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Abstract—Although emerging non-volatile memories (NVMs) have been comprehensively studied to design next-generation memory

systems, the symmetry of the crossbar structure adopted by most NVMs has not been addressed. In this work, we argue that

crossbar-based NVMs can enable dual-addressing memory architecture, i.e., RC-NVM, to support both row- and column-oriented

memory accesses for workloads with different access patterns. Through circuit-level analysis, we first prove that such a

dual-addressing architecture is only practical with crossbar-based NVMs rather than DRAM. Then, we introduce the RC-NVM

architecture from bank, chip and module levels, and propose RC-NVM aware memory controller. We also address the challenges to

implement the end-to-end RC-NVM system. Especially, we design a novel protocol to solve the cache synonym problem with very little

overhead. Finally, we introduce the deployment of RC-NVM for in-memory databases (IMDBs) and evaluate its performance with

IMDBs and well-optimized general matrix multiply (GEMM) workloads. Experimental results show that with only 10 percent area

overhead 1) the memory access performance of IMDBs can be improved up to 14.5X, and 2) for GEMM, RC-NVM naturally supports

SIMD operations and outperforms the best tiled layout by 19 percent.

Index Terms—Non-volatile memory, crossbar, in-memory database, OLTP, OLAP

Ç

1 INTRODUCTION

EMERGING non-volatile memories (NVMs) have been
comprehensively studied to replace or complement

DRAM in next-generation memory systems. Prior works
mainly exploit the non-volatility, high storage density, and
low standby power of NVMs. Unlike DRAM, most NVMs
are based on simple two-terminal switching elements,
which can be fabricated in a crossbar structure [1]. This
structure not only minimizes the feature size of memory
cells maximizing the storage density, but also possesses the
symmetry property. However, there is still no work to

exploit the symmetry of the crossbar structure, which can
naturally enable dual-addressing memory architecture to
support both row and column memory accesses for work-
loads with different access patterns, especially hybrid OLTP
(on-line transactional processing) and OLAP (on-line ana-
lytical processing) in-memory databases (IMDBs). We here
take IMDBs as an example to illustrate the need for memory
to support both row and column accesses.

An IMDB is a database system that stores a significant part,
if not the entirety, of data inmainmemory to achieve high per-
formance. Compared with traditional disk-based databases,
which only buffer small portions of data in main memory, an
IMDB primarily relies on main memory for data storage. Con-
ventionally, database workloads are categorized into OLTP
and OLAP. OLTP workloads are characterized by a mix of
reads and writes to a few rows at a time, which are often
latency-critical. On the contrary, OLAP workloads are charac-
terized by bulk sequential scans spanning a few columns, such
as computing the sum of a specific column. These two kinds of
workloads are usually served by twodifferent types ofDBMSs,
i.e., transactional processing and data warehouse systems.
However, the explicit separation between OLTP and OLAP
workloads in IMDBs suffers from 1) the significant waste of
the precious memory capacity due to two copies of data resi-
dent in memory, and 2) the low data freshness for real-time
analysis due to the slow expensive extract-transform-load
(ETL) process between theOLTP andOLAPparts [2].

IMDBs with substantial performance improvement have
made it possible to process hybrid OLTP and OLAP
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workloads (referred to as OLXP [3]) in a single database.
However, different workloads require different data access
patterns and storage layouts in order to achieve good per-
formance [4]. The row-store layout works well for OLTP
workloads, while the column-store layout works well for
OLAP workloads. This is because OLTP workloads tend to
access most (if not all) of the fields of specific tuples in the
database, while OLAP workloads tend to access one or sev-
eral fields of a large number of tuples. Arulraj et al. [5] pro-
posed a hybrid layout to store hot and cold tuples in a table
with the row-/column-store layout respectively. However,
data reorganization is needed to dynamically adapt the stor-
age layout, which significantly increases the complexity of
the DBMS and degrades the overall performance. Ideally, if
the tables stored in memory can be accessed in both row
and column directions, IMDBs can naturally support both
OLTP and OLAP workloads without data reorganization.

Without any doubt, performance of an IMDB is quite sensi-
tive to the efficiency of accessing data in main memory. Thus,
how to optimize memory architecture to facilitate both row-
oriented and column-oriented data accesses has become a key
instrument in improving its performance. Recently, Seshadri
et al. proposed a technique called GS-DRAM [6] to accelerate
strided accesses by allowing the memory controller to access
multiple values of a strided access pattern from different
chips with a single read/write command. However, GS-
DRAM is not flexible enough since only power-of-2 strided
access patterns can be supported. Considering various tuples
in real IMDB tables and kinds of workloads accessing differ-
ent fields, the benefit of GS-DRAM will be significantly
degraded in real IMDB applications where various strided
access patterns coexist. In addition, the complexity increase
with the number of tables becausemultiple patternsmay exist
at the same time.

An ideal solution is to design novel memory architecture
to support both row-oriented and column-oriented accesses.
Chen et al. proposed dual-addressing DRAM, to which we
refer as RC-DRAM throughout the remainder of this work,
to enable DRAM to support both row-oriented and column-
oriented memory accesses [7]. In RC-DRAM, two transistors
and one capacitor are employed to store a single bit of data,
in contrast to the common single-transistor-single-capacity
DRAM cell. Moreover, one extra pair of wordline and bit-
line per cell is added to support the column-oriented access.
In fact, DRAM cell arrays are the most area-consuming part
in DRAM chips. The modifications to DRAM arrays in RC-
DRAM lead to unacceptable area overhead, which signifi-
cantly diminishes the high density advantage of DRAM.
Therefore, the design of RC-DRAM is impractical for real
applications (see Section 3.4).

As promising candidates to replace or complement
DRAM, NVM-based main memory has been proposed to
utilized in many fields, including IMDBs [8] and scientific
applications [9]. Unlike DRAM, most NVMs are fabricated
in a symmetric crossbar structure, which can be exploited to
easily implement dual-addressing memory to support
both row-oriented and column-oriented accesses with
negligible area and latency overhead. Based on this obser-
vation, we design Row-Column-NVM (RC-NVM) archi-
tecture that leverages the symmetry of crossbar-based
NVMs to support both row-oriented and column-oriented

memory accesses. Contributions of this work are summa-
rized as follows:

� We propose RC-NVM, a novel memory architecture
that exploits the symmetric crossbar structure to sup-
port both row- and column-oriented accesses. We
extend the traditional memory controller to work for
RC-NVM.

� We address the challenges in implementing an end-
to-end RC-NVM system, including ISA, system and
software support. Especially, we propose a novel
cache architecture to solve the cache synonym issue
with very little overhead.

� We introduce the deployment of RC-NVM for
IMDBs and propose group caching technique that
combines the IMDB knowledge with the memory
architecture to further optimize the system.

� We present the benefits of RC-NVM by evaluating
its performance with an OLXP benchmark and a
well-optimized general matrix multiply (GEMM)
workload. Experimental results show that with only
10 percent area overhead 1) for IMDBs, the memory
access performance can be improved up to 14.5X,
and 2) for GEMM, RC-NVM naturally supports
SIMD operations and outperforms the best tiled
layout by 19 percent.

The rest of this paper is organized as follows. We intro-
duce the background and motivation in Section 2. The RC-
NVM architecture and end-to-end RC-NVM system design
are introduced in Sections 3 and 4. Section 5 discusses the
deployment of RC-NVM for hybrid OLTP and OLAP
IMDBs. Evaluation methods and results are presented in
Section 6. We introduce related work in Section 7, followed
by the summary in Section 8.

2 BACKGROUND AND MOTIVATION

We begin with a review of the data layout issues of IMDBs
to address the difference between OLTP and OLAP access
patterns. Then, we present existing RC-DRAM design and
argue that it is impractical due to high area overhead.
Finally, we take crossbar-based RRAM as an example to
show the potential of RC-NVM design.

2.1 Data Layout Issue of OLXP DBMSs

Relational databases organize data into two-dimensional
tables with rows (i.e tuples) and columns (i.e., fields).
Although DRAMmodules consist of two-dimensional capac-
itor arrays with wordlines and bitlines, they only support
row-orientated accesses. Therefore, from the perspective of
operating systems and applications, main memory is a linear
address space starting at zero. NVM-based main memo-
ries [10], [11] also follow the basic design of single-addressing
architecture. The database storagemanager must decide how
to map the two-dimensional table structures to the linear
memory address space.

Most OLTP DBMSs employ the row-store layout. In this
case, all fields of a tuple are stored consecutively in mem-
ory. Two totally different access patterns from OLTP and
OLAP workloads respectively are illustrated in Fig. 1. The
upper half shows a typical OLTP transaction that accesses a
single tuple, while the lower half demonstrates an OLAP
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query that scans two fields of all tuples. The row-store lay-
out works well for OLTP workloads, while it is inefficient
for OLAP workloads. Since row-store DBMSs unnecessarily
access fields that are not needed when executing OLAP
queries, this results in the waste of precious cache space
and memory bandwidth resources.

An alternative approach, column-store layout, stores a
single field of all tuples in a table contiguously. This storage
layout works well for column-oriented accesses in OLAP
workloads, like performing an aggregate calculation on a
specific field. However, it is not ideal for write-heavy OLTP
workloads. Currently, the row-store layout is widely used
for OLTP DBMSs, while the column-store layout is widely
utilized in OLAP scenarios like data warehouses.

Arulraj et al. [5] proposed the hybrid layout, which com-
bines both the row-store and column-store layouts. In
essence, hot tuples in a table employ the row-store layout
for OLTP transactions, while colder tuples in the same table
are stored in the format ideal for OLAP queries. A logical
abstraction over this hybrid data layout allows a single exe-
cution engine to support hybrid workloads. However, this
design increases the complexity of the DBMS and degrades
the overall performance due to the additional overhead
needed to transfer tuples between two different formats
and maintain the consistency of the whole table.

2.2 Crossbar Structure of NVMs

Most of the emerging NVMs are based on simple two-termi-
nal switching elements, such as MRAM, RRAM, PCM and
3D XPoint. To integrate NVM cells into a memory array,
there are two type of architectures. The first one is one-
transistor and one resistor (1T1R), where each NVM cell is
in series with a cell selection transistor, which is used to iso-
late the selected cell from other unselected cells. The second
architecture is the crossbar array, which consists of word-
lines and bitlines perpendicular to each other with NVM
cells located at the intersections. The crossbar array in prin-
ciple can achieve 4F 2 cell area, which has higher integration
density than the 1T1R array. Furthermore, the crossbar
architecture allows 3D stacking of multiple memory array
layers, increasing the effective density further.

Emerging non-volatile memory technologies have been
comprehensively studied to implement next-generation per-
sistent memory systems. However, prior works neglected
the symmetry of the crossbar structure, which can be
exploited to easily implement dual-addressing memories. In

this section, we take RRAM as an example to explain why
crossbar-basedNVMs are feasible for dual-addressingmem-
ory design. The similar design can be extended to other
crossbar-based NVM technologies, such as MRAM [12], [13],
PCM [14] and 3DXPoint [15], [16].

An example of 4� 4 crossbar array of RRAM is depicted
in Fig. 2a. The crossbar array is consisted of crossing word-
lines and bitlines. Each RRAM cell lies at the intersections
of wordlines (WLs) and bitlines (BLs). Without access tran-
sistors, these cells are directly interconnected to WLs and
BLs via top and bottom electrodes. Read and write opera-
tions can be performed by activating WLs and BLs with par-
ticular voltages.

To read out a row from the array, the target WL will be
driven to read voltage VRead. Other WLs are set to the read
reference voltage VRef . By keeping the voltage of BLs being
VRef with current sensing amplifiers, the voltage across the
unselected RRAM cells is equal to zero. Thus, data of the
target row can be read out by sensing the pass-through cur-
rent ISense on each BL as shown in Fig. 2a. Since WLs and
BLs are symmetric in such a crossbar array, reading out a
column can be realized by simply exchanging operations on
WLs and BLs as shown in Fig. 2b.

The write operation requires two steps, RESET and SET.
The RESET phase writes “0”s, while the SET phase writes
“1”s. Since the only difference between RESET and SET is
the polarity of voltages applied across target cells, we here
take the SET operation as an example to illustrate row and
column write operations in the crossbar array. Fig. 2c shows
how to SET two cells on the first row. The target wordline
WL0 is set to VS , and the corresponding bitlines (i.e., BL0

and BL2) are set to GND. At the same time, all other WLs
and BLs are half biased at VS=2. Therefore, the write voltage
VS is fully applied across the target cells. In this way, the
two target cells on WL0 will be set to “1”.

Similarly, to set cells on a column can be easily imple-
mented by control the voltages of wordlines and bitlines.
As shown in Fig. 2d, the corresponding wordlines WL0 and
WL2 are set to VS , and the target bitline BL0 is set to GND.
All other wordlines and bitlines are half biased at VS=2.

Fig. 1. Access patterns of OLTP & OLAP workloads.

Fig. 2. (a) Read a row in a 4� 4 ReRAM crossbar arry, (b) Read a col-
umn, (b) SET two cells on a row and (c) SET two cells on a column.
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A key observation is that there is no change required to a
crossbar array to enable both row and column accesses
because of the symmetry of the RRAM crossbar array. Thus,
compared to RC-DRAM, we can implement the RC-NVM
design with very little area overhead. Note that RC-NVM is
also feasible for crossbar arrays with specific selectors (e.g.,
FAST selector for RRAM [17] andOTS selector for PCM [18]).

3 THE RC-NVM ARCHITECTURE

We first introduce the physical/logic bank and module
architecture of RC-NVM. Especially, we propose peripheral
circuitry sharing mechanism to minimize the area overhead.
Then, we evaluate the area and latency overhead of RC-
NVM. Finally, we introduce the design of RC-NVM aware
memory controller.

3.1 RC-NVM Bank

Fig. 3a shows the schematic view of an RC-NVM bank in a
chip. Leaving the RRAM array (i.e., mat) unchanged, extra
peripheral circuitry is added to support both row-oriented
and column-oriented accesses in the same bank. Both WLs
and BLs are connected with dedicated decoder, sense ampli-
fier (SA) and write driver (WD) as shown in Fig. 3b. The con-
nection is controlled by multiplexers (MUXs) and control
signals from the memory controller. In addition to the exist-
ing row buffer, a column buffer is deployed to buffer col-
umn-oriented data. A set of adjacent mats in a bank is
organized into a single entity called subarray. A bank contains
multiple subarrays which can provide some parallelism
within the same bank, especially in RC-NVMbasedmemory.

Similar to traditional DRAM and NVM, a logic bank con-
sists of a set of banks from every chip in a rank, which are
operated in lockstep. Fig. 4 shows a logical abstraction of a
logic bank. A logic subarray in the logic bank is the basic
access unit of both row-oriented and column-oriented
accesses. In RC-NVM, the minimum directionless granular-
ity is 8 bytes, which are exactly the data transfered synony-
mously on a 64-bit memory bus. Therefore, this 8 bytes
comes from 8 chips, each of which provides 8 bits from eight
independent mats located in a subarray. Then, a typical
row-oriented (column-oriented) 64-byte cache line is com-
posed of eight 8-byte units on a row (column) in a logic sub-
array as shown in the upper left corner of Fig. 4.

As we can see in Fig. 4, the data on the intersection of the
row and columnmay be duplicated in both row and column
buffer. This data duplication can incur coherence issue if the
data is modified in one buffer while the other is not updated.
To address this issue, we restrict that the row and column
buffer cannot be activated for the same subarray simulta-
neously. If a switch between row and column accesses in a
subarray occurs, the memory controller needs to first pre-
charge the active buffer and flush the data back, and then
activates the other buffer. In this way, RC-NVM solves the
data coherence problem at the cost of some parallelism in the
same subarray. However, our experimental results show
that the design performswell and the impact is marginal.

We take a row-oriented read operation as an example to
explain how addressing is done in RC-NVM. A column
read operation has the same flow. Given an access address,
the global row decoder does the partial decoding to assert a
single global word line (GWL). Then, the local row decoder
eventually generates 1-hot signal to assert the local WL
(LWL). After that, the column decoder selects the target
local bit lines (LBL) and the cells on selected LBL are sensed
out. Finally, SAs deliver the data to the row buffer through
data lines (DL). Such hierarchical decoding structure can
effectively reduce the decoding delay and power consump-
tion when the RC-NVM scales up.

3.2 Sharing of Peripheral Circuitry

In fact, since only a single row/column access is serviced in
a subarray at any time, two adjacent mats on a row/column
can share the SA and WD between them as shown in the
Fig. 3a. This can reduce the area overhead of RC-NVM.

In DRAM, a row buffer is comprised of a row of sense
amplifiers, which both sense and buffer data. In NVMs,
however, sense amplifiers and latches are kept separately,
which allows the decoder and multiplexer to be placed
before the row buffer [10], as shown in Fig. 3. This gives an
opportunity to share buffers among banks. To further
reduce area overhead, adjacent banks in a chip can share

Fig. 3. RC-NVM bank: (a) Schematic view of an RC-NVM bank; (b) Mat
organization. (GWL: global wordline; LWL: local wordline; LBL: local bit-
line; DL: dataline).

Fig. 4. A logic bank across all 8 chips in a rank.
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row and column buffers as shown in Fig. 5. Two banks in a
row/column compete with each other for the column/row
buffer located between them, while two banks in a diagonal
have their own row and column buffer, like Bank 1 and
Bank4. Considering adjacent data tend to have the same
access pattern in terms of orientation, we arrange two banks
in a diagonal successively in the address space. With this
address mapping scheme and access-pattern-aware mem-
ory allocation, the buffer conflict between banks can be min-
imized to guarantee the bank parallelism.

3.3 RC-NVM Module

The basic overall architecture of an RC-NVMmodule is sim-
ilar to a traditional RRAM and DRAM design. It is also
organized hierarchically as channel, rank, bank, subarray as
shown in Fig. 6.

In this example, there are two ranks on an RC-NVM
module. Each rank is composed of eight chips, which work
together to form a 64-bit memory bus. In each chip, multiple
RC-NVM memory mats are grouped as subarrays to sup-
port both row-oriented and column-oriented accesses.

Similar to traditional DRAM modules, the most common
error correcting code (ECC), a single-error correction and
double-error detection (SECDED) Hamming code can be
easily deployed by adding one extra chip per rank, which
stores the parity bits. Note that the granularity of ECC is the
basic access unit (i.e., 8 bytes) of RC-NVM.

3.4 Area and Latency Overhead

The comparison of area overhead between RC-DRAM and
RC-NVM is given in Fig. 7.X-axis shows numbers ofWL/BL

in a single memory array, which represents different array
sizes. Y -axis shows the area overhead of RC-DRAM and RC-
NVM over traditional DRAM and NVM, respectively. The
device level parameters of RRAM are from the Panasonic’s
prototype [19]. The DRAM is modeled based on the parame-
ters fromMicron’s DDR3 technical specifications [20].

Fig. 7 shows that the RC-DRAMalways induces significant
area overhead (more than 2X) over the original DRAM. The
area overhead is proportional to the number of WL/BL in an
array. Therefore, RC-DRAM is not a practical design. On the
contrary, the overhead of RC-NVM ismuch lower. Compared
to RRAM, the proposed RC-NVM only requires extra periph-
eral circuitry while the cell arrays are intact. Thus, the over-
head decreases as the size of the arrays increases. As shown
in Fig. 7, the overhead drops to 10 percent when the number
of WL/BL is 512. Therefore, RC-NVM becomes more attrac-
tivewith larger array sizes.

Extra peripheral circuitry also induces latency overhead
mainly from wire routing. Since more multiplexing transis-
tors are added to the critical path, the read and write latency
increase. The latency overhead of multiplexers, however, is
trivial because the majority of access latency comes from the
cell access and wiring delay. To quantify the latency over-
head, we run SPICE simulation and the results are pre-
sented in Fig. 8. The latency overhead for RC-NVM is
moderate. When the number of WL/BL is 512, the timing
overhead is just about 15 percent.

3.5 Memory Requests Scheduling for RC-NVM

To maximize RC-NVM performance, the memory control-
ler, which is responsible for scheduling memory requests,
need to be adjusted to exploit extra peripheral circuitry,
especially column buffers. To exploit extra column buffers,
different subarrays in a bank can be activated to serve row
and column requests simultaneously. In addition, the mem-
ory scheduler should avoid issuing row and column
accesses to the same subarray simultaneously to avoid data
synonym problem.

In this section, we extend traditional memory controllers
to exploit characteristics of RC-NVM. A memory controller
consists of a memory request buffer and a scheduler that
chooses the next request to be serviced. Fig. 9 shows the
main architecture of a simple but representative memory
scheduler (without gray parts).

Fig. 5. RC-NVM chip design.

Fig. 6. Overall architecture of an RC-NVMmodule.

Fig. 7. Area overhead of RC-DRAM and RC-NVM.

Fig. 8. Latency overhead of RC-NVM.
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As memory requests arrive, they are resolved and buff-
ered in queues with following fields: valid (V), read/write
(R/W), address (Row and Col), data, and state (i.e., age of
requests) for scheduling policies. Typically, each bank has a
separated queue. The scheduler consists of two level arbit-
ers. Each bank has a precharge manager and an activation
arbiter. A single read/write arbiter is shared by all banks.
The precharge managers, activation arbiters and read/write
arbiter send their selected operations to a single address
arbiter which grants the shared address resources to one of
those operations. These arbiters can adopt different policies
to implement different scheduling policies. For common
FR-FCFS [21], the address arbiter prioritizes operations
from read/write arbiter over others, while the activation
arbiters and read/write arbiter all use ordered priority
scheduling, in which older requests are given higher prior-
ity. The precharge managers use open policy, in which a
bank is precharged only if there is no pending reference to
the active row and there are pending references to other
rows in the bank.

To support RC-NVM requests scheduling, three new
fields, orientation (O), bank ID (Bank) and subarray ID (Sub-
ary), are added in queues as shown in Fig. 9. The orientation
is used to distinguish row and column requests. Instead of
one queue per bank, a set of banks (four adjacent banks as
shown in Fig. 5) sharing row/column buffers are grouped
together to coordinate requests scheduling. Therefore, a
bank ID is needed to identify the target bank in the bank
group. The target subarray in the bank is recorded by the
subarray ID. Similar to traditional bank conflicts, when two
requests come to the same subarray, they have to be served
sequentially, which is called subarray conflicts.

A memory command for a request is ready to schedule
only if its scheduling does not violate the timing and
resource constraints, including bank and address/data/
command bus. Different from the integration of row buffer
with a bank in traditional memories, the row/column buf-
fers are decoupled from banks and shared between adjacent
banks in RC-NVM. Therefore, when a request is scheduled,
its corresponding row/column buffer should be vacant.

Modern memory controllers usually prioritize buffer-hit
requests over other requests to exploit buffer locality. For
RC-NVM, with the knowledge of both the activated row and
column, both row-hit and column-hit requests from different
banks can be identified and issued from read/write arbiter.

To simplify the control logic, we treat row and column
accesses to the same subarray as regular subarray conflicts.
In this way, the data synonym problem in a subarray can be

solved by serializing all row- and column-oriented accesses
to the same subarray.

4 END-TO-END RC-NVM SYSTEM DESIGN

In this section, we address the challenges to enable both
row- and column-oriented accesses for applications. First,
two new instructions are introduced to exploit the column-
oriented accesses. Second, the memory controller provides
separate addressing mappings for each type of access.
Third, an application should be aware of the configuration
of RC-NVM and explicitly control data layout in RC-NVM.
Last but not least, the cache architecture should be modified
to work for RC-NVM.

4.1 ISA Support

In order to allow applications to exploit column-oriented
accesses, we introduce two new instructions, called cload
and cstore. The details of these two instructions are shown
as follows:

cloadreg; caddrcstorereg; caddr

where reg is the destination register, caddr is the column-
oriented address of the data.

The execution of cload/cstore follows the same process as
traditional load/store. If a access hits in the on-chip cache, the
data is sent to the processor. Otherwise, the access reaches
the memory controller. Column-oriented accesses are recog-
nized and resolved by the memory controller, and sent to
RC-NVM modules with an additional column-oriented
signal. Similar to prior works, this can be implemented by
leveraging DDR interface. For example, DDR4 has two
reserved address pins, thereby one of them can be used to
send this signal [6], [22]. Since traditional row-oriented
accesses are still supported by load and store instructions,
traditional applications do not need to bemodified.

4.2 Address Mappings

The memory controller needs to support separate address-
ing mappings for two different accesses. Fig. 10 shows
row-/column-oriented address mappings for the same data
in RC-NVM. Fig. 10a is a typical row-oriented address for a
32-bit conventional main memory. Fig. 10b demonstrates
the corresponding column-oriented address. For the same
data (location) in RC-NVM, the only difference is the order
of the row bits and column bits in the total 32-bit address.
Thus, it is convenient to convert a row-oriented address to
its corresponding column-oriented address and vice versa.

Fig. 9. Memory requests scheduler architecture (the gray parts are extensions for RC-NVM).
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It is easy to find that, when the row-oriented address is
increased, the column bit is increased. It represents the case
of scanning on a physical row. Similarly, for a column-
oriented address, increasing the address represents the case
of scanning a column.

4.3 Explicit Data Layout Control

To utilize RC-NVM, an application should be aware of the
configuration of RC-NVM and explicitly control data layout
in RC-NVM, which is similar to traditional databases using
raw disks directly and enabling them to manage how data
is stored and cached. In order to explicitly control physical
data layout in RC-NVM, the application can leverage the
huge-page technique provided by mainstream operating sys-
tems [23], which has been supported in modern processors.
By using huge-page, the memory page size is set to 1 GB.
Within each huge page, the lower 30 bits of a virtual address
and the corresponding physical address are exactly the
same. Increasing the memory page size could also reduce
the number of TLB misses and improve the performance,
which is already used in commercial databases [24].

As discussed in Section 3.1, the basic access unit is a subar-
ray for both row-oriented and column-oriented accesses.
Thus, given the address mapping in Fig. 10, the application
can explicitly control the data to be accessed in each row-/col-
umn-oriented access. Obviously, as long as the subarray bits,
which include the row and column bits, are allocated inside the
30 least significant bits, the application can always explicitly
control the data to be accessed. This is practical because the
size of a subarray is normally less than 1 GB. Similarly, it also
works with the 64-bit memory address. In this work, we use
the 32-bitmemory address to simplify the discussion.

In real cases, when a computer system with RC-NVM is
powered on, the physical geometry information of the
equipped RC-NVM, such as the row and column size, is
reported to BIOS by the memory controller. The application
can access these information with the help of the operating
system. Then the data layout can be carefully organized to
facilitate the row-/column-oriented accesses.

4.4 Cache Architecture for RC-NVM

In this section, we focus on modifications of the cache archi-
tecture to make it work with RC-NVM. First, we introduce
how to cache data with two different addresses. Then, we
discuss how to solve the data synonym problem in single-
core and multi-core scenarios. Finally, we propose elabo-
rated circuitry to check crossing cachelines in parallel.

4.4.1 Caching Data with Dual Addresses

Since data in RC-NVM can be accessed with two different
addresses, two copies of every 8 bytes may exist in the cache

simultaneously. In order to differentiate these two versions,
one extra orientation bit per cache line is added as shown in
Fig. 11c. When data are loaded into cache with row-oriented
addresses, this bit is set to ‘0’, otherwise it is set to ‘1’.

As shown in the example of Fig. 11a, the 8-byte data can
be accessed with 0x0000e030 (column-oriented address)
and 0x0000c038 (row-oriented address). When the data
are accessed with the column-oriented address, they are
loaded into the cache together with other 56-byte data in the
same column. As shown in Fig. 11b, the cacheline is placed
in the corresponding cache entry and the orientation bit is
set to ‘1’. Similarly, when accessed with the row-oriented
address, they are loaded into the cache together with other
56-byte data in the same row. The cacheline is placed in the
proper place based on the row-oriented address with the
orientation bit set to ‘0’.

4.4.2 Cache Synonym in a Single-Core Processor

As shown in the previous example, every 8 bytes may have
two copies in the cache with row- and column-oriented
addresses. This will result in the data synonym problem,
which should be resolved to guarantee data consistency.
RC-DRAM proposes to solve the problem by separating the
cache into two parts and employing a WURF cache coher-
ence policy [7]. In this work, instead of partitioning the
cache into two parts, we add one extra status bit for each 8
bytes (i.e., the granularity of data synonym) to indicate
whether its duplicated copy is cached in the cache. Thus,
for a 64-byte cache block, 8 extra status bits are needed,
called crossing bits as shown in Fig. 11c. Note that each 8-
byte granularity lies in two cache blocks at most due to the
cacheline alignment of memory accesses.

The basic idea of solving synonym is to keep duplicated
data updated at the same time. Extra operations are
required for data replacement, write, and write-back opera-
tions, which are listed as follows,

� When a cache block is loaded into the cache, the
cache controller needs to check all potential cache
blocks that may cross with this one whether exist
in the cache. For example, in Fig. 11a, a 64-byte
row-oriented cache block may be crossed with 8 col-
umn-oriented cache blocks in the same logic subarray.
Thus, when a row-oriented cache block is loaded into
the cache, 8 column-oriented cache blocks are checked.

Fig. 10. Address mappings for (a) Row-oriented and (b) Column-oriented
accesses.

Fig. 11. Illustration of cache architecture for RC-NVM. (a) Data with two
addresses in a subarray; (b) Cache blocks in the cache; (c) Extra orien-
tation bit and crossing bits per cache block.
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If any of these 8 column-oriented cache blocks exists in
the cache, the crossed region (i.e., 8-byte data) are cop-
ied from the column-oriented cache block to the row-
oriented cache block so that duplicated data remain
the same. At the same time, the corresponding cross-
ing bits are set to ‘1’. The status of the cache in this
example is shown in Fig. 11b.

� When a cache block is written back due to eviction,
the crossing bits of its crossed cache blocks are
reset to ‘0’.

� When a cache block is updated in a write operation,
if the crossing bit of the modified 8-byte data is equal
to ‘1’, the corresponding duplicated data in the
crossed cache block are updated at the same time.

4.4.3 Solving Cache Synonym and Coherence Issues

In a multi-core processor, the cache synonym problem also
exists as well as the traditional cache coherence issues. These
problems can be easily solved by handling these two issues
separately in a specific order. The basic rule is: cache synonym
is always solved first, then cache coherence protocols are applied.

The idea of solving cache synonym problem in a multi-
core processor is similar to that in a single-core case. We
need to keep duplicated data updated at the same time.
Note that the crossing bits are still required. For example,
these bits are stored in the cache directory, if a directory
based coherence mechanism is employed. Thus, whenever
a write operation happens, the crossed cache blocks are
updated accordingly.

After that, cache coherence protocols start to work to
keep consistent in multiple cores and memory levels. Note
that the cache coherence operations only involve the cache
blocks in the same address space (either row-oriented or
column-oriented). They will not cause further cache syno-
nym problems. Note that there is no change to the existing
cache coherence protocols.

4.4.4 Checking Crossing Cachelines

We can find that in the proposed cache synonym solving
protocol, there is no extra overhead for a cache read opera-
tion. The overhead of a write operation is moderate. Sub-
stantial extra overhead is induced in data replacement,
since every row-oriented (column-oriented) load from RC-
NVM will trigger 8 checks for potential column-oriented
(row-oriented) cache blocks. To reduce check overhead, we
propose a parallel check mechanism.

In this example, we have a LLC with the following con-
figuration: 8 MB cache size , 64-byte cache block, and 8-way

set associativity. It has the same configuration with our eval-
uation system in Section 6. The 32-bit physical address is
divided into two fields: the 6-bit block offset and the 26-bit
block address (26 ¼ 64 and 32� 6 ¼ 26). The block address
is comprised of index and tag fields. The index can be calcu-
lated as follows:

2Index ¼ Cache size

Block size� Set associativity
¼ 8M

64� 8
¼ 214:

Hence, the index is 14 bits wide, and the tag is 26� 14 or 12
bits wide. For a row-oriented address shown in Fig. 10a, we
assign the 7 most significant bits of the row and column bits
to the index, the 9-bit RSBC part (i.e., the combination of
Rank, Subarray, Bank and Channel bits) and 3 least signifi-
cant bits of the row bits to the tag, and 3 least significant bits
of the column bits and the 3-bit intra-bus address to the
block offset, as shown in Fig. 12. Note that the HighR and
HighC parts are swapped in column-oriented address map-
ping to keep the same order with row-oriented address
mapping. With this address mapping scheme, all potential
blocks that may cross with a particular cache block will be
cached in the same set due to the same index.

Given a cache block address A and its orientation O, the
checking of all 8 potential cache blocks can be finished in
three steps as shown in Fig. 13. First, the 14-bit index is used
to locate the target set, labeled as �1. Then, all 8 cache blocks
in the set are checked in parallel. Any cache block is identi-
fied as a crossed block only if it meets the following three
requirements: 1) the valid bit is set, 2) the XOR of its orienta-
tion bit and O is ’1’, 3) the 9 most significant bits of its tag
are equal to the RSBC part of A, labeled as �2. Finally, for
crossed blocks, the crossing bits are set based on the decod-
ing results of the 3 least significant bits of the tags, labeled
as �3. Note that the circuitry in step 1 and 2 can be partially
shared with existing cache lookup operations.

5 RC-NVM DEPLOYMENT FOR IMDBS

In this section, we discuss the deployment of RC-NVM for
hybrid OLTP and OLAP IMDBs. First, we introduce the
placement of IMDB tables in RC-NVM. Then, we present

Fig. 12. Physical address mapping in caches.

Fig. 13. Checking potential crossed cache blocks.
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basic usage of RC-NVM with representative query exam-
ples. Finally, we propose group caching technique to solve
the problem of wide-field and multi-field accesses.

5.1 IMDB Tables Layout in RC-NVM

As we addressed in Section 4.3, applications can explicitly
control physical data layout in RC-NVM to facilitate data
accesses. Thus, we can enable more flexible data placement
in RC-NVM. The goal is to store IMDB tables efficiently. In
this section, we first introduce how to divide a table into
small chunks. Then, we discuss how to place these chunks
into RC-NVM.

5.1.1 Dividing a Table into Chunks

Since tables in IMDBs are usually very large, we need to
divide them into multiple data chunks before placement.
This is a common technique in database management sys-
tems to store large tables [25]. In this work, a chunk is
defined as a rectangle unit of data that can be fit into a sub-
array of RC-NVM. In other words, a table is divided into
chunks when its size is larger than a subarray (i.e., 8 MB in
this work) or the tuple size is larger than the row size of the
subarray (i.e., 8 KB in this work). After a table is divided,
we need to handle intra-chunk and inter-chunk data layout.

5.1.2 Intra-Chunk Data Layout

We present two types of intra-chunk data layouts, i.e., row-
oriented layout and column-oriented layout. They are
friendly to row-oriented accesses and column-oriented
accesses, respectively.

A straightforward row-oriented data layout in a subarray
is illustrated in Fig. 14a. Apparently, with such a data lay-
out, tuples in the table are consecutively stored in the row
direction. At the same time, their row-oriented addresses
are also continuous according to the addressing method in
Fig. 10, which is similar to the data layout in traditional
main memory. Consequently, it is suitable to traditional
IMDBs. With this data layout, row-oriented accesses will
achieve the maximum efficiency.

On the other hand, it is easy to understand such a row-
oriented data layout is inefficient for column-oriented data
accesses, since column-oriented accesses will suffer from
more column buffer switchings unless we do not care the
access order within each field. To mitigate this problem, we
further propose another column-oriented data layout, as
shown in Fig. 14b. Tuples are continuously placed in the
vertical direction in a subarray. Thus, it is convenient to
load the same field of multiple successive tuples with a sin-
gle column-oriented access. In addition, we will propose a

dedicated data access optimization technique for the col-
umn-oriented data layout in Section 5.3 to further improve
its efficiency for OLXP.

5.1.3 Inter-Chunk Data Layout

At the beginning, all subarrays are empty. Then, tables are
created and stored in run-time. Since all IMDB tables have
been sliced into chunks, we need to figure out run-time
placement policies to fit these chunks in subarrays of RC-
NVM. Since both row-oriented and column-oriented
accesses are supported, each chunk can be rotated before
being placed into a subarray. This is a typical problem of
“two-dimensional online bin packing with rotation”. Thus,
we use the algorithm in Fujita’s work to solve this prob-
lem [26]. The goal of this algorithm is to minimize the num-
ber of subarrays that are used. Please refer to this reference
for more details. Note that the placement of IMDB is fully
operated in software level (i.e., database memory allocator).
It does not require any extra hardware modification.

5.2 Basic Usage of RC-NVM

In this section, we use a simplified example to demonstrate
how to leverage both row- and column-oriented accesses in
RC-NVM. Fig. 15a illustrates the table used in this example. It
is comprised of 16 tuples, each ofwhich consists of four fields.
Note that, in order to differentiate a physical row in memory,
we use the term “tuple” to represent a row in an IMDB table.
To simplify the discussion, the size of all four fields is set
to 8 bytes. We assume that this table is stored in a 512-byte
RC-NVM subarray in a row-store layout, as illustrated in
Fig. 15b. Both the row and column buffer are set to 64 bytes.

Having this table in RC-NVM, we use two SQL queries to
illustrate how row- and column-oriented accesses work.
The first one is a typical OLTP query as shown in Fig. 16.
This query will retrieve all tuples that satisfy the condition
(f3 < ‘1234’). Obviously, it is convenient to complete this
SQL request with traditional row-oriented accesses. For
instance, the first memory request loads two tuples, T1 and
T2. Then, the field f3 in each tuple is read and compared.
Finally, data in T1 and T2 can be read out accordingly.

The second example for column-oriented accesses is listed
in Fig. 17. This typical OLAP query retrieves all f4 fields and
adds them up. If we still use the traditional row-oriented
access, all eight memory rows will be loaded sequentially to
access field f4 in each tuple. However, since we have sup-
ported column-oriented accesses in RC-NVM, this request is
simplified significantly with only two column-oriented
memory accesses to read out all fields required.

Fig. 14. Two types of data layouts: (a) Row-oriented layout and (b) Col-
umn-oriented layout.

Fig. 15. An example of IMDB table and its layout in RC-NVM.
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The third example uses both row- and column-oriented
accesses as shown in Fig. 18. This query selects certain
tuples whose field f10 is larger than a specific value. Only
a few tuples meet the condition. In RC-NVM, we can use
column-oriented accesses to scan the f10 column to check
whether the condition is met. If a candidate is found, then
the IMDB can issue a row-oriented access to retrieve the
tuple. In this case, the data transmitted on the memory bus
are all effective, thus the utilization of memory bandwidth
is significantly improved.

In the above examples, the size of all fields is 8 bytes
which is the same as the column access width. For various
non-unit fields, many software optimizations can be
exploited. Like the “struct” alignment mechanism in C pro-
gramming language, IMDBmay adjust the order of columns
and combine multiple columns with different widths to
align on the 8-byte boundary (e.g., 6 + 2, or 36 + 4), or just
leave hollows for padding to improve access efficiency.
IMDB can also pack them tightly to minimize storage space
at the cost of additional column accesses.

5.3 Group Caching

We observe that the efficiency of column-oriented accesses
is degraded when the data are required to be accessed with
a specific order. As introduced in Section 3.1, the data width
of a column-oriented access in RC-NVM is fixed (i.e., eight
bytes). However, the width of fields of an IMDB table vary
widely. This situation may degrade efficiency of memory

accesses, especially when a field width is larger than the col-
umn access width. Such a problem is called the wide-field
access in this study.

A wide-field access example is given in Fig. 19. In this
example, the Email field spanning two columns of RC-NVM
is indivisible. To get the whole Email field, every memory
access will trigger a column buffer replacement as shown in
Fig. 19a. Although the buffer hit rate is improved in column-
oriented accesses shown in Fig. 19b, only half of the field is
read out at first, which is meaningless for applications.

Similar to the wide-field access, a multiple-field access
example is shown in Fig. 20. This query needs to read a few
separate fields in a specific order. In this example, the col-
umn-oriented access is also inefficient for the similar reason.
Obviously, using column-oriented accesses can traverse
each field efficiently only if the field order of each tuple is
not required as shown in Fig. 20b. However, if the field
access order is strictly required, column-oriented accesses
are inefficient as shown in Fig. 20a. The reason is straightfor-
ward. Each memory access will generate a column-buffer
replacement. For instance, three extra column buffer repla-
cements occur in Fig. 20a. Basically, whenever such a
Z-style access order is required, the efficiency of column-
oriented accesses is degraded. Unfortunately, the row-
oriented access is also inefficient due to the waste of the
cache space and memory bandwidth.

In order to solve this problem, we propose a novel soft-
ware-based data caching technique called group caching. The
basic idea is to cache multiple columns of data as a group in
the cache for column-oriented accesses. Then the required
data can be accessed in any order with the help of the cache.
We modify the query optimizer of the IMDB, which con-
verts SQL statements into memory requests, to generate
group caching requests in advance, before the IMDB needs
to access a wide field, or several fields. After the data are
prefetched into the cache, the IMDB can access the cached
data in any order with column-oriented addresses.

One potential issue is unexpected cacheline evictions. The
cached data of one thread may be replaced by data retrieved
by other threads before they are really accessed, especially in

Fig. 16. An OLTP SQL example with row-oriented accesses.

Fig. 17. An OLAP SQL example with column-oriented accesses.

Fig. 18. An SQL example with both row-oriented and column-oriented
accesses.

Fig. 19. A wide-field example in column-oriented accesses.

Fig. 20. A multi-field example in column-oriented accesses.
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a multi-core environment. The cache-pinning [27] technique
is a solution for this problem. The basic idea is to pin the data
in the cache before they are accessed. We still use the wide-
field example to demonstrate how this techniqueworks.

As shown in Fig. 21, when the IMDB query planner needs
to retrieve a wide field, it will generate column group pre-
fetch requests to read each segment of the wide field. Then
the cachelines will be pinned (Step 1 and 2). After the data
are used by the IMDB in Step 3, these cachelines will be
unpinned. With the help of the group caching, data in a rect-
angle region can be accessed in either row-oriented or col-
umn-oriented way. For different shapes of the target data,
the query optimizer can select access methods (row- or col-
umn-oriented) to minimize the number of memory accesses.

Apparently, the efficiency of group caching is closely
related to the caching size. It is easy to understand that the
caching size should not exceed the physical cache size. Due
to the fact that group caching will also affect the cache miss
rates of other data accesses, the optimal group caching size
is not only related to the cache size but also depends on the
data access pattern. The performance of wide-field and
multi-field accesses with different group caching sizes is
evaluated in Fig. 30.

6 EVALUATION

In this section, we first introduce the experiment setup and
the workloads used for evaluations. Then, we evaluate the
performance of RC-NVM and compare it with conventional
RRAM and DRAM counterparts with different workloads.

6.1 Experiment Setup

We use a cycle-accurate memory simulator, NVMain [28]
integrated with gem5 [29] as our system simulator. We sim-
ulate an directory based MESI cache coherence protocol.
Based on the timing parameters of Panasonic’s RRAM
model [19], we modified NVMain to quantitatively evaluate
the performance of the proposed RC-NVM. We also choose
Micron’s DRAM [20] as a reference.

The system configuration is listed in Table 1. In the simu-
lated RC-NVM system, we have 2 channels, 4 ranks per
channel, 8 banks per rank, and 8 subarrays per bank. Each
subarray comprises 1024 rows and 1024 columns, which
support both row-oriented and column-oriented memory
accesses. The total capacity of the memory system is 4 GB.
This configuration exactly matches the address mapping
scheme shown in Fig. 10. The well-known FR-FCFS [21] is
used as our basic scheduling policy.

6.2 Workloads

As pointed out by prior work, there still lacks standard
OLXP benchmarks [5]. Therefore, we developed a synthetic
benchmark to represent common enterprise workloads.1

We first select a number of SQL queries to evaluate perfor-
mance of RC-NVM. They are typical queries that perform
transactional operations (OLTP-style), as well as more com-
plex, read-intensive aggregates on larger sets of data
(OLAP-style). These queries composing our benchmark are
listed in Table 2. Queries Q14 and Q15 are used to evaluate
the effect of the group caching technique. The tuples of
table-a and table-b have 16 and 20 fixed length (8-byte)
fields respectively, while five variant-length fields in the
tuples of table-c, as shown in Fig. 22.

6.3 Micro-benchmark Evaluation

Fig. 23 shows the performance results of RC-NVM, RRAM,
and DRAM with eight micro-benchmarks that retrieve the

Fig. 21. Illustration of group caching.

TABLE 1
Configuration of Simulated Systems

Processor 4 cores, x86, 2.0 GHz

L1 cache private, 64B cache line, 8-way associative, 32 KB

L2 cache private, 64B cache line, 8-way associative, 256 KB

L3 cache shared, 64B cache line, 8-way associative, 8 MB

Memory
controller

32 entry request queues per controller, FR-FCFS

DRAM DDR3-1333, tCAS: 10, tRCD: 9, tRP: 9, tRAS: 24,
Channels: 2, Ranks: 2, Banks: 8, Rows: 65536, Columns:
256, Row buffer size: 2048 B, Capacity: 4 GB, Access
time: 14 ns

RRAM LPDDR3-800, tCAS: 6, tRCD: 10, tRP: 1, tRAS: 0,
Channels: 2, Ranks 4, Banks: 8, Rows: 8192, Columns:
1024, Row buffer size: 8192 B, Capacity: 4 GB, Read
access time: 25 ns, Write pulse width: 10 ns

RC-NVM LPDDR3-800, tCAS: 6, tRCD: 12, tRP: 1, tRAS: 0,
Channels: 2, Ranks 4, Banks: 8, Rows: 8192, Columns:
1024, Row buffer size: 8192 B, Column buffer size: 8192
B, Capacity: 4 GB, Read access time: 29 ns, Write pulse
width: 15 ns, four 512 * 512 mats in a subarray

TABLE 2
Benchmark Queries

# SQL Statement

Q1 SELECT f3, f4 FROM table-a WHERE f10 > x

Q2 SELECT * FROM table-b WHERE f10 > x (Most of f10 is
NOT greater than x)

Q3 SELECT * FROM table-b WHERE f10 > x (Most of f10 is
greater than x)

Q4 SELECT SUM(f9) FROM table-a WHERE f10 > x

Q5 SELECT SUM(f9) FROM table-b WHERE f10 > x

Q6 SELECT AVG(f1) FROM table-a WHERE f10 > x

Q7 SELECT AVG(f1) FROM table-b WHERE f10 > x

Q8 SELECT table-a.f3, table-b.f4 FROM table-a,

table-b WHERE table-a.f1 > table-b.f1 AND

table-a.f9 = table-b.f9

Q9 SELECT table-a.f3, table-b.f4 FROM table-a,

table-b WHERE table-a.f9 = table-b.f9

Q10 SELECT f3, f4 FROM table-a WHERE f1 > x AND f9 < y

Q11 SELECT f3, f4 FROM table-a WHERE f1 > x AND f2 < y

Q12 UPDATE table-b SET f3 = x, f4 = y WHERE f10 = z

Q13 UPDATE table-b SET f9 = x WHERE f10 = y

Q14 SELECT SUM(f2_wide) FROM table-c (An OLAP query
to read wide field f2_wide)

Q15 SELECT f3, f6, f10 FROM table-a

1. We have open sourced the benchmark at https://github.com/
RCNVMBenchmark/RCNVMTrace.
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field f3 and f10 of all tuples in table-a. The table can be orga-
nized as row-oriented layout (labeled as L1) or column-ori-
ented layout (labeled as L2), as shown in Fig. 14. And there
are two access directions: row-oriented (labeled as row-read/
write) and column-oriented (labeled as col-read/write). For
the row-oriented access, to retrieve the field f3 and f10 of
each tuple needs to load the whole tuple frommemory due to
alignment restrictions, while the column-oriented access can
only get the desired two fields, which reduces the memory
access number significantly. For conventional RRAM and
DRAMdesigns, the row-oriented access is used for both direc-
tions. For RC-NVM, the row-oriented and column-oriented
access are used for different directions accordingly.

From the row-oriented access (the left 4 groups in
Fig. 23), we can find that RRAM is 35 percent slower than
DRAM, partially because RRAM can only work in a lower
operating frequency, as shown in Table 1. And RC-NVM is
4 percent slower than RRAM for the cache coherence over-
head. However, RC-NVM outperforms RRAM and DRAM
when the IMDB table is accessed in the column-oriented
direction. The execution time is reduced by 76 percent in
the row-oriented layout (L1) and 77 percent in the column-
oriented layout (L2) compared to DRAM. This demonstrates
the advantage of column-oriented accesses supported by
RC-NVM. Since RC-NVM performs better with the column-
oriented layout, we will choose the column-oriented layout
as the default to maximize the performance of RC-NVM in
the following experiments.

6.4 Queries Evaluation

Fig. 24 presents the execution time of the SQL-query bench-
mark set consisting of queries Q1 to Q13. Compared with
original RRAM and DRAM, the execution time of these
benchmark queries on RC-NVM is reduced by 71 and
67 percent on average, respectively. All these results show
similar trends, i.e., the performance of RC-NVM is better
than DRAM, and DRAM is faster than RRAM. There is only
one exception for query Q3, since Q3 is translated into
sequential row-oriented memory accesses, which are suit-
able for DRAM. Compared to RRAM and DRAM, the per-
formance of IMDB can be improved up to 14.5X and 13.3X
in the best case (Q6), respectively. Compared with GS-

DRAM [6], the performance is improved by 2.37x on
average. The reason of performance improvement with RC-
NVM can be explained by a combination of three factors.

First, by using both row-oriented and column-oriented
accesses, the total number of memory requests can be
greatly reduced. As shown in Fig. 25, the numbers of mem-
ory accesses of RRAM and DRAM in all 13 queries are the
same since they can only use traditional row-oriented mem-
ory accesses. However, memory access numbers are greatly
reduced in RC-NVM, even considering the effect of the
cache synonym problem. The number of memory accesses
of RC-NVM is less than a third of those of DRAM/RRAM
on average. In other words, the IMDB on RC-NVM has two
alternative ways to access data, then it can select the best
combination of access methods to effectively utilize the pre-
cious memory bus resource. For GS-DRAM, memory
accesses are only reduced for several queries with power-
of-2 strided accesses, like Q1, Q4, and Q6. For queries Q2,
Q3 and Q5, GS-DRAM cannot work. Thus, it shows no
improvement over conventional DRAM.

Second, the decrease of row/column buffer miss rates
also contributes to the performance improvement. In RC-
NVM, IMDB has greater possibility to avoid row/column
buffer misses caused by strided accesses. Fig. 26 shows RC-
NVM achieves a 38 percent decline in the buffer miss rate,
which comprising both row and column buffer misses. The
buffer miss rates are not reduced after using GS-DRAM.

Third, from Fig. 27 we can see that the extra overhead to
solve the cache synonym and coherence of RC-NVM lies in
the range of 0.2 to 3.4 percent. On average, the cache coher-
ence overhead introduced by RC-NVM is only 1.06 percent,
which is negligible. Note that we do not count the extra
coherence overhead for GS-DRAM in experiments since the
details are not clearly described in the paper [6].

In previous experiments, we use the RRAM model from
Panasonic’s RRAMmodel [19]. In order to reflect the impact

Fig. 22. Three tuple formats in benchmark queries.

Fig. 23. Micro-benchmark results.

Fig. 24. SQL benchmark results.

Fig. 25. Numbers of memory accesses.

Fig. 26. Comparison of row/column buffer miss rates.
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of different RRAM technologies on efficiency of RC-NVM,
we perform a sensitivity analysis. As shown in Fig. 28, we
scale the read and write latency to different values and com-
pare the average execution time results. We can find that RC-
NVM can still outperform DRAM even when the read and
write latency are in the level of several hundreds of cycles.

6.5 Effect of RC-NVM Aware Scheduling

Fig. 29 shows the performance of RC-NVM aware schedul-
ing and FR-FCFS which can identify both row and column
buffer hits. For queries accessing two tables (Q8 and Q9),
RC-NVM aware scheduling can achieve 22.5 percent perfor-
mance improvement compared to FR-FCFS. In our evalua-
tion, the two tables are stored in different subarrays of a
series of banks. For FR-FCFS, accesses to data of two tables
stored in the same bank must be serialized due to bank con-
flicts, while RC-NVM aware scheduling can exploit subar-
ray-level parallelism in the same bank by accessing two
tables simultaneously for orthogonal accesses in terms of
orientation. For others queries without subarray-level paral-
lelism, they have similar performance because both of them
can identify row/column buffer hits and exploit channel
and bank level parallelism.

6.6 Effect of Group Caching

By applying group caching optimization, RC-NVM can fur-
ther achieve performance improvement with relatively small
last-level cache usage. The effects of this optimization are
shown in Fig. 30. The numbers in the legend indicate how
many cachelines are filled at one time. It is apparent that
larger group caching sizes achieve better performance. For
example, we can achieve a 15 percent performance improve-
ment when the group caching size is set to 128 cachelines for
each column.

6.7 Energy Consumption

We also evaluate the energy consumption of different mem-
ory configurations. As shown in Fig. 31, due to high static
power consumption, the energy consumption of DRAM is
4.5X more than RRAM’s. For queries that GS-DRAM can
work, like Q1, Q4 and Q6, GS-DRAM consumes much less
energy than DRAM. The energy is mainly determined by the
total execution time and the number ofmemory accesses. Due
to much less memory requests, RC-NVM consumes much

less energy than RRAM for most queries except for Q3. On
average, RC-NVM reduces energy by 66.2 percent compared
to RRAM. Since the dynamic power of write/read operations
dominates the energy consumption of RRAM, the energy con-
sumption of extra peripheral circuitry in RC-NVMcan be cov-
ered by the energy reduction of lessmemory requests.

6.8 Scientific Computing: GEMM

RC-NVM can also give performance improvement for Gen-
eral Matrix Multiply, which is an important kernel in many
scientific computations. When two matrices are multiplied,
one is accessed in the row-major order, while the other is
accessed in the column-major order. Since a matrix may be
accessed in both row and column directions, the same data
layout dilemma also exists in GEMM.

There are two main optimization methods for GEMM on
CPU. The first one is tiling, in which smaller blocks of the
whole matrix are fetched into the cache and using them to
the most before evicted to amortize the cost of fetching data
over useful computations. The second one is single instruc-
tion multi-data (SIMD), in which a small batch of data will
be processed every time. Although multiple float point mul-
tiplications and additions can be processed simultaneously,
multiple data fetches are still needed to gather values from
different cachelines. To minimize cache misses, a simple
data reorganization process called packing can be exploited,
which reorders the elements of matrix blocks based on
the memory access pattern of the multiplication [30]. On
one hand, RC-NVM can support both row-oriented and
column-oriented accesses to the same matrix. As a result,
RC-NVM can directly load target data jnto SIMD registers,
eliminating the packing process. On the other hand, since
the packing is a data-intensive process with low computing
complexity, it is suitable to be offloaded to memory to exe-
cute using processing-in-memory (PIM) [31].

Fig. 32 shows the performance of GEMM with different
mechanisms. DRAM/RRAM-tiled mechanisms exploit the

Fig. 30. Impact of Group Caching optimization.

Fig. 28. RC-NVM read latency sensitivity results.

Fig. 29. Impact of RC-NVM aware scheduling.
Fig. 27. Cache synonym and coherence overhead.

Fig. 31. Energy consumption results.
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conventional tiling and packing method. DRAM/RRAM-
PIM utilize the PIM accelerator proposed in [31] to imple-
ment packing. All results are normalized to a non-tiled
version for differentmatrix sizes. RC-NVM improves the per-
formance of GEMM by 19 percent on average compared to
the best tiled version on RRAM. Note that RC-NVM outper-
forms GS-DRAM by 6 percent due to its high efficiency as
explained in Section 6.4. Moreover, RC-NVM and GS-DRAM
outperform the PIM accelerator by 9.3 and 3.3 percent respec-
tively. This is because RC-NVM and GS-DRAM naturally
enables both row and column memory accesses for GEMM,
eliminating the packing process totally.

Emerging 3D-stacked DRAM architectures enable PIM or
near-memory processing (NMP) to reduce the data move-
ment between memory and the CPU by offloading part
data-intensive task to memory. However, due to the limited
compute capability of PIM processing logic, offloaded parts
are usually simple functions requiring relative little and
simple operations such as basic arithmetic and bitwise oper-
ations [31], [32]. Different from PIM, RC-NVM enables
NVM-based memory to support both row and column
accesses, which can improve the performance of different
kinds of workloads with hybrid access patterns. Moreover,
as promising replacement for DRAM, we believe emerging
NVM techniques can also take advantage of PIM techni-
ques. Therefore, PIM and RC-NVM can be combined to
improve the memory performance. The data processed with
PIM logic can also benefit from the dual-addressing mem-
ory architecture, since the subarray in banks is the basic
unit to support both row and column accesses.

7 RELATED WORK

In this section, we discuss prior works that aim to enhance
the performance of the memory system, and improve the
efficiency of OLTP and OLAP queries in IMDBs.

High Performance Memory Architectures. Many previous
works introduce new memory architectures for either
achieving lower latency or higher parallelism. SALP [33]
exploits the subarray-level parallelism to mitigate the per-
formance impact of bank conflicts in DRAM. A memory
scheduling scheme is proposed for Non-Volatile Dual In-
line Memory Module (NVDIMM) to minimize the interfer-
ence between the native and I/O-derived memory traf-
fic [34]. Our mechanisms are orthogonal to these works, and
can be applied together with them to further increase mem-
ory system performance. Dual-addressing memory [7] (RC-
DRAM) enables DRAM to support both row and column
memory accesses. GS-DRAM improves the performance of
power-of-2 strided memory accesses by changing the orga-
nization and access mechanism of traditional DRAM mod-
ules [6]. Compared to them, RC-NVM enables crossbar
based NVM to efficiently perform both row and column
accesses with considerable flexibility and small overhead.

In-Memory Database Optimizations. Various workload
characterization studies provide detailed analysis of the
time breakdown for databases running on a modern proces-
sor, and reveal that databases suffer from high memory-
related processor stalls. This is caused by a huge amount of
data cache misses [35], which account for 50-70 percent for
OLTP workloads [36] to 90 percent for DSS workloads [37],
of the total memory-related stall.

Data layouts have a considerable influence on thememory
utilization and performance of in-memory databases. To uti-
lize thememorymore efficiently, somework re-organizes the
records in a column store [38], [39]. Columnar layout favors
OLAP workload such as scan-like queries, which typically
only needs a few columns of relational table. This layout can
achieve good cache locality [40], and can achieve better data
compression [41], but has a negative impact for OLTP queries
that need to operate on the row level [38], [41], [42].

Some IMDBs try to support OLXP using software meth-
ods. There have been several attempts to build databases by
means of a hybrid of row and column layouts. For example,
SAP HANA [41] supports both row- and column-oriented
physical representations of relational tables, in order to opti-
mize different query workloads. It organizes data layout for
both efficient OLAP andOLTPwithmultilayer stores consist-
ing of several delta row/column stores and a main column
store, which are merged periodically. Arulraj et al. propose a
continuous reorganization technique to shape table’s physi-
cal layout in either row-stores or column-stores [5]. However,
the row-column transformation involves significant data
copying overhead and does not work in fully interleaved
OLXPworkload. In addition, none of themhas direct support
of memory hardware, which is not enough for performance-
critical applications using IMDB.

8 CONCLUSION

We exploit the symmetry of the crossbar structure adopted
by most NVMs to implement dual-addressing memory
architecture with very little area and latency overhead. This
novel architecture can support row-/column-oriented
memory accesses for workloads with different access pat-
terns. With a minor extension to the ISA and the help of
huge-page technique, applications can explicitly control the
data layout in RC-NVM and issue proper memory accesses
to efficiently utilize the precious cache capacity and mem-
ory bandwidth. After using RC-NVM architecture, we can
achieve even better performance than the DRAM counter-
part, although NVM device has a lower access speed. To
this end, RC-NVM is considered to be an attractive solution
to provide both large capacity and high performance.
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