Customizable Domain-Specific Computing

Project Goal: This project looks beyond parallelization and focuses on domain-specific customization as the next disruptive technology to bring orders-of-magnitude power-performance efficiency improvement to important application domains.

Chip-Level Customization

Accelerator-Rich Architectures (ARA)

Now the full-system ARA simulator PARADE [ICCAD 15] is in open-source.

Example 1: Accelerating medical image processing [FCCM 14]

Example 2: Caffeine Cluster Acc Manager

Server-Level Customization

- **CT image reconstruction**
 - 2010: 18 hours
 - 2013: 20 minutes
 - 2015: 6 minutes

- **Denoising**
 - Single-thread CPU: 5 minutes
 - Single-thread GPU: 15 seconds

- **Registration**
 - Single-thread CPU: 10 minutes
 - Multi-thread CPU: 2 minutes

- **Segmentation**
 - Single-thread CPU: 20 minutes
 - Multi-thread CPU: 4 minutes

- **Analysis**
 - Single-thread CPU: 45 minutes
 - Multi-thread CPU: 18 minutes

Experimental Platform - Convey

Data-Center Level Customization

Example: CDSC FPGA-Accelerated Cluster

- **A 24-node cluster with FPGA-accelerators**
- **Scale-up FPGA-acceleration inside each node**
- **Scale-out: on an in-memory cluster**

Milestone

- Whole-genome genome pipeline in 4.6 hrs; whole exome pipeline in 28 mins

Runtime Resource Management for Customizable Heterogeneous Datacenters

MapReduce

Spark

MPI

Mesos/Yarn

Cluster Acc Manager

Distributed File System (HDFS)

Node Acc Manager

Key Products/Outcomes

- Over 350 publications, including multiple best-paper awards and a book on “customizable computing”
- A set of open-source software, including the CDSC mapper, PolyOpt, and CMOST compilation tools, and Blaze runtime system for customizable heterogeneous computing;
- Start-up Falcon Computing Solutions, Inc. which focuses on enabling customizable computing in datacenters.

Outreach/Education

- Engaged 28 high-school students for summer research with a highly diverse population, including 50% female, 28% African American, and 25% Latinos
- Refined and introduced multiple courses related to parallel and heterogeneous computing, such as “Customizable computing for big-data applications” (CSC239 at UCLA).

CDSC website: http://cdsc.ucla.edu/