Unleash The Performance of Emerging Storage via Reconfigurable Drive Controller

We have entered a golden age of storage devices for ten
years. As shown in Figure 1, the performance of high-end stor-
age drives are increasing at an exponential speed, and the ten-
year overall improvement rate is up to 130X. However, mean-
while the performance of host/drive interconnection barely in-
creases. This mismatch sets up the ”data movement wall”
which prevents the end-user from utilizing the performance
of emerging storage devices, therefore making the advanced
storage technology to be futile.

PCle 8 lanes

—— Drive - --- PCle4 lanes

14000
12000
Gen 2

10000

8000

6000

4000 L
2000

0
2007

Bandwidth (MB/s)

100 250

2009 2011 2013

Year

2015 2017

Figure 1: The bandwidth evolution of the storage drive and the
host/drive interconnection (in 4-lane PCle and 8-lane PCle).

To tackle this challenge, one line of research offloads the
data processing task partially to the ARM-based embedded
drive controller [2]. Another line of research brings ASIC
(Application-Specific Integrated Circuit) into storage drive to
enable higher-performing in-storage processing (ISP [1]. By
pushing the first-stage processing like reduction or filtering di-
rectly into drive, the volume of data for following processing
stages (which happen at host CPU) is reduced, therefore allevi-
ating the bottleneck of host/drive interconnection. While cur-
rent works address the issue of ’data movement wall” in some
extent, they all more or less fall into following shortcomings,
which greatly limits their application scenario.

A) Limited computing capability or limited generality.
Drive-embedded CPUs are usually wimpy ARM cores which
can be up to 100X slower compared to the host-side CPU. This
greatly limits the speedup of ISP system — only 1%~15%
speedup is observed in Summarizer [2]. On the other hand,
work like Biscuit [1] integrates ASIC designed for specific
workloads, therefore providing satisfactory computing perfor-
mance. However, due to the architectural limitation, this solu-
tion cannot be applied to the general processing scenario.

B) Collision with the firmware execution. Drive-embedded
CPUs are originally used for executing the firmware code.
In order to avoid the negative performance effects, develop-
ers should carefully schedule the CPU resource between the
firmware code and user-defined tasks. This puts forward re-
quirements of the application characteristic, therefore limits
the application scenario.

C) No/limited isolation and protection. Naturally, the drive
is shared among multiple processes, which implies the sce-
nario of the concurrent execution of multiple ISP applications.
However, for the sake of performance and energy efficiency,
the embedded cores are only equipped with the proprietary
SSD firmware without an OS; thus the burden of conducting
isolation and protection is left to users.

D) Ad-hoc programming model and interface. Existing
works introduce non-standard programming models and inter-
face for ISPs which leans the burden of integration to users.

To address these issues, we build INSIDER, a reconfigurable
drive system for ISP. We highlight our design principles as fol-
lowings:

1) FPGA-based reconfigurable drive controller. We intro-
duce Field-Programmable Gate Array into INSIDER drive as
the ISP unit, which is able to provide performance close to
a customized hardware while retaining a software-like pro-
grammability.

2) Separating the data plane with the control plane. IN-
SIDER removes in-storage data processing from the path of the
firmware execution. Control plane consists of drive firmware
and host-side INSIDER library. With the coordination of them,
we enforce the file permission check, and issue accessing re-
quests to storage chips based on the file location. The ISP
unit is unable to access storage chips directly, which prevents
it from manipulating the unauthorized data. Instead, ISP unit
serves as a middleware on the data path between storage chips
and the drive PCle module, performing preliminary processing
on data before it is sent back to the host.

3) Integrating with POSIX Interface. INSIDER abstracts the
ISP as the virtual file operation using the standard POSIX in-
terface. INSIDER provides API for users to pre-register the
virtual file by providing the path of the real file and the accel-
erating kernel. For any POSIX operation performed upon the
virtual file, the R/W data will be captured and processed by the
accelerating kernel, and finally be performed upon the real file.
The integration with the POSIX interface provides a seamless
way to embed the ISP into the traditional code, alleviating the
burden of user-side code refactoring.

4) Architectural Support for Simultaneous Multiprocessing.
By leveraging the FPGA partial reconfiguration technique, IN-
SIDER partitions the reconfigurable fabrics into one static re-
gion and multiple dynamic regions. The dynamic regions,
which are programmable, are used to accommodate the accel-
erating kernels from users. Whereas the static region, which
cannot be programmed by users, is designed to contain the
INSIDER hardware library. It is responsible to enforce the
data isolation and the credit-based bandwidth scheduling pol-
icy among multiple accelerating kernels.

In the performance experiment of six data analytics work-
loads, INSIDER achieves 8X-11X throughput compared with
the traditional host system, 3X-600X throughput and 1.6X-
320X cost efficiency compared with the fully-offloaded single
ARM-core based ISP system.

References

[1] Gu, B., ET AL. Biscuit: A Framework for Near-data Processing
of Big Data Workloads. In Proceedings of the 43rd International
Symposium on Computer Architecture.

[2] Koo, G., ET AL. Summarizer: Trading Communication with
Computing Near Storage. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture.



