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Abstract—In genome sequencing, it is a crucial but time-
consuming task to detect potential overlaps between any pair
of the input reads, especially those that are ultra-long. The state-
of-the-art overlapping tool Minimap2 outperforms other popular
tools in speed and accuracy. It has a single computing hot-spot,
chaining, that takes 70% of the time and needs to be accelerated.

There are several crucial issues for hardware acceleration
because of the nature of chaining. First, the original computation
pattern is poorly parallelizable and a direct implementation will
result in low utilization of parallel processing units. We propose
a method to reorder the operation sequence that transforms the
algorithm into a hardware-friendly form. Second, the large but
variable sizes of input data make it hard to leverage task-level
parallelism. Therefore, we customize a fine-grained task dispatch-
ing scheme which could keep parallel PEs busy while satisfying
the on-chip memory restriction. Based on these optimizations,
we map the algorithm to a fully pipelined streaming architecture
on FPGA using HLS, which achieves significant performance
improvement.

The principles of our acceleration design apply to both FPGA
and GPU. Compared to the multi-threading CPU baseline, our
GPU accelerator achieves 7× acceleration, while our FPGA
accelerator achieves 28× acceleration. We further conduct an ar-
chitecture study to quantitatively analyze the architectural reason
for the performance difference. The summarized insights could
serve as a guide on choosing the proper hardware acceleration
platform.

I. INTRODUCTION

The recently developed third-generation sequencing brings

new computation challenges. It produces ultra-long reads1 in

the orders of 10,000 base pairs that are much longer than

previous sequencing technologies. Such long reads are crucial

for genetic research [1]. For example, de novo assembly2 from

long reads could better preserve the information of a repetitive

region, because the whole region might be captured in a read.

To assemble these long reads back to their original genome,

one crucial step, also the performance bottleneck, is to identify

potential overlaps between any pair of reads. Current software

tools for overlap detection take significant execution time and

have not been well studied for hardware acceleration.

* indicates co-first authors and equal contributions
1 read is an inferred sequence of base pairs of the input DNA fragments
2 de novo assembly is the process of reconstructing the genome from reads

without a reference genome

Minimap2 [2] is a state-of-the-art tool for pairwise over-

lapping. Its speed and accuracy far surpass other mainstream

tools, including the ones that are specialized for a single type

of alignment [2] [3] [4] [5] [6]. Like most tools, Minimap2

follows the seed-chain-align paradigm. However, its chaining

algorithm is highly accurate even without the following fine-

grained alignment step, and the alignment is not necessary

in the context of detecting pairwise overlaps. The profiling

results show that the chaining step costs about 70% of total

time, which motivates us to accelerate that step.

It is challenging to accelerate the chaining step of Min-

imap2. The algorithm is a one-dimensional dynamic program-

ming, where each input element is compared with N (64 in

our implementation) previous elements to determine the best

predecessor. It involves reduction operations in each iteration

to find the maximal value among the numbers. However,

the calculated maximal value will be immediately used in

the subsequent computation. This dependency is a general

problem for one-dimension dynamic programming. It will

become critical paths in FPGA accelerator designs, or lead

to increased instruction count and divergence on GPU.

To address this challenge, we propose to reorder the com-

putation order of the algorithm. We serialize one reduction

operation to N sequential comparisons, while in each cycle we

process the comparisons from N different sliding windows in

parallel. In this way, the previous critical path, which is a re-

duction tree, is converted to independent parallel comparisons.

Based on the modified algorithm, we propose a fully-pipelined

streaming architecture that effectively realizes the algorithm

with initiation interval (II) to be 1.

Additionally, one difficulty comes from the large and irreg-

ular input sizes. For our dataset, the total input sizes for a

chaining task of one read can vary from less than 1 MB to

more than 7 MB, which makes on-chip memory inadequate

and may cause idling issues. To solve this problem, we design

a fine-grained task partitioning scheme, where we tile the input

data and interleave them to ensure each PE can be fully utilized

all the time.

We not only accelerate the task on an FPGA. but also

explore the possibility of speeding it up on a GPU. First, we

explore how to properly map different levels of parallelism

to different hardware levels. Second, to efficiently leverage
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Fig. 1. The diagram of overlap detection. For a given set of reads, first we
extract features from each read and build a hash table. Those read that largely
share the same features are identified as overlap candidates. Then for a pair
of candidate reads, the common features are chained together.

a large degree of data re-use in this algorithm, care must be

taken to place data at proper memory levels. Besides, since the

GPU architecture also suffers from the reduction operation to

find the maximal value and its index, we similarly apply the

reordering of computing sequence of the algorithm.

Experiment results show that both devices achieve great

speed-ups over the well-optimized CPU baseline. Our FPGA

design performs 4× better than GPU. We further dive into the

architecture to quantitatively analyze which hardware is more

suitable for this algorithm. For this application, we find out

that even if we ideally optimize our kernel for NVIDIA Tesla

P100 GPU, the theoretical performance will still be capped by

the computing resource, and inferior to our FPGA accelerator

design.

In summary, we make the following contributions:

• Modify the Minimap2 chaining algorithm to be hardware-

friendly, and propose a fine-grained task dispatching

method to ensure workload balancing.

• Through hardware-software co-design, we implement an

FPGA accelerator using HLS on AWS F1 instance and a

GPU kernel on NVIDIA Tesla P100 GPU.

• The FPGA accelerator achieves 27.8× acceleration over

the original 14-thread software, 12.4× over our highly

optimized software and 3.9× over our GPU design.

• We quantitatively analyze and compare the design and

performance difference of FPGA and GPU, which could

be a reference when choosing between FPGA and GPU.

II. BACKGROUND

A. Pairwise Overlap Detection

The long read assembly process uses the Overlap-Layout-

Consensus (OLC) computing paradigm [7] [8], which is dif-

ferent from previous short read assembly processes. In OLC

assembly, the first step, also the efficiency bottleneck [9], is

the detection of overlaps between any pair of reads to form an

overlap graph. Fig. 1 shows the overall workflow of pairwise

overlapping. Though similar to the read-to-reference alignment

problem, read-to-read overlap detection is a distinct problem. It

can benefit from specialized algorithms that perform efficiently

and robustly on high error rate long reads. The general

sequence mapping problem usually follows a seed-chain-align

form, while for pairwise overlap detection, the last step (base-

level alignment) might not be necessary if the chaining step

provides required accuracy [2].
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Fig. 2. Time breakdown of Minimap2 working as an overlapper by gprof,
mm_chain_dp is the function that performs chaining.

B. Overview of Minimap2

Minimap2 is a general-purpose alignment tool that can map

different types of sequences against a large reference database.

It follows a typical seed-chain-align procedure as most full-

genome aligners [2].

In its first stage, seeding, it collects short seeds (called

minimizers [10], a special type of k-mer) from the reference

and query sequences and indexes them in a hash table. Based

on the hash table, reads that share a large number of seeds are

selected as overlap candidates.

Then in the second stage, chaining, the tool performs

dynamic programming to compare the locations of each shared

seed, and group together those who have a consistent distance

relative to each other. The Minimap2 chaining algorithm is

fast and accurate, even without the following alignment step.

The chaining alone is reported to be more accurate than many

famous long-read mappers [2]. The chaining step is the focus

of this paper.

Finally, if the base-level alignment is requested, in the

aligning stage Minimap2 applies dynamic programming to

extend the matches of seed, and resolves the gaps between

adjacent anchors in the chains with approximate matches. This

step is not required for pairwise overlapping.

Combined with different parameters, these three steps can

address a series of mapping problems. For example, it works

on not only long reads but also short reads, and not only DNA

but also RNA sequence. Besides a read overlapper, Minimap2

could replace any whole-genome aligner to determine the

difference between two complete sequences, or a reference-

based read aligner to assemble fragment reads based on known

reference. In all these situations, the chaining step costs a non-

trivial amount of time—especially when performing pairwise

overlapping in de novo assembly where it does not invoke

base-level aligning, and chaining takes about 70% of the

execution time, as Fig. 2 shows. In other scenarios, such

as reference-based assembly, chaining takes about the same

amount of time with aligning (both about 30% of the total

time).

C. Minimap2 Chaining Algorithm

We first clarify some common terminologies.

1) Anchor: A short match between two reads, which is

represented by a 3-tuple (x, y, w) to encode a match between



interval [x−w+1, x] on one read and interval [y−w+1, y]
on the other.

2) Chain: A list of anchors that are correlated in position.

Together these anchors can represent an estimated overlap

region.

3) Overlap: A global sequence match between two reads,

and often occurs when local regions on each read originate

from the same location within a larger sequence.

GGGCCGGA

GACT TGAG

potential overlap region

TGAG ACGGT

ACGGTACTAACTTACG GGGCCGGA

GTTACGGACTAA

chaining anchors

read 1

read 2

Fig. 3. Finding Estimated Overlap Region

For example in Fig. 3, there are 6 anchors between the two

reads. Anchor #2, #3, #4 and #5 form a chain, representing

a potential overlap region, while Anchor #1 and #6 might be

filtered out due to inconsistency in position.

Minimap2 chains the anchors through dynamic program-

ming. For each anchor, we compute its weight with each of

the N previous anchors to determine the best predecessor. In

practice, we can almost always find the optimal chain with N =

50; and even in the case where the heuristic fails, the result is

close to optimal [2]. In the actual implementation, we choose

N to be 64. Equation 1 shows the transition function of the

dynamic programming algorithm [2].

score(i) = max{max
i>j≥1

{score(j) + weight(j, i)}, wi} (1)

where

weight(j, i) = α(j, i)− β(j, i)

α(j, i) = min{yi − yj , xi − xj , wi}

β(j, i) = γc((yi − yj)− (xi − xj))

γc(l) =

{

0.01× avg anchor w × |l|+ 0.5 log2 |l|, l 6= 0

0, l = 0

We demonstrate some of the metrics in the transition function

in Fig. 4. α value is the number of matching bases between

the two anchors. β is the gap cost, reflecting the inconsistency

in position between two anchors. For example, in Fig. 3 the

β between anchors #5 and #6 will be significant due to the

inconsistency in position.

Algorithm 1 shows the details of the chaining algorithm.

Fig. 5 shows an example in a real-life chaining scenario,

where each line color represents an anchor. In this example,

they form an apparent overlap.
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Fig. 4. Position relation between two anchors,

Algorithm 1 Minimap2 Chaining Algorithm

Input: anchor[]: a list of anchors between a pair of reads

Output: predecessor[]: the predecessors and score[] the chaining scores.

1: for i = 1 to n do

2: for j = i−N to i− 1 do

3: α = Alpha(anchor [i], anchor [j])
4: β = Beta(anchor [i], anchor [j])
5: weight[j]← score[j] + α− β

6: end for

7: p← argmaxj{weight[j]}
8: if weight[p] < anchor [i].w then

9: score[i] = anchor [i].w
10: predecessor [i] = −1
11: else

12: score[i] = weight[p]
13: predecessor [i] = p

14: end if

15: end for

III. FPGA ACCELERATOR DESIGN

In this section we first discuss different design choices

and analyze how the dependency inside the algorithm incurs

a very long critical path. Then we introduce a method for

transforming the computing order to remove this limitation

and achieve full pipelining with II = 1. Based on the adjusted

algorithm, we present the streaming microarchitecture.

A. Reordering Computation Sequence

Although there are rich task-level and intra-task-level paral-

lelism inside this dynamic programming algorithm, it cannot

be directly mapped to hardware with high performance due to

loop-carried dependency.

The upper half of Fig. 6 shows the pseudocode of the

original software. For each anchor, the inner loop computes its

weight with N previous anchors, which could be unrolled in

hardware. Then, we need to obtain the maximum among the

N weights to be the final chaining score for the current anchor.

However, this value will be immediately used in the next outer-

loop iteration. This process will be mapped to a reduction

tree inside a feedback loop, as Fig. 7 shows. Therefore, the

next outer-loop iteration cannot initiate until the max operation

finishes. However, more than two cycles are required for the

reduction tree to work at 250 MHz, which limits the initiation

interval of the pipeline.

Specifically, the pseudocode score[i] calculated in iter-

ation i (line 6) will be immediately used in iteration i+1

(line 4). The recurrence of minimal II could be calculated as

follows [11]:

RecMinII = max
i

⌈

Latency(ci)/Distance(ci)
⌉

(2)

where Latency(c) is the sum of operation latencies along

circuit c, and Distance(c) is the sum of dependency dis-
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Fig. 5. Anchors between read pair forming overlap region.

1 //pseudo code for original software

2 for (i = 0; i < n; i++) { #pragma HLS pipeline

3 for (j = i-N; j < i; j++) { #pragma HLS unroll

4 temp[j] = Weight(anchor[i], anchor[j])+score[j];

5 }

6 score[i] = max{temp[:]}; // II bounded by "max"

7 predecessor[i] = argmax{temp[:]};

8 }

9

10 /*-----------------------------------------------------*/

11

12 //transform computing order

13 set score[:] = {-1}

14 for (i = 0; i < n; i++) { #pragma HLS pipeline

15 curr_score = score[i];

16 for (j = i+1; j < i+N; j++) { #pragma HLS unroll

17 temp = Weight(anchor[j], anchor[i]) + curr_score;

18 if (temp > score[j]) {

19 score[j] = temp; // dynamic update

20 predecessor[j] = i;

21 }}}

Fig. 6. Pseudocode of original and transformed algorithm.

tances along circuit c. In this case, assume in the best case

Latency(score[i]) = 2 (latency for finding the maximum

of 64 elements) and Distance(score[i]) = 1, since it will

be used immediately next cycle. Therefore, the pipeline is

bounded by an II=2.

The bottleneck of the max reduction operation could be

removed by reordering the computation. The core idea is

to separate the reduction of N elements into N individual

comparing operations in N cycles. The latter half of Fig. 6

shows the idea. Instead of comparing the current anchor with

N previous anchors and finding a maximum, we compare the

current anchor with N later anchors and update the temporary

value of each of them.

In this way, score[i] will be updated N times in outer-

loop iteration i-N to i-1, which is equivalent to the original

algorithm, except the reduction of N elements is replaced by

N parallel comparing so that the II could easily achieve 1

under the timing constraints.

B. Fully Pipelined PE Design

Fig. 9 demonstrates the design based on the transformed

algorithm. It consists of a task scheduler, a result collector

and an array of PEs. The scheduler and collector use a double

buffer technique to interact with DRAMs while overlapping

computing time with data transfer time. Each PE handles the

anchors from one read. The anchors are streamed into the PE

with II = 1, and the resulting chaining scores are streamed out

from the PE at the same rate.

From the modified algorithm, each anchor will be used

N + 1 times, and the currently in-use anchors form a sliding

Fig. 7. Critical path of direct implementation of the original algorithm. The
generated chaining scores from the reduction tree are looped back to be added
up by other weights as line 4 shows.

Fig. 8. Illustration of computation order transformation.

window of length N +1. This data movement is mapped to a

FIFO. Inside the PE, the input anchors will be streamed into a

FIFO structure of depth N +1. The anchor at the head of the

FIFO will be compared with N later anchors to calculate the

connection scores in parallel, corresponding to unrolling the

inner loop in line 16 in Fig. 6. Each cycle the anchors shift

forward one stage so that every anchor will be used to compare

with N later anchors, corresponding to the outer loops in line

14. The parallel computing logic in the middle computes the

weights as in the transition function Equation 1.

Additionally, there might be neighboring anchors that are

unrelated, which need to be filtered out. Since different tasks

are streamed into one PE without interval, we need to ensure

that the first anchors of the later read pair do not engage with

the last anchors from the previous pair. To do so, we assign a

common tag to the input of a read pair, and two anchors with

different tags will not be compared. This corresponds to the

filter logic in the pipeline.

In the algorithm, each score is initialized to be -1, and each

inner-loop iteration updates the value once. After N inner-loop

iterations, we obtain one final score. This process (lines 18-20)

is mapped to the right part of the PE, where the initial value -1

is streamed through N stages to obtain the final score value.

One obvious question is why the value is shifted all around,

instead of staying at the same place to be updated N times.



Fig. 9. Overview of a processing element array.

Fig. 10. Maximal score tracker.

The answer is that the inputs on the left hand are being shifted.

The input anchors on the left and the output scores on the right

are in one-to-one correspondence, so that the temporary score

values on the right should shift in the same direction.

We record not only the maximal score but also the selected

predecessor as the trace-back process. To do this, we update

the tentative predecessor while updating the tentative maximal

score. The predecessors are shifted in the same direction.

Therefore, in each cycle one new score can be obtained

from a PE. Since the chaining process of each pair of reads is

independent of each other, we can implement multiple PEs—

each handling one data stream in parallel. A comparison of

Fig. 7 and Fig. 10 will reveal the influence of the software

modification on the hardware microarchitecture. The previous

reduction tree is replaced by a stream of comparators, effec-

tively breaking the previous critical path.

Our solution is based on the modified algorithm, but one

may attempt to bypass the dependency limitation by pipelining

the inner-loop instead of unrolling, then extracting more task-

level parallelism. However, this approach is less efficient,

as the memory port must dispatch data to a considerable

number of individual pipelines, resulting in severe frequency

degradation. Also, redundant pipeline controllers introduce

large resource overheads.
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Fig. 12. Fine-grained task dispatching scheme

C. Fine-Grained Load Dispatching

When a pair of reads does not overlap, the algorithm has

few anchors as input. If we take the chaining of a pair of

reads as a task, tiny tasks with few anchors introduce overhead

and hurt resource utilization. Minimap2 addresses this problem

by concatenating anchors between one read to all others as

a task, and introduces a tag to separate them in runtime.

But a challenge remains: the input sizes from different tasks

expose a high variance, as Fig. 11 shows. This distribution

can easily lead to unbalanced workloads among PEs, which

may decrease the PE utilization. To solve this problem, we

propose a fine-grained task dispatching scheme to balance the

load distribution, as Fig. 12 demonstrates.

In our design, a single task will be only assigned to a single

PE; the distributor adaptively dispatches tasks to the idle PEs.

The data of a task is partitioned into multiple fine-grained

chunks. Rather than only dispatching data from a single task,

the distributor dispatches a data batch which contains grouped

chunks from different concurrent tasks. In this way, at any

clock cycle, every PE is able to fetch input data from the

newly transferred batch. This dispatching scheme helps us to

achieve the optimal PE utilization.

IV. CPU BASELINE AND GPU ACCELERATOR

In order to better evaluate the performance of our FPGA

accelerator, we optimize the original software in the CPU

architecture level, and further design a GPU accelerator for

the same task with best efforts.

A. Multi-Core CPU Baseline

We optimize the CPU software of the chaining process in

the following three main steps. First, we take advantage of

processor affinity and bind a thread to a designated core. In

contrast to the default thread scheduling scheme, tasks will

not be moved to another idle core, and cache could be reused.



Second, in our multi-socket system, we allocate data of tasks in

a neighbor NUMA node of its corresponding core to reduce

memory access latency. Finally, we make use of the vector

extensions in an Intel CPU to push the processing throughput

further. With SIMD instructions, the weights between eight

pairs of anchors could be computed concurrently, compared

to one in the original code. The same computation order

transformation method is used on our CPU code to avoid the

expensive reduction operation.

B. GPU Accelerator

To implement the design on the GPU, we also need to

explore how to map the different levels of parallelisms to

different GPU components and consider where to put the data.

First, the relatively high degree of data reuse determines

that we need to map intra-task level parallelism (the inner-

loop) to GPU threads. For one task, the currently in-use data

forms a sliding window of length N + 1, and each anchor,

along with the computed score and predecessor number, will

be accessed N + 1 times continuously. These data should be

placed in the local storage for performance concerns, but will

consume about 1 KB shared memory per task. For a modern

NVIDIA Pascal GPU, a streaming multiprocessor (SM) could

keep storage and contexts of 64 warps3 concurrently to achieve

a high compute resource occupancy, but has only 64 KB

shared memory in total. Therefore, if we map the task-level

parallelism to GPU threads, i.e., each thread handles the

chaining of a pair of reads, then one warp (32 threads) will

need more than half of the total local storage.

Second, the same computation order transform technique

in Section III applies to GPU as well. When different GPU

threads cooperate to handle the same task, they also need to

perform a synchronized reduction to find the maximal of N
numbers, which is similar to FPGA. This reduction operation

not only incurs a large instruction overhead, but also suffers

from a utilization problem since a large number of threads

will be idle in the process. Section V-C gives a quantitative

analysis of the influence of computation order transformation

on GPU based on the profiling results.

In summary, for our GPU design, each SM handles the

chaining of 32 pairs of reads in a interleaving way to hide

the instruction latency. Within the task of a pair of reads, 64

threads handle the parallel weights computing. Additionally, in

order to hide the time of data transfer between CPU and GPU,

we use asynchronous memory operations and order them with

CUDA streams.

Table I summarizes and compares the design choices for

the three types of computing devices.

V. EXPERIMENT EVALUATION

A. Experiment Setup

The FPGA design is implemented on an Amazon EC2 F1

instance, which includes a Xilinx UltraScale+ VU9P FPGA

3A warp is the basic unit of execution scheduling; it contains 32 threads
that execute the same instruction. In the case of the NVIDIA Pascal GPU, 2
of the 64 warps will be issued at a time, in parallel.

TABLE I
PARALLELISM MAPPING CHOICE FOR CPU, FPGA AND GPU

Device Parallelism Mapping Degree of Concurrency

FPGA
Task-level → PEs 1 task per PE

Intra-task → pipelined lanes 64 inner loop iterations in parallel

GPU
Task-levelk → CUDA blocks 32 tasks per GPU SM

Intra-task → CUDA threads 64 inner loop iterations in parallel

CPU
Task-level → CPU threads 1 task per CPU core

Intra-task → SIMD instructions 8 inner loop iterations in parallel

in 16 nm process. The UltraScale+ FPGA is connected to

the host CPU by a PCIe x16 interface. We implement our

GPU baseline on the NVIDIA Tesla P100 GPU, which is also

fabricated in a 16 nm process and is connected to the host

by a PCIe x16 interface. Additionally, we test the baseline

multithreading CPU design on 14-core Xeon E5-2680 v4 CPU

in a 14 nm process.

We use the public Caenorhabditis Elegans 40× Sequence

Coverage [12] dataset obtained from PacBio sequencer to

evaluate our hardware accelerator. The dataset is about 4.6GB

in FASTA format.

B. Multi-Core CPU Baseline Evaluation

The Xeon E5-2680v4 CPU has 14 cores operating at a

maximum frequency of 3.30 GHz. We record the performance

improvements from each of our optimization steps.

The original version with a single thread takes 1420.0s to

finish, while our optimized 14-thread software takes 101.9s,

i.e., a 13.9× speedup, which is almost linear to the number of

cores. As a comparison, the initial parallelized version takes

140.9s with only 10.1× speedup before adding CPU thread

affinity and memory optimization.

With SIMD processing and the computation order transfor-

mation, the CPU execution time is further reduced to 63.7s. Al-

though we process eight scores of anchors in parallel, we could

not achieve 8× speedup. This is because a vector instruction

could have a higher overhead than its scalar counterparts, and

it requires all eight values to be computed to get the results.

Moreover, it could not benefit from quickly filtering out some

of the anchors early to avoid complex calculation.

C. GPU Performance Evaluation

The NVIDIA Tesla P100 GPU operates at 1.303 GHz

frequency. The total computation time is 20.1s, which is a

7.1× speedup over the original 14-thread software, but still

3.9× longer than its FPGA counterpart. Profiling results show

that the GPU resource is already well used by our CUDA

kernel: it could achieve 100% occupancy, 78% computing

resource utilization, and 67% shared memory usage.

The computation order transformation technique signifi-

cantly boosts the GPU performance, making it 1.9× faster than

direct implementation of the original algorithm. Experiments

show that the original reduction operation alone generates 61

instructions, while the effective computation for weights only

produces 49 instructions. Moreover, during the reduction, more

than 80% of the instructions of all threads are waiting for other
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Fig. 13. Kernel execution time

threads to complete. Instead, after the computation order trans-

formation, we do not have a centralized reduction operation

anymore, which greatly improves the GPU performance. The

equivalent update operation only costs five instructions with

100% thread utilization.

D. FPGA Performance Evaluation

We implement the design Using Vivado HLS. With 8 PEs

the design could achieve 250 MHz and overall II of 1, and it

could saturate the PCIe bandwidth between CPU and FPGA.

The dataset is processed in only 6.84s. Table II shows the

resource utilization of the design with 8 PEs. As shown, the

current design only takes a small share of FPGA resource.

With future generations of PCIe bus, we could further scale

up the throughput. For example, with two PE arrays, the design

achieves 200 MHz and the same task takes only 5.1s to finish.

In comparison, the original algorithm can only achieve an II

of 2 when running at 250 MHz, which severely limits its

performance.

TABLE II
FPGA RESOURCE CONSUMPTION OF 8 PE VERSION

Name BRAM 18K DSP48E FF LUT

Total 300 520 304637 385038

Available 4320 6840 2364480 1182240

Utilization 6% 7% 12% 32%

Due to the restriction of the OpenCL model, host data must

be first copied into FPGA DRAM, which incurs unnecessary

copying time. Instead, the data should be directly streamed to

the computing logic for optimal performance. To do so, we

could either implement the design in RTL level or integrate

our design into the recently developed ST-Accel framework

[13] which supports host-kernel communication during kernel

execution. This remains as future work.

Fig. 13 shows the performance difference between different

computing devices. As a reference, the original software

version with a single thread takes 1420.0s to execute, which

is not listed in the figure. Our FPGA accelerator is 277×
faster than the original single-thread software; 28× faster than

the multi-thread software on 14-core CPU, 12× faster than

our highly optimized software version and 4× faster than our

optimized GPU implementation.

VI. QUANTITATIVE COMPARISON OF FPGA AND GPU

In this section we conduct a quantitative analysis on why the

performance of FPGA is better than GPU using this algorithm.

In many situations, although claimed to have higher energy

efficiency [14][15][16], the acceleration rates by FPGA are

not as good as those by GPU, while designing an FPGA

accelerator takes a much longer time than GPU. To make

things worse, FPGA is usually more expensive than GPU in

the same generation. Therefore, it is critical to ascertain on

what kind of applications can the performance of FPGA beat

GPU. Here, we carry out an in-depth study for this application

to better understand the tradeoff between FPGA and GPU.

To evaluate the performance, we compare how many chain-

ing scores could be generated per second. Remember that

obtaining one chaining score requires a comparison of one

anchor with N previous anchors and finding the maximal

weights.

A. Theoretical Performance Analysis

For FPGA, we achieve overall initiation interval of 1 for

each PE, and have at most 16 PEs at 200 MHz. This means

that in each cycle a PE can generate 1 score at 200 MHz,

which equals 3600M scores per second. If we take the PCIe

bandwidth limitation between CPU and FPGA into consider-

ation, an array of 8 PEs working at 250 MHz would be able

to saturate the bandwidth of PCIe x16, which could generate

2000M scores per second.

The estimation of GPU performance is more complicated

than FPGA. Here, we first assume that the GPU computing

resource has been perfectly utilized and model a theoretical

best performance—which we will find is worse than our FPGA

accelerator. Then we will discuss what factors will influence

the actual GPU performance from our ideal estimation.

Since the GPU interleaves the instructions from different

warps to hide latency, when there are enough warps to sched-

ule, every cycle one instruction could complete in a SIMD

processor. Considering the huge embarrassingly parallelism

between tasks, we assume there are enough warps to hide

the latency of all instructions to be 1 cycle. We then assume

all 3584 CUDA cores4 of the NVIDIA Tesla P100 GPU are

fully utilized, so that every cycle we finish 3584 instructions

summed up from all threads. The inner loop contents, i.e.,

computing the weights between two anchors, is compiled

into 49 instructions so that obtaining a chaining score takes

49 × 64 = 3136 instructions summed up from all threads.

The GPU runs at 1303 MHz. Therefore, the estimated best

performance possible is 3584/3136 × 1303 = 1489M scores

per second, far less than FPGA’s actual achieved performance.

In reality, many factors could not reach the ideal that we

assume here. For example, the instruction latency could not

always be hidden with context switching between warps be-

cause of resource contention or warp synchronization. Control

flow related code and other sequential parts are inevitable in

addition to the computational instructions. Besides, in our case

4The maximum count of threads that could be executed concurrently.



Fig. 14. Breakdown of GPU instructions of weight computation.

one anchor is compared with 64 previous anchors, so that this

parallelism can be perfectly mapped to 2 CUDA warps, each

consisting of 32 CUDA threads. However, if one anchor only

needs to be compared with 48 previous anchors, then half of

the threads in the second warp will idle.

B. Why Can FPGA Beat GPU?

One key parameter used in GPU performance analysis is the

number of instructions for each CUDA thread, which directly

determines the possible performance of GPU. We dive into the

instructions, manually map the instructions back to their use

to understand why GPU loses the race in this application.

Fig. 14 shows the approximate breakdown of the instruc-

tions for computing the weight between two anchors. As can

been seen, only 21 instructions are for arithmetic operation,

while 20 instructions are for GPU control and branch con-

dition. This is because the algorithm to compute the weight

includes much checking and filtering with conditions. For

FPGA, these control logics will be integrated into stages in

the customized pipeline, making the pipeline longer but having

no impact on throughput; while for GPU, those control logics

turn into instructions that increase the execution time. This

find implies that those very complicated in control flow might

be more suitable for FPGA.

Meanwhile, in this application most computations are of 17-

bit integer type, which is a plus for FPGA. If large quantities

of floating point operations are involved, FPGA might not have

enough DSP or have routing problems when using too many

DSPs. GPU has such a powerful floating point calculation

capability that NVIDIA Tesla P100 GPU could perform 64-bit

floating-point arithmetic with a performance of 5.3 TFLOP/s.

This implies that those tasks of irregular-width integer type

might be more suitable for FPGA.

Additionally, 8 data load related instructions are generated.

Since each anchor consists of 4 numbers (x, y, w, tag), GPU

first needs to fetch the data from shared memory and spend 4

instructions to unpack it to get the actual numbers. For FPGA,

the inputs are kept in BRAM and can be used immediately

with combinational logic. This implies that those applications

with highly complex data structures might be more suitable

for FPGA.

Also, one unique advantage of FPGA for streaming applica-

tions is the small latency between the input stream and output

stream, which is crucial for real-time applications.

Considering the long design cycle for FPGA, performance

estimation is necessary before one carries out the implemen-

tation. This situation again reveals the need for a tool to help

estimate the performance difference between GPU and FPGA

for a given computation pattern. This remains as future work.

VII. RELATED WORK

The fact that the cost of genome sequencing drops

faster than Moore’s law motivates many FPGA acceler-

ation studies for sequencing algorithms. The general se-

quence mapping problem can be summarized by the seed-

chain-align procedure. A large quantity of work accelerated

the base-level alignment step – especially the matrix-fill of

the well-known Smith-Waterman algorithm and its varia-

tion [17][18][19][20][21][22][23][24][25][26]. Other studies

[27][28][29][30][31][32] are devoted to the seeding phase or

taking care of both phases. To the best of our knowledge, no

previous work has accelerated the chaining step as we do.

Detection of overlap between read pairs is a particular

form of sequence mapping problem that in many cases does

not require a base-level alignment step. Turakhia et al. [33]

propose and implement in hardware to concatenate all reads

into a long string and align each individual read to the long

concatenation using a reference-based alignment algorithm.

Meng et al. [34] accelerated the pairwise overlapping of

optical label-based reads. However, the algorithms and design

challenges are all different. On the algorithm level, they deal

with an alignment problem of two lists of labels using 2-D

dynamic programming; for us, chaining one list of anchors

is a 1-D dynamic programming problem. On the hardware

design level, the dependency relationship in our algorithm

seriously influences the pipeline initiation interval, so we need

a special adaptation of the algorithm. The dependency relation

in their situation will not, since the newly computed score will

not be immediately used. Plus, tiling and fine-grained load

dispatching are required in our case.

For other stages in the de novo assembly process, Varma

et al. [35] proposed a method to pre-process the read data to

reduce the overall assembly time; Ramachandran et al. [36]

accelerated the error correction stage for short reads.

VIII. CONCLUSION

In this paper we accelerate the pairwise overlapping of very

long reads. The algorithm has rich parallelism, but also has

many components that impede parallel execution. We propose

to transform the computation order of the algorithm to make

it hardware-friendly, and design a task distributing method to

ensure a balanced workload. Then we develop a fully pipelined

streaming FPGA accelerator. We further implement a well-

designed GPU kernel. Experiment evaluation shows that our

FPGA accelerator achieves far better performances than other

solutions. Then we perform a quantitative analysis of the

performance difference between GPU and FPGA.
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