators. We evaluate the SpMV routine
on SERPENS and two FPGA-related accelerators — Sextans [27],
GraphLily [18], and an Nvidia Tesla K80 GPU. Table 2 lists the
frequency, memory bandwidth and power of the four evaluated
accelerators.

We describe SERPENS accelerator in Xilinx high level synthesis
(HLS) C++ and prototype with Vitis 2020.2. For Sextans, we uti-
lize the open-sourced code and prototype with Vitis 2020.2. For
GraphlLily, we obtain the open-sourced bitstream (.xclbin). We run
the three FPGA accelerators on a Xilinx Alveo U280 FPGA board
then measure the execution time by Xilinx Run Time and the power
consumption by xbutil. To perform SpMV on GPU, we use CuS-
PARSE [23] routine csrmv with CUDA 10.1. We measure the GPU
execution time by cudaEventElapsedTime and power consump-
tion by nvidia-smi. We amortize the execution time by 100 runs.
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Table 2: The specification of the evaluated accelerators.

Sextans [27] GraphLily [18] SERPENs  Tesla K80

Frequency 197 MHz 166 MHz 223 MHz 562 MHz

Bandwidth | %417 GB/s &285 GB/s %273 GB/s  *480 GB/s
Power 52 W 43 W 48 W 130 W

& Utilized bandwidth, ¥ maximum bandwidth.

Table 3: The specification of evaluated matrices.

Twelve Large Matrices/Graphs

ID Matrix #Vertices  #Edges
G1 googleplus [20] 108 K 13.7M
G2 crankseg_2 [10] 63.8 K 141 M
G3 Si41Ge41H72 [10] 186 K 15.0 M
G4 TSOPF_RS_b2383 [10] 38.1K 16.2 M
G5 ML_Laplace [10] 377K 27.6 M
G6 mouse_gene [10] 451K 29.0 M
G7 soc_pokec [20] 1.63 M 30.6 M
G8  coPapersCiteseer [10] 434K 21.1M
Go PFlow_742 [10] 743 K 371 M
G10 ogbl_ppa [17] 576 K 425 M
G11 hollywood [20] 1.07 M 113 M
G12 ogbn_products [17] 2.45M 124 M

SuiteSparse [10] Matrices
Number of Matrices 2,519 NNZ
Row/column 24 -2,999,349 | Density

1,000 - 89,306,020
8.75E-7 - 1

GraphLily employs 19 HBM channels and 1 DDR4 channel, trans-

lating to 285 GB/s memory bandwidth. Sextans uses 29 HBM chan-
nels and the bandwidth is 417 GB/s. SERPENS-A16 uses 19 HBM
channels for a bandwidth of 273 GB/s.
4.1.2 The Evaluated Matrices. For the comparison of SERPENS
with Sextans and GraphlLily, we evaluate them on 12 large ma-
trices/graphs which are selected from SNAP [20], OGB [17], and
SuiteSparse [10]. The number of vertices (rows) ranges from 45K
to 2.45M and the number of edges (non-zeros) can be as high as
124M. For the comparison of SERPENS with K80, we evaluate on
2,519 sparse matrices whose number of non-zeros (NNZ) is greater
than 1,000 and less than 100M from SuiteSparse. The geomean
density of the evaluated SuiteSparse matrices is 1.4E-3. Table 3
shows the specifications of the evaluated matrices. We evaluate
single floating-point SpMV. We compare the execution time (ms),
throughput in million traversed edges per second (MTEPS), band-
width efficiency defined as (throughput)/(memory bandwidth), and
energy efficiency defined as (throughput)/(power consumption) of
the three FPGA accelerators. We set N=8 (the minimal supported
N) for Sextans [27] to obtain SpMV results. We run GraphLily [18]
on SpMV mode.

4.2 Comparison with Related Accelerators

Table 4 shows the execution time, throughput, bandwidth and en-
ergy efficiency of the three FPGA accelerators. Sextans [27] is an
HBM-FPGA SpMM accelerator. An SpMV accelerator is able to
switch to process SpMM and vice versa in functionality. However,
their designs are different and customized for the performance of
tow different kernels — SpMV/SpMM. We use Table 5 to compare
SERPENS and Sextans [27]. We use the matrix TSOPF_RS_b2383_c1

from SuiteSparse [10] to illustrate the difference. The SpMM(N=16)
latencies of SERPENS (running 16 SpMVs) and Sextans are 8.56 ms
and 2.87 ms, respectively, and the SpMV latencies of SERPENS and
Sextans are 0.535 ms and 1.44 ms, respectively. We got lower per-
formance if we use an SpMM accelerator for perform SpMV and
vice versa. The different customization in the accelerators lead to
their performance expertise. For memory channel allocation for
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Table 4: Performance of Sextans [27], GraphLily [18], and SERPENS on twelve large matrices/graphs. The improvement is the
ratio of a performance metric of SERPENS compared to that of GraphLily.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 GMN
Execution Sextans 3.06 1.38 1.64 1.36 2.73 2.72 - 3.58 - - - - 2.20
Time: GraphLily 1.73 1.47 1.85 1.57 2.96 2.80 7.04 3.63 4.52 4.59 12.4 18.6 3.74
ms SERPENS-A16 1.87 0.930 0.853 0.730 1.37 1.37 4.52 2.09 2.05 2.04 6.20 6.32 1.96
Th hout: Sextans 9.01 20.60 18.55 23.81 20.47 21.33 - 18.14 - - - - 18.15
roughput: .
GraphlLily 15.96 19.36 16.44 20.64 18.87 20.69 9.17 17.90 16.75 18.74 18.36 13.60 16.86
GFLOP/s SERPENS-A16 14.71 30.56 35.62 44.39 40.75 42.26 14.29 31.06 37.01 42.26 36.70 39.90 32.21
Sextans 4,470 10,255 9,162 11,878 10,099 10,651 - 8,951 - - - - 9,005
Throughput: GraphLily 7,920 9,639 8,117 10,296 9,305 10,331 4,352 8,828 8,212 9,243 9,094 6,668 8,310
MTEPS SERPENS-A16 7,300 15,214 17,594 22,144 20,099 21,098 6,782 15,324 18,142 20,847 18,176 19,565 15,876
Improvement 0.922X 1.58X 2.17X 2.15X 2.16X 2.04X 1.56X 1.74X 2.21X 2.26X 2.00X 2.93X 1.91X
Bandwidth Sexta.ns 10.7 24.6 22.0 28.5 24.2 25.5 - 21.5 - - - - 21.6
Efficiency: GraphLily 27.8 33.8 28.5 36.1 32.7 36.2 15.3 31.0 28.8 324 31.9 234 29.2
MTEPS/(GB/s) SERPENS-A16 26.7 55.7 64.4 81.1 73.6 77.3 24.8 56.1 66.5 76.4 66.6 71.7 58.2
Improvement 0.962X 1.65X 2.26X 2.25X 2.25X 2.13X 1.63X 1.81X 2.31X 2.35X 2.09%x 3.06X 1.99%
Energy Sexta.ns 86.0 197 176 228 194 205 - 172 - - - - 173
Efficiency: GraphLily 184 224 189 239 216 240 101 205 191 215 211 155 193
MTEPS/W SERPENS-A16 152 317 367 461 419 440 141 319 378 434 379 408 331
Improvement 0.826X 1.41X 1.94X 1.93% 1.94X 1.83% 1.40X 1.56X 1.98X 2.02X 1.79X 2.63X 1.71X

Table 5: Comparisons of SERPENS, Sextans [27], and
GraphlLily [18].

Kernel #Ch. - Sparse A #Ch. - Dense B/C(X/Y) #Ch. - Instr.
SERPENS SpMV 16/24 1/1 1
Sextans SpMM 8 4/8 1
GraphlLily Graph 16 1/1 -

O0oONZ  Sharing Sparse A Index Coalescing Perf - SpMV/SpMM

SERPENS Yes No Yes High/Low

Sextans Yes Yes No Low/High
GraphlLily No No No -/-

Table 6: Resource utilization of Sextans, GraphLily, and SER-
PENS-A16 on a Xilinx U280 FPGA board.

LUT FF DSP BRAM URAM
Sextans  331K(29%) 594K(25%) 3233(36%) 1238(68%)  768(30%)
GraphLily 390K(35%) 493K(21%)  723(8%)  417(24%)  512(53%)
SERPENs  173K(15%) 327K(14%)  720(8%)  655(36%)  384(40%)

the matrices, since the vector size is significantly smaller than the
sparse matrix size, thus SERPENS needs to allocate one channel
for a vector and allocate memory channels for the sparse matrix.
So SERPENS performs better than Sextans for SpMV. However, the
dense element sharing helps Sextans perform better than SERPENS
for SpMM. GraphlLily is an FPGA overlay which is able to support
a few graph kernels that can be executed in a BLAS processing
model. GraphLily supports generalized multiplication and general-
ized reduction. For example, GraphLily can configure a generalized
multiplication as one of (1) algebraic multiplication, (2) algebraic
addition, (3) logic AND, and (4) zero output. In the processing of
SpMV where GraphLily configures a generalized multiplication as
an algebraic multiplication, the hardware resource for the other
two operations is idle. Thus, GraphLily lacks deeper specialization
for SpMV and the SpMV execution time of GraphLily is larger than
the execution time of SERPENS.

4.2.1 Execution Time. Sextans is not able to support Matrix G7
and G9 - G12 directly on the hardware. For the other matrices,
the execution time of SERPENS is less than the execution time of
Sextans. For the comparison with GraphLily, SERPENS is slightly
slower (1.87 ms v.s. 1.73 ms) on G1 but faster than GraphLily on
the other 11 matrices.

4.2.2  Throughput. We use (NNZ)/(execution time) to calculate
the throughput (MTEPS). The throughput directly corresponds to
the execution time. A shorter execution time leads to a higher
throughput. The maximum throughput achieved by GraphLily is

10,331 MTEPS while the maximum throughput achieved by SERPENS
is 22,144 MTEPS. For the geometric throughput, GraphLily and
SERPENS achieve a geomean throughput of 8,310 MTEPS and 15,876
MTEPS respectively, leading to a 1.91x throughput improvement
of SERPENS over GraphLily.

4.2.3 Bandwidth Efficiency. On the same graph/matrix, the band-
width efficiency is determined by the execution time and the ac-
celerator’s memory bandwidth. GraphLily’s bandwidth is higher
than SERPENS’ bandwidth (285 GB/s v.s. 273 GB/s). With a faster ex-
ecution time, SERPENS achieves a geomean bandwidth efficiency of
58.2 MTEPS / (GB/s), 1.99x compared with GraphLily’s bandwidth
efficiency. The highest bandwidth efficiency achieved by SERPENS
is 81.1 MTEPS / (GB/s) on G4.

4.2.4 Energy Efficiency. Some hardware resource of GraphLiLy
overlay may be idle when performing one specific graph kernel, so
the power consumption of GraphLiLy is lower than that of SERPENS
(43 W v.s. 48 W). However, SERPENS is 1.91x faster than GraphLiLy,
leading to a 1.71x energy efficiency improvement.

4.2.5 Resource Utilization. Table 6 lists the FPGA resource utiliza-
tion of the three accelerators on the same U280 board. Sextans
requires the highest resource utilization because Sextans needs to
compute on the dense B matrix which is larger than the ¥ vector in
SpMV. In contrast to GraphLily, SERPENS consumes less LUT, FF,
DSP, and URAM. Because SERPENS is customized specifically for
SpMYV, it does not need the extra FPGA resource that GraphLily re-
quires for its generalized operations. However, SERPENS consumes
more BRAMs than GraphLily, because SERPENs explicitly deploys
more BRAMs to access on-chip memory in parallel.

4.2.6 Other SpMV Accelerators. We compare SERPENS with two
other real-execution SpMV accelerators [25] and SparseP [13] in
Table 7. [25] is based on an FPGA and SparseP [13] is based on a real
PIM system. SERPENS-A24 has the highest peak performance and
SERPENS-A16 performs better and has lower memory bandwidth
than both [25] and [13].

4.3 Comparison with K80 GPU

We compare SERPENS-A16 with K80 GPU on a wide range of 2,519
sparse matrices from SuiteSparse [10] to demonstrate the perfor-
mance of SERPENS as a general-purpose accelerator in a data center.
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Table 7: Comparison with other SpMV accelerators.

Bandwidth ~ Peak Performance

SERPENS-A16 273 GB/s 44.2 GFLOP/s
SERPENS-A24 388 GB/s 60.4 GFLOP/s
[11] 258 GB/s 25.0 GFLOP/s
[25] 357 GB/s 34.0 GFLOP/s

SparseP [13] 1770 GB/s 4.66 GFLOP/s

Throughput — GFLOP/s

* K80
® Serpens-Al6

-2 . I I I I
10103 10* 10 10 10’ 10
Number of Non-Zeros (NNZ)

Figure 3: SpMV throughput (in GFLOP/s) of K80 and SERPENS
plotted with increasing NNZ.

Table 8: The SpMV throughput (GFLOP/s) of the 24 HBM
channel version SERPENSs and improvement over GraphLily.

G1 G2 G3 G4 G5 G6
SERPENS-A24 15.33 36.05 45.07  60.55 5230  57.96
Improvement 0.960X  1.86X 274X 293X 277X  2.80X

G7 G8 G9 G10 G11 G12
SERPENS-A24 18.34 3647  46.86  56.11  45.08  51.56
Improvement 2.00x 2.04x 280X  3.00x 246X  3.79X

K80 is a more powerful accelerator than SERPENS in terms of fre-
quency and bandwidth as shown in Table 2.

We plot the SpMV throughputs of K80 and SERPENS in Fig-
ure 3. SERPENs achieves higher throughput on almost all matri-
ces than K80. The maximum throughputs of K80 and SERPENS are
46.43 GFLOP/s (14,521 MTEPS) and 29.12 GFLOP/s (23,158 MTEPS)
respectively. The geomean throughput of SERPENS compared to
K80 is 2.31x. For the geomean bandwidth efficiency, K80 achieves
2.10 MTEPS /(GB/s). With a geomean bandwidth efficiency of 8.52
MTEPS/(GB/s), SERPENS outperforms K80 by 4.06x. For the ge-
omean energy efficiency, K80 achieves 7.75 MTEPS/W. SERPENS has
a geomean energy efficiency of 48.4 MTEPS/W (6.25X better).

4.4 Scalability

We scale up HBM channel allocation from 16 to 24 to further boost
performance. Vanilla Vitis failed place and route because of the
congestion caused by heavy HBM channel usage. With the aid of
TAPA [6] and Autobridge [15], we successfully place and route
the 24 HBM channel version, resulting in 270 MHz frequency. We
compare SERPENS-A24 with GraphLily [18] in Table 8. SERPENS-A24
achieves up to 60.55 GFLOP/s (30,204 MTEPS) and a throughput of
up to 3.79x improvement over GraphLily.

5 CONCLUSION

We present SERPENS, an HBM based accelerator for SpMV accel-
eration. SERPENS is a general-purpose design which supports an
arbitrary SpMV. We design memory-centric processing engines in
SERPENS for full utilization of memory bandwidth and the scalability
with memory channels. We improve URAM utilization for vector
storage by index coalescing, and the index coalescing is integrated

Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong

with non-zero recording. In the evaluation, we compare SERPENS
with two related FPGA accelerators Sextans [27] and GraphLily [18].
SERPENS outperforms the latest accelerators GraphLiLy and Sextans
by 1.91x and 1.76X, respectively, in terms of geomean throughput.
For the comparison of SERPENs with K80 GPU on SuiteSparse [10],
SERPENS achieves 2.10x higher throughput. We scale up SERPENS
to support 24 HBM channels for the spares matrix. After scaling
up to 24 HBM channels, SERPENS achieves a throughput of up to
60.55 GFLOP/s (30,204 MTEPS) and up to 3.79% over GraphLily.
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